1 | ! This subroutine calculates: |
---|
2 | ! 1-6 : leaf senescence, climatic and as a function of leaf age. New LAI. |
---|
3 | ! 7 : herbivores |
---|
4 | ! 8 : fruit turnover for trees. |
---|
5 | ! 9 : sapwood conversion. |
---|
6 | ! |
---|
7 | ! $Header: /home/ssipsl/CVSREP/ORCHIDEE/src_stomate/stomate_turnover.f90,v 1.13 2010/04/06 15:44:01 ssipsl Exp $ |
---|
8 | ! IPSL (2006) |
---|
9 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
10 | ! |
---|
11 | MODULE stomate_turnover |
---|
12 | |
---|
13 | ! modules used: |
---|
14 | |
---|
15 | USE ioipsl |
---|
16 | USE stomate_data |
---|
17 | USE constantes |
---|
18 | USE pft_parameters |
---|
19 | |
---|
20 | IMPLICIT NONE |
---|
21 | |
---|
22 | ! private & public routines |
---|
23 | |
---|
24 | PRIVATE |
---|
25 | PUBLIC turn, turn_clear |
---|
26 | |
---|
27 | ! first call |
---|
28 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
29 | |
---|
30 | CONTAINS |
---|
31 | |
---|
32 | SUBROUTINE turn_clear |
---|
33 | firstcall=.TRUE. |
---|
34 | END SUBROUTINE turn_clear |
---|
35 | |
---|
36 | SUBROUTINE turn (npts, dt, PFTpresent, & |
---|
37 | herbivores, & |
---|
38 | maxmoiavail_lastyear, minmoiavail_lastyear, & |
---|
39 | moiavail_week, moiavail_month, tlong_ref, t2m_month, t2m_week, veget_max, & |
---|
40 | leaf_age, leaf_frac, age, lai, biomass, & |
---|
41 | turnover, senescence,turnover_time) |
---|
42 | |
---|
43 | ! |
---|
44 | ! 0 declarations |
---|
45 | ! |
---|
46 | |
---|
47 | ! 0.1 input |
---|
48 | |
---|
49 | ! Domain size |
---|
50 | INTEGER(i_std), INTENT(in) :: npts |
---|
51 | ! time step in days |
---|
52 | REAL(r_std), INTENT(in) :: dt |
---|
53 | ! PFT exists |
---|
54 | LOGICAL, DIMENSION(npts,nvm), INTENT(in) :: PFTpresent |
---|
55 | ! time constant of probability of a leaf to be eaten by a herbivore (days) |
---|
56 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: herbivores |
---|
57 | ! last year's maximum moisture availability |
---|
58 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: maxmoiavail_lastyear |
---|
59 | ! last year's minimum moisture availability |
---|
60 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: minmoiavail_lastyear |
---|
61 | ! "weekly" moisture availability |
---|
62 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: moiavail_week |
---|
63 | ! "monthly" moisture availability |
---|
64 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: moiavail_month |
---|
65 | ! "long term" 2 meter reference temperatures (K) |
---|
66 | REAL(r_std), DIMENSION(npts), INTENT(in) :: tlong_ref |
---|
67 | ! "monthly" 2-meter temperatures (K) |
---|
68 | REAL(r_std), DIMENSION(npts), INTENT(in) :: t2m_month |
---|
69 | ! "weekly" 2 meter temperatures (K) |
---|
70 | REAL(r_std), DIMENSION(npts), INTENT(in) :: t2m_week |
---|
71 | ! "maximal" coverage fraction of a PFT (LAI -> infinity) on ground |
---|
72 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: veget_max |
---|
73 | |
---|
74 | ! 0.2 modified fields |
---|
75 | |
---|
76 | ! age of the leaves (days) |
---|
