1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : constantes_soil_var |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ listes.ipsl.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF "constantes_soil_var" module contains the parameters related to soil and hydrology. |
---|
10 | !! |
---|
11 | !!\n DESCRIPTION : The non saturated hydraulic properties are defined from the |
---|
12 | !! formulations of van Genuchten (1980) and Mualem (1976), combined as |
---|
13 | !! explained in d'Orgeval (2006). \n |
---|
14 | !! The related parameters for main soil textures (coarse, medium and fine if "fao", |
---|
15 | !! 12 USDA testures if "usda") come from Carsel and Parrish (1988). |
---|
16 | !! |
---|
17 | !! RECENT CHANGE(S): AD: mcw and mcf depend now on soil texture, based on Van Genuchten equations |
---|
18 | !! and classical matric potential values, and pcent is adapted |
---|
19 | !! |
---|
20 | !! REFERENCE(S) : |
---|
21 | !!- Roger A.Pielke, (2002), Mesoscale meteorological modeling, Academic Press Inc. |
---|
22 | !!- Polcher, J., Laval, K., DÃŒmenil, L., Lean, J., et Rowntree, P. R. (1996). |
---|
23 | !! Comparing three land surface schemes used in general circulation models. Journal of Hydrology, 180(1-4), 373--394. |
---|
24 | !!- Ducharne, A., Laval, K., et Polcher, J. (1998). Sensitivity of the hydrological cycle |
---|
25 | !! to the parametrization of soil hydrology in a GCM. Climate Dynamics, 14, 307--327. |
---|
26 | !!- Rosnay, P. de et Polcher, J. (1999). Modelling root water uptake in a complex land surface |
---|
27 | !! scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2(2/3), 239--255. |
---|
28 | !!- d'Orgeval, T. et Polcher, J. (2008). Impacts of precipitation events and land-use changes |
---|
29 | !! on West African river discharges during the years 1951--2000. Climate Dynamics, 31(2), 249--262. |
---|
30 | !!- Carsel, R. and Parrish, R.: Developing joint probability distributions of soil water |
---|
31 | !! retention characteristics, Water Resour. Res.,24, 755â769, 1988. |
---|
32 | !!- Mualem Y (1976) A new model for predicting the hydraulic conductivity |
---|
33 | !! of unsaturated porous media. Water Resources Research 12(3):513-522 |
---|
34 | !!- Van Genuchten M (1980) A closed-form equation for predicting the |
---|
35 | !! hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 44(5):892-898 |
---|
36 | !! |
---|
37 | !! SVN : |
---|
38 | !! $HeadURL: $ |
---|
39 | !! $Date: $ |
---|
40 | !! $Revision: $ |
---|
41 | !! \n |
---|
42 | !_ ================================================================================================================================ |
---|
43 | |
---|
44 | MODULE constantes_soil_var |
---|
45 | |
---|
46 | USE defprec |
---|
47 | USE vertical_soil_var |
---|
48 | |
---|
49 | IMPLICIT NONE |
---|
50 | |
---|
51 | LOGICAL, SAVE :: check_cwrr !! Calculate diagnostics to check the water balance in hydrol (true/false) |
---|
52 | !$OMP THREADPRIVATE(check_cwrr) |
---|