77 | REAL(r_std), DIMENSION(npts,nvm,nleafages), INTENT(inout) :: leaf_age |
---|
78 | ! fraction of leaves in leaf age class |
---|
79 | REAL(r_std), DIMENSION(npts,nvm,nleafages), INTENT(inout) :: leaf_frac |
---|
80 | ! age (years) |
---|
81 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: age |
---|
82 | ! leaf area index |
---|
83 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: lai |
---|
84 | ! biomass (gC/(m**2 of ground)) |
---|
85 | REAL(r_std), DIMENSION(npts,nvm,nparts), INTENT(inout) :: biomass |
---|
86 | ! turnover_time of grasse |
---|
87 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: turnover_time |
---|
88 | |
---|
89 | ! 0.3 output |
---|
90 | |
---|
91 | ! Turnover rates (gC/day/(m**2 of ground)) |
---|
92 | REAL(r_std), DIMENSION(npts,nvm,nparts), INTENT(out) :: turnover |
---|
93 | ! is the plant senescent? |
---|
94 | ! (interesting only for deciduous trees: carbohydrate reserve) |
---|
95 | LOGICAL, DIMENSION(npts,nvm), INTENT(out) :: senescence |
---|
96 | |
---|
97 | ! 0.4 local |
---|
98 | |
---|
99 | !!$ ! minimum leaf age for senescence (d) |
---|
100 | !!$ REAL(r_std), PARAMETER :: min_leaf_age = 30. |
---|
101 | ! mean age of the leaves (days) |
---|
102 | REAL(r_std), DIMENSION(npts,nvm) :: leaf_meanage |
---|
103 | ! Intermediate variable for turnover |
---|
104 | REAL(r_std), DIMENSION(npts) :: dturnover |
---|
105 | ! critical moisture availability, function of last year's moisture availability |
---|
106 | REAL(r_std), DIMENSION(npts) :: moiavail_crit |
---|
107 | ! long term annual mean temperature, C |
---|
108 | REAL(r_std), DIMENSION(npts) :: tl |
---|
109 | ! critical senescence temperature, function of long term annual temperature (K) |
---|
110 | REAL(r_std), DIMENSION(npts) :: t_crit |
---|
111 | ! shed the remaining leaves? |
---|
112 | LOGICAL, DIMENSION(npts) :: shed_rest |
---|
113 | ! Sapwood conversion (gC/day(m**2 of ground)) |
---|
114 | REAL(r_std), DIMENSION(npts) :: sapconv |
---|
115 | ! old heartwood mass (gC/(m**2 of ground)) |
---|
116 | REAL(r_std), DIMENSION(npts) :: hw_old |
---|
117 | ! new heartwood mass (gC/(m**2 of ground)) |
---|
118 | REAL(r_std), DIMENSION(npts) :: hw_new |
---|
119 | ! old leaf mass (gC/(m**2 of ground)) |
---|
120 | REAL(r_std), DIMENSION(npts) :: lm_old |
---|
121 | ! leaf mass change for each age class |
---|
122 | REAL(r_std), DIMENSION(npts,nleafages) :: delta_lm |
---|
123 | ! turnover rate |
---|
124 | REAL(r_std), DIMENSION(npts) :: turnover_rate |
---|
125 | ! critical leaf age (d) |
---|
126 | REAL(r_std), DIMENSION(npts,nvm) :: leaf_age_crit |
---|
127 | ! instantaneous turnover time |
---|
128 | REAL(r_std), DIMENSION(npts,nvm) :: new_turnover_time |
---|
129 | ! Index |
---|
130 | INTEGER(i_std) :: j,m |
---|
131 | |
---|
132 | ! ========================================================================= |
---|
133 | |
---|
134 | IF (bavard.GE.3) WRITE(numout,*) 'Entering turnover' |
---|
135 | |
---|
136 | ! |
---|
137 | ! 1 messages |
---|
138 | ! |
---|
139 | |
---|
140 | IF ( firstcall ) THEN |
---|
141 | |
---|
142 | WRITE(numout,*) 'turnover:' |
---|
143 | |
---|
144 | WRITE(numout,*) ' > minimum mean leaf age for senescence (d): ',min_leaf_age_for_senescence |
---|
145 | |
---|
146 | firstcall = .FALSE. |
---|
147 | |
---|
148 | |
---|
149 | ENDIF |
---|
150 | |
---|
151 | ! |
---|
152 | ! 2 Initializations |
---|
153 | ! |
---|
154 | |
---|
155 | ! |
---|
156 | ! 2.1 set output to zero |
---|
157 | ! |
---|
158 | |
---|
159 | turnover(:,:,:) = zero |
---|
160 | new_turnover_time=zero |
---|
161 | senescence(:,:) = .FALSE. |
---|
162 | |
---|
163 | ! |
---|
164 | ! 2.2 mean leaf age. Should actually be recalculated at the end of this routine, |
---|
165 | ! but it does not change too fast. |
---|
166 | ! |
---|
167 | |
---|
168 | leaf_meanage(:,:) = 0.0 |
---|
169 | |
---|
170 | DO m = 1, nleafages |
---|
171 | leaf_meanage(:,:) = leaf_meanage(:,:) + leaf_age(:,:,m) * leaf_frac(:,:,m) |
---|
172 | ENDDO |
---|
173 | |
---|
174 | ! |
---|
175 | ! 3 different types of "climatic" leaf senescence |
---|
176 | ! does not change age structure. |
---|
177 | ! |
---|
178 | |
---|
179 | DO j = 2,nvm |
---|
180 | |
---|
181 | ! |
---|
182 | ! 3.1 determine if there is climatic senescence |
---|
183 | ! |
---|
184 | |
---|
185 | SELECT CASE ( senescence_type(j) ) |
---|
186 | |
---|
187 | CASE ( 'cold' ) |
---|
188 | |
---|
189 | ! 3.1.1 summergreen species: |
---|
190 | ! monthly temperature low and temperature tendency negative ? |
---|
191 | |
---|
192 | ! critical temperature for senescence may depend on long term annual mean temperature |
---|
193 | tl(:) = tlong_ref(:) - ZeroCelsius |
---|
194 | t_crit(:) = ZeroCelsius + senescence_temp(j,1) + & |
---|
195 | tl(:) * senescence_temp(j,2) + & |
---|
196 | tl(:)*tl(:) * senescence_temp(j,3) |
---|
197 | |
---|
198 | WHERE ( ( biomass(:,j,ileaf) .GT. zero ) .AND. & |
---|
199 | ( leaf_meanage(:,j) .GT. min_leaf_age_for_senescence(j) ) .AND. & |
---|
200 | ( t2m_month(:) .LT. t_crit(:) ) .AND. ( t2m_week(:) .LT. t2m_month(:) ) ) |
---|
201 | |
---|
202 | senescence(:,j) = .TRUE. |
---|
203 | |
---|
204 | ENDWHERE |
---|
205 | |
---|
206 | CASE ( 'dry' ) |
---|
207 | |
---|
208 | ! 3.1.2 raingreen species: |
---|
209 | ! does moisture availability drop below critical level? |
---|
210 | |
---|
211 | moiavail_crit(:) = & |
---|
212 | MIN( MAX( minmoiavail_lastyear(:,j) + hum_frac(j) * & |
---|
213 | ( maxmoiavail_lastyear(:,j) - minmoiavail_lastyear(:,j) ), & |
---|
214 | senescence_hum(j) ), & |
---|
215 | nosenescence_hum(j) ) |
---|
216 | |
---|
217 | WHERE ( ( biomass(:,j,ileaf) .GT. zero ) .AND. & |
---|
218 | ( leaf_meanage(:,j) .GT. min_leaf_age_for_senescence(j) ) .AND. & |
---|
219 | ( moiavail_week(:,j) .LT. moiavail_crit(:) ) ) |
---|
220 | |
---|
221 | senescence(:,j) = .TRUE. |
---|
222 | |
---|
223 | ENDWHERE |
---|
224 | |
---|
225 | CASE ( 'mixed' ) |
---|
226 | |
---|
227 | ! 3.1.3 mixed criterion: |
---|
228 | ! moisture availability drops below critical level, or |
---|
229 | ! monthly temperature low and temperature tendency negative |
---|
230 | moiavail_crit(:) = & |