53 | |
---|
54 | !! Number of soil classes |
---|
55 | |
---|
56 | INTEGER(i_std), PARAMETER :: ntext=3 !! Number of soil textures (Silt, Sand, Clay) |
---|
57 | INTEGER(i_std), PARAMETER :: nstm=3 !! Number of soil tiles (unitless) |
---|
58 | CHARACTER(LEN=30) :: soil_classif !! Type of classification used for the map of soil types. |
---|
59 | !! It must be consistent with soil file given by |
---|
60 | !! SOILCLASS_FILE parameter. |
---|
61 | !$OMP THREADPRIVATE(soil_classif) |
---|
62 | INTEGER(i_std), PARAMETER :: nscm_fao=3 !! For FAO Classification (unitless) |
---|
63 | INTEGER(i_std), PARAMETER :: nscm_usda=12 !! For USDA Classification (unitless) |
---|
64 | INTEGER(i_std), SAVE :: nscm=nscm_fao !! Default value for nscm |
---|
65 | !$OMP THREADPRIVATE(nscm) |
---|
66 | |
---|
67 | !! Parameters for soil thermodynamics |
---|
68 | |
---|
69 | REAL(r_std), SAVE :: so_capa_dry = 1.80e+6 !! Dry soil Heat capacity of soils |
---|
70 | !! @tex $(J.m^{-3}.K^{-1})$ @endtex |
---|
71 | !$OMP THREADPRIVATE(so_capa_dry) |
---|
72 | REAL(r_std), SAVE :: so_cond_dry = 0.40 !! Dry soil Thermal Conductivity of soils |
---|
73 | !! @tex $(W.m^{-2}.K^{-1})$ @endtex |
---|
74 | !$OMP THREADPRIVATE(so_cond_dry) |
---|
75 | REAL(r_std), SAVE :: so_capa_wet = 3.03e+6 !! Wet soil Heat capacity of soils |
---|
76 | !! @tex $(J.m^{-3}.K^{-1})$ @endtex |
---|
77 | !$OMP THREADPRIVATE(so_capa_wet) |
---|
78 | REAL(r_std), SAVE :: so_cond_wet = 1.89 !! Wet soil Thermal Conductivity of soils |
---|
79 | !! @tex $(W.m^{-2}.K^{-1})$ @endtex |
---|
80 | !$OMP THREADPRIVATE(so_cond_wet) |
---|
81 | REAL(r_std), SAVE :: sn_cond = 0.3 !! Thermal Conductivity of snow |
---|
82 | !! @tex $(W.m^{-2}.K^{-1})$ @endtex |
---|
83 | !$OMP THREADPRIVATE(sn_cond) |
---|
84 | REAL(r_std), SAVE :: sn_dens = 330.0 !! Snow density for the soil thermodynamics |
---|
85 | !! (kg/m3) |
---|
86 | !$OMP THREADPRIVATE(sn_dens) |
---|
87 | REAL(r_std), SAVE :: sn_capa !! Heat capacity for snow |
---|
88 | !! @tex $(J.m^{-3}.K^{-1})$ @endtex |
---|
89 | !$OMP THREADPRIVATE(sn_capa) |
---|
90 | REAL(r_std), SAVE :: water_capa = 4.18e+6 !! Water heat capacity |
---|
91 | !! @tex $(J.m^{-3}.K^{-1})$ @endtex |
---|
92 | !$OMP THREADPRIVATE(water_capa) |
---|
93 | REAL(r_std), SAVE :: brk_capa = 2.0e+6 !! Heat capacity of generic rock |
---|
94 | !! @tex $(J.m^{-3}.K^{-1})$ @endtex |
---|
95 | !$OMP THREADPRIVATE(brk_capa) |
---|
96 | REAL(r_std), SAVE :: brk_cond = 3.0 !! Thermal conductivity of saturated granitic rock |
---|
97 | !! @tex $(W.m^{-1}.K^{-1})$ @endtex |
---|
98 | !$OMP THREADPRIVATE(brk_cond) |
---|
99 | |
---|
100 | REAL(r_std), SAVE :: qsintcst = 0.02 !! Transforms leaf area index into size of interception reservoir |
---|
101 | !! (unitless) |
---|
102 | !$OMP THREADPRIVATE(qsintcst) |
---|
103 | REAL(r_std), SAVE :: mx_eau_nobio = 150. !! Volumetric available soil water capacity in nobio fractions |
---|
104 | !! @tex $(kg.m^{-3} of soil)$ @endtex |
---|