---|
231 | MIN( MAX( minmoiavail_lastyear(:,j) + hum_frac(j) * & |
---|
232 | ( maxmoiavail_lastyear(:,j) - minmoiavail_lastyear(:,j) ), & |
---|
233 | senescence_hum(j) ), & |
---|
234 | nosenescence_hum(j) ) |
---|
235 | tl(:) = tlong_ref(:) - ZeroCelsius |
---|
236 | t_crit(:) = ZeroCelsius + senescence_temp(j,1) + & |
---|
237 | tl(:) * senescence_temp(j,2) + & |
---|
238 | tl(:)*tl(:) * senescence_temp(j,3) |
---|
239 | IF ( tree(j) ) THEN |
---|
240 | |
---|
241 | ! critical temperature for senescence may depend on long term annual mean temperature |
---|
242 | WHERE ( ( biomass(:,j,ileaf) .GT. zero ) .AND. & |
---|
243 | ( leaf_meanage(:,j) .GT. min_leaf_age_for_senescence(j) ) .AND. & |
---|
244 | ( ( moiavail_week(:,j) .LT. moiavail_crit(:) ) .OR. & |
---|
245 | ( ( t2m_month(:) .LT. t_crit(:) ) .AND. ( t2m_week(:) .LT. t2m_month(:) ) ) ) ) |
---|
246 | senescence(:,j) = .TRUE. |
---|
247 | ENDWHERE |
---|
248 | ELSE |
---|
249 | new_turnover_time(:,j)=max_turnover_time(j)+ new_turnover_time_ref |
---|
250 | WHERE ((moiavail_week(:,j) .LT. moiavail_month(:,j))& |
---|
251 | .AND. (moiavail_week(:,j) .LT. nosenescence_hum(j))) |
---|
252 | new_turnover_time(:,j)=max_turnover_time(j) * & |
---|
253 | (1.-nosenescence_hum(j)+moiavail_week(:,j)) * & |
---|
254 | (1.-nosenescence_hum(j)+moiavail_week(:,j)) + & |
---|
255 | min_turnover_time(j) |
---|
256 | ! new_turnover_time(:,j)=pheno_crit%max_turnover_time(j) * & |
---|
257 | ! moiavail_week(:,j)/ pheno_crit%nosenescence_hum(j) + & |
---|
258 | ! pheno_crit%min_turnover_time(j) |
---|
259 | ENDWHERE |
---|
260 | ! WHERE ((t2m_month(:) .LT. t_crit(:)+5) .AND. ( t2m_week(:) .LT. t2m_month(:) )) |
---|
261 | ! new_turnover_time(:,j)=new_turnover_time(:,j)*((t2m_month(:)-t_crit(:))/5*0.4+0.6) |
---|
262 | ! ENDWHERE |
---|
263 | ! WHERE (new_turnover_time(:,j) .LT. pheno_crit%min_turnover_time(j)) |
---|
264 | ! new_turnover_time(:,j)=pheno_crit%min_turnover_time(j) |
---|
265 | ! ENDWHERE |
---|
266 | |
---|
267 | WHERE (new_turnover_time(:,j) .GT. turnover_time(:,j)*1.1) |
---|
268 | new_turnover_time(:,j)=max_turnover_time(j)+ new_turnover_time_ref |
---|
269 | ENDWHERE |
---|
270 | !!$ WHERE ( ( t2m_month(:) .LT. t_crit(:) ) .AND. ( t2m_week(:) .LT. t2m_month(:) ) & |
---|
271 | !!$ & .AND. ( leaf_meanage(:,j) .GT. pheno_crit%min_leaf_age_for_senescence(j) )) |
---|
272 | !!$ new_turnover_time(:,j)=pheno_crit%min_turnover_time(j) |
---|
273 | !!$ ENDWHERE |
---|
274 | ! print *,'t_crit=',t_crit |
---|
275 | |
---|
276 | |
---|
277 | turnover_time(:,j)=(turnover_time(:,j)*dt_turnover_time/dt+new_turnover_time(:,j))/(dt_turnover_time/dt+1.) |
---|
278 | |
---|
279 | ENDIF |
---|
280 | |
---|
281 | CASE ( 'none' ) |
---|
282 | |
---|
283 | ! evergreen species: no climatic senescence |
---|
284 | |
---|
285 | CASE default |
---|
286 | |
---|
287 | WRITE(numout,*) 'turnover: don''t know how to treat this PFT.' |
---|
288 | WRITE(numout,*) ' number: ',j |
---|
289 | WRITE(numout,*) ' senescence type: ',senescence_type(j) |
---|
290 | STOP |
---|
291 | |