105 | !$OMP THREADPRIVATE(mx_eau_nobio) |
---|
106 | |
---|
107 | |
---|
108 | !! Parameters specific for the CWRR hydrology. |
---|
109 | |
---|
110 | !! 1. Parameters for FAO Classification |
---|
111 | |
---|
112 | !! Parameters for soil type distribution |
---|
113 | |
---|
114 | REAL(r_std),DIMENSION(nscm_fao),SAVE :: soilclass_default_fao = & !! Default soil texture distribution for fao : |
---|
115 | & (/ 0.28, 0.52, 0.20 /) !! in the following order : COARSE, MEDIUM, FINE (unitless) |
---|
116 | !$OMP THREADPRIVATE(soilclass_default_fao) |
---|
117 | |
---|
118 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: nvan_fao = & !! Van Genuchten coefficient n (unitless) |
---|
119 | & (/ 1.89_r_std, 1.56_r_std, 1.31_r_std /) ! RK: 1/n=1-m |
---|
120 | |
---|
121 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: avan_fao = & !! Van Genuchten coefficient a |
---|
122 | & (/ 0.0075_r_std, 0.0036_r_std, 0.0019_r_std /) !! @tex $(mm^{-1})$ @endtex |
---|
123 | |
---|
124 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcr_fao = & !! Residual volumetric water content |
---|
125 | & (/ 0.065_r_std, 0.078_r_std, 0.095_r_std /) !! @tex $(m^{3} m^{-3})$ @endtex |
---|
126 | |
---|
127 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcs_fao = & !! Saturated volumetric water content |
---|
128 | & (/ 0.41_r_std, 0.43_r_std, 0.41_r_std /) !! @tex $(m^{3} m^{-3})$ @endtex |
---|
129 | |
---|
130 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: ks_fao = & !! Hydraulic conductivity at saturation |
---|
131 | & (/ 1060.8_r_std, 249.6_r_std, 62.4_r_std /) !! @tex $(mm d^{-1})$ @endtex |
---|
132 | |
---|
133 | ! The max available water content is smaller when mcw and mcf depend on texture, |
---|
134 | ! so we increase pcent to a classical value of 80% |
---|
135 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: pcent_fao = & !! Fraction of saturated volumetric soil moisture |
---|
136 | & (/ 0.8_r_std, 0.8_r_std, 0.8_r_std /) !! above which transpir is max (0-1, unitless) |
---|
137 | |
---|
138 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: free_drain_max_fao = & !! Max=default value of the permeability coeff |
---|
139 | & (/ 1.0_r_std, 1.0_r_std, 1.0_r_std /) !! at the bottom of the soil (0-1, unitless) |
---|
140 | |
---|
141 | !! We use the VG relationships to derive mcw and mcf depending on soil texture |
---|
142 | !! assuming that the matric potential for wilting point and field capacity is |
---|
143 | !! -150m (permanent WP) and -3.3m respectively |
---|
144 | !! (-1m for FC for the three sandy soils following Richards, L.A. and Weaver, L.R. (1944) |
---|
145 | !! Note that mcw GE mcr |
---|
146 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcf_fao = & !! Volumetric water content at field capacity |
---|
147 | & (/ 0.1218_r_std, 0.1654_r_std, 0.2697_r_std /) !! @tex $(m^{3} m^{-3})$ @endtex |
---|
148 | |
---|
149 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mcw_fao = & !! Volumetric water content at wilting point |
---|
150 | & (/ 0.0657_r_std, 0.0884_r_std, 0.1496_r_std/) !! @tex $(m^{3} m^{-3})$ @endtex |
---|
151 | |
---|
152 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mc_awet_fao = & !! Vol. wat. cont. above which albedo is cst |
---|
153 | & (/ 0.25_r_std, 0.25_r_std, 0.25_r_std /) !! @tex $(m^{3} m^{-3})$ @endtex |
---|
154 | |
---|
155 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: mc_adry_fao = & !! Vol. wat. cont. below which albedo is cst |
---|
156 | & (/ 0.1_r_std, 0.1_r_std, 0.1_r_std /) !! @tex $(m^{3} m^{-3})$ @endtex |
---|
157 | |
---|
158 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: SMCMAX_fao = & !! porosity |
---|
159 | & (/ 0.41_r_std, 0.43_r_std, 0.41_r_std /) !! & (/ 0.434_r_std, 0.439_r_std, 0.465_r_std /) !!noah lsm |
---|
160 | |
---|
161 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: QZ_fao = & !! QUARTZ CONTENT (SOIL TYPE DEPENDENT) |
---|
162 | & (/ 0.60_r_std, 0.40_r_std, 0.35_r_std /) !! Peters et al [1998] |
---|
163 | |
---|
164 | REAL(r_std),PARAMETER,DIMENSION(nscm_fao) :: so_capa_dry_ns_fao = & !! Dry soil Heat capacity of soils,J.m^{-3}.K^{-1} |
---|
165 | & (/ 1.34e+6_r_std, 1.21e+6_r_std, 1.23e+6_r_std /) !! Pielke [2002, 2013] |
---|
166 | |
---|
167 | !! 2. Parameters for USDA Classification |
---|
168 | |
---|
169 | !! Parameters for soil type distribution : |
---|
170 | !! Sand, Loamy Sand, Sandy Loam, Silt Loam, Silt, Loam, Sandy Clay Loam, Silty Clay Loam, Clay Loam, Sandy Clay, Silty Clay, Clay |
---|
171 | |
---|
172 | REAL(r_std),DIMENSION(nscm_usda),SAVE :: soilclass_default_usda = & !! Default soil texture distribution in the above order : |
---|
173 | & (/ 0.28, 0.52, 0.20, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /) !! Thus different from "FAO"'s COARSE, MEDIUM, FINE |
---|
174 | !! which have indices 3,6,9 in the 12-texture vector |
---|
175 | !$OMP THREADPRIVATE(soilclass_default_usda) |
---|
176 | |
---|
177 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: nvan_usda = & !! Van Genuchten coefficient n (unitless) |
---|
178 | & (/ 2.68_r_std, 2.28_r_std, 1.89_r_std, 1.41_r_std, & ! RK: 1/n=1-m |
---|
179 | & 1.37_r_std, 1.56_r_std, 1.48_r_std, 1.23_r_std, & |
---|
180 | & 1.31_r_std, 1.23_r_std, 1.09_r_std, 1.09_r_std /) |
---|
181 | |
---|
182 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: avan_usda = & !! Van Genuchten coefficient a |
---|
183 | & (/ 0.0145_r_std, 0.0124_r_std, 0.0075_r_std, 0.0020_r_std, & !! @tex $(mm^{-1})$ @endtex |
---|
184 | & 0.0016_r_std, 0.0036_r_std, 0.0059_r_std, 0.0010_r_std, & |
---|
185 | & 0.0019_r_std, 0.0027_r_std, 0.0005_r_std, 0.0008_r_std /) |
---|
186 | |
---|
187 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcr_usda = & !! Residual volumetric water content |
---|
188 | & (/ 0.045_r_std, 0.057_r_std, 0.065_r_std, 0.067_r_std, & !! @tex $(m^{3} m^{-3})$ @endtex |
---|
189 | & 0.034_r_std, 0.078_r_std, 0.100_r_std, 0.089_r_std, & |
---|
190 | & 0.095_r_std, 0.100_r_std, 0.070_r_std, 0.068_r_std /) |
---|
191 | |
---|
192 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcs_usda = & !! Saturated volumetric water content |
---|
193 | & (/ 0.43_r_std, 0.41_r_std, 0.41_r_std, 0.45_r_std, & !! @tex $(m^{3} m^{-3})$ @endtex |
---|
194 | & 0.46_r_std, 0.43_r_std, 0.39_r_std, 0.43_r_std, & |
---|
195 | & 0.41_r_std, 0.38_r_std, 0.36_r_std, 0.38_r_std /) |
---|
196 | |
---|
197 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: ks_usda = & !! Hydraulic conductivity at saturation |
---|
198 | & (/ 7128.0_r_std, 3501.6_r_std, 1060.8_r_std, 108.0_r_std, & !! @tex $(mm d^{-1})$ @endtex |
---|
199 | & 60.0_r_std, 249.6_r_std, 314.4_r_std, 16.8_r_std, & |
---|
200 | & 62.4_r_std, 28.8_r_std, 4.8_r_std, 48.0_r_std /) |
---|
201 | |
---|
202 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: pcent_usda = & !! Fraction of saturated volumetric soil moisture |
---|
203 | & (/ 0.8_r_std, 0.8_r_std, 0.8_r_std, 0.8_r_std, & !! above which transpir is max (0-1, unitless) |
---|
204 | & 0.8_r_std, 0.8_r_std, 0.8_r_std, 0.8_r_std, & |
---|
205 | & 0.8_r_std, 0.8_r_std, 0.8_r_std, 0.8_r_std /) |
---|
206 | |
---|
207 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: free_drain_max_usda = & !! Max=default value of the permeability coeff |
---|
208 | & (/ 1.0_r_std, 1.0_r_std, 1.0_r_std, 1.0_r_std, & !! at the bottom of the soil (0-1, unitless) |
---|
209 | & 1.0_r_std, 1.0_r_std, 1.0_r_std, 1.0_r_std, & |
---|
210 | & 1.0_r_std, 1.0_r_std, 1.0_r_std, 1.0_r_std /) |
---|
211 | |
---|
212 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcf_usda = & !! Volumetric water content at field capacity |
---|
213 | & (/ 0.0493_r_std, 0.0710_r_std, 0.1218_r_std, 0.2402_r_std, & !! @tex $(m^{3} m^{-3})$ @endtex |
---|
214 | 0.2582_r_std, 0.1654_r_std, 0.1695_r_std, 0.3383_r_std, & |
---|
215 | 0.2697_r_std, 0.2672_r_std, 0.3370_r_std, 0.3469_r_std /) |
---|
216 | |
---|
217 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mcw_usda = & !! Volumetric water content at wilting point |
---|
218 | & (/ 0.0450_r_std, 0.0570_r_std, 0.0657_r_std, 0.1039_r_std, & !! @tex $(m^{3} m^{-3})$ @endtex |
---|
219 | 0.0901_r_std, 0.0884_r_std, 0.1112_r_std, 0.1967_r_std, & |
---|
220 | 0.1496_r_std, 0.1704_r_std, 0.2665_r_std, 0.2707_r_std /) |
---|
221 | |
---|
222 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mc_awet_usda = & !! Vol. wat. cont. above which albedo is cst |
---|
223 | & (/ 0.25_r_std, 0.25_r_std, 0.25_r_std, 0.25_r_std, & !! @tex $(m^{3} m^{-3})$ @endtex |
---|
224 | & 0.25_r_std, 0.25_r_std, 0.25_r_std, 0.25_r_std, & |
---|
225 | & 0.25_r_std, 0.25_r_std, 0.25_r_std, 0.25_r_std /) |
---|
226 | |
---|
227 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: mc_adry_usda = & !! Vol. wat. cont. below which albedo is cst |
---|
228 | & (/ 0.1_r_std, 0.1_r_std, 0.1_r_std, 0.1_r_std, & !! @tex $(m^{3} m^{-3})$ @endtex |
---|
229 | & 0.1_r_std, 0.1_r_std, 0.1_r_std, 0.1_r_std, & |
---|
230 | & 0.1_r_std, 0.1_r_std, 0.1_r_std, 0.1_r_std /) |
---|
231 | |
---|
232 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: SMCMAX_usda = & !! porosity |
---|
233 | & (/ 0.43_r_std, 0.41_r_std, 0.41_r_std, 0.45_r_std, & |
---|
234 | & 0.46_r_std, 0.43_r_std, 0.39_r_std, 0.43_r_std, & |
---|
235 | & 0.41_r_std, 0.38_r_std, 0.36_r_std, 0.38_r_std /) |
---|
236 | |
---|
237 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: QZ_usda = & !! QUARTZ CONTENT (SOIL TYPE DEPENDENT) |
---|
238 | & (/ 0.92_r_std, 0.82_r_std, 0.60_r_std, 0.25_r_std, & |
---|
239 | & 0.10_r_std, 0.40_r_std, 0.60_r_std, 0.10_r_std, & |
---|
240 | & 0.35_r_std, 0.52_r_std, 0.10_r_std, 0.25_r_std /) !! Peters et al [1998] |
---|
241 | |
---|
242 | REAL(r_std),PARAMETER,DIMENSION(nscm_usda) :: so_capa_dry_ns_usda = & !! Dry soil Heat capacity of soils,J.m^{-3}.K^{-1} |
---|
243 | & (/ 1.47e+6_r_std, 1.41e+6_r_std, 1.34e+6_r_std, 1.27e+6_r_std, & |
---|
244 | & 1.21e+6_r_std, 1.21e+6_r_std, 1.18e+6_r_std, 1.32e+6_r_std, & |
---|
245 | & 1.23e+6_r_std, 1.18e+6_r_std, 1.15e+6_r_std, 1.09e+6_r_std /) !! Pielke [2002, 2013] |
---|
246 | |
---|
247 | !! Parameters for the numerical scheme used by CWRR |
---|
248 | |
---|
249 | INTEGER(i_std), PARAMETER :: imin = 1 !! Start for CWRR linearisation (unitless) |
---|
250 | INTEGER(i_std), PARAMETER :: nbint = 50 !! Number of interval for CWRR linearisation (unitless) |
---|
251 | INTEGER(i_std), PARAMETER :: imax = nbint+1 !! Number of points for CWRR linearisation (unitless) |
---|
252 | REAL(r_std), PARAMETER :: w_time = 1.0_r_std !! Time weighting for CWRR numerical integration (unitless) |
---|
253 | |
---|
254 | |
---|
255 | !! Variables related to soil freezing, in thermosoil : |
---|
256 | LOGICAL, SAVE :: ok_Ecorr !! Flag for energy conservation correction |
---|
257 | !$OMP THREADPRIVATE(ok_Ecorr) |
---|
258 | LOGICAL, SAVE :: ok_freeze_thermix !! Flag to activate thermal part of the soil freezing scheme |
---|
259 | !$OMP THREADPRIVATE(ok_freeze_thermix) |
---|
260 | LOGICAL, SAVE :: ok_freeze_thaw_latent_heat !! Flag to activate latent heat part of the soil freezing scheme |
---|
261 | !$OMP THREADPRIVATE(ok_freeze_thaw_latent_heat) |
---|
262 | LOGICAL, SAVE :: read_reftemp !! Flag to initialize soil temperature using climatological temperature |
---|
263 | !$OMP THREADPRIVATE(read_reftemp) |
---|
264 | REAL(r_std), SAVE :: poros !! Soil porosity (from USDA classification, mean value)(-) |
---|
265 | !$OMP THREADPRIVATE(poros) |
---|
266 | REAL(r_std), SAVE :: fr_dT !! Freezing window (K) |
---|
267 | !$OMP THREADPRIVATE(fr_dT) |
---|
268 | |
---|
269 | !! Variables related to soil freezing, in hydrol : |
---|
270 | LOGICAL, SAVE :: ok_freeze_cwrr !! CWRR freezing scheme by I. Gouttevin |
---|
271 | !$OMP THREADPRIVATE(ok_freeze_cwrr) |
---|
272 | LOGICAL, SAVE :: ok_thermodynamical_freezing !! Calculate frozen fraction thermodynamically |
---|
273 | !$OMP THREADPRIVATE(ok_thermodynamical_freezing) |
---|
274 | |
---|
275 | |
---|
276 | END MODULE constantes_soil_var |
---|