---|
292 | END SELECT |
---|
293 | |
---|
294 | ! |
---|
295 | ! 3.2 drop leaves and roots, plus stems and fruits for grasses |
---|
296 | ! |
---|
297 | |
---|
298 | IF ( tree(j) ) THEN |
---|
299 | |
---|
300 | ! 3.2.1 trees |
---|
301 | |
---|
302 | WHERE ( senescence(:,j) ) |
---|
303 | |
---|
304 | turnover(:,j,ileaf) = biomass(:,j,ileaf) * dt / leaffall(j) |
---|
305 | turnover(:,j,iroot) = biomass(:,j,iroot) * dt / leaffall(j) |
---|
306 | |
---|
307 | biomass(:,j,ileaf) = biomass(:,j,ileaf) - turnover(:,j,ileaf) |
---|
308 | biomass(:,j,iroot) = biomass(:,j,iroot) - turnover(:,j,iroot) |
---|
309 | |
---|
310 | ENDWHERE |
---|
311 | |
---|
312 | ELSE |
---|
313 | |
---|
314 | ! 3.2.2 grasses |
---|
315 | WHERE (turnover_time(:,j) .LT. max_turnover_time(j)) |
---|
316 | turnover(:,j,ileaf) = biomass(:,j,ileaf) * dt / turnover_time(:,j) |
---|
317 | turnover(:,j,isapabove) = biomass(:,j,isapabove) * dt / turnover_time(:,j) |
---|
318 | turnover(:,j,iroot) = biomass(:,j,iroot) * dt / turnover_time(:,j) |
---|
319 | turnover(:,j,ifruit) = biomass(:,j,ifruit) * dt / turnover_time(:,j) |
---|
320 | ELSEWHERE |
---|
321 | turnover(:,j,ileaf)= zero |
---|
322 | turnover(:,j,isapabove) = zero |
---|
323 | turnover(:,j,iroot) = zero |
---|
324 | turnover(:,j,ifruit) = zero |
---|
325 | ENDWHERE |
---|
326 | biomass(:,j,ileaf) = biomass(:,j,ileaf) - turnover(:,j,ileaf) |
---|
327 | biomass(:,j,isapabove) = biomass(:,j,isapabove) - turnover(:,j,isapabove) |
---|
328 | biomass(:,j,iroot) = biomass(:,j,iroot) - turnover(:,j,iroot) |
---|
329 | biomass(:,j,ifruit) = biomass(:,j,ifruit) - turnover(:,j,ifruit) |
---|
330 | |
---|
331 | ENDIF ! tree/grass |
---|
332 | |
---|
333 | ENDDO ! loop over PFTs |
---|
334 | |
---|
335 | ! |
---|
336 | ! 4 At a certain age, leaves fall off, even if the climate would allow a green plant |
---|
337 | ! all year round. |
---|
338 | ! Decay rate varies with leaf age. |
---|
339 | ! Roots, fruits (and stems) follow leaves. |
---|
340 | ! Note that plant is not declared senescent in this case (important for allocation: |
---|
341 | ! if the plant loses leaves because of their age, it can renew them). |
---|
342 | ! |
---|
343 | |
---|
344 | DO j = 2,nvm |
---|
345 | |
---|
346 | ! save old leaf mass |
---|
347 | lm_old(:) = biomass(:,j,ileaf) |
---|
348 | |
---|
349 | ! initialize leaf mass change in age class |
---|
350 | delta_lm(:,:) = 0.0 |
---|
351 | |
---|
352 | IF ( tree(j) ) THEN |
---|
353 | |
---|
354 | ! |
---|
355 | ! 4.1 trees: leaves, roots, fruits |
---|
356 | ! roots and fruits follow leaves. |
---|
357 | ! |
---|
358 | |
---|
359 | ! 4.1.1 critical age: prescribed for trees |
---|
360 | |
---|
361 | leaf_age_crit(:,j) = leafagecrit(j) |
---|
362 | |
---|
363 | ! 4.1.2 loop over leaf age classes |
---|
364 | |
---|
365 | DO m = 1, nleafages |
---|
366 | turnover_rate(:) = zero |
---|
367 | WHERE ( leaf_age(:,j,m) .GT. leaf_age_crit(:,j)/2. ) |
---|
368 | |
---|
369 | turnover_rate(:) = & |
---|
370 | MIN( 0.99_r_std, dt / ( leaf_age_crit(:,j) * & |
---|
371 | ( leaf_age_crit(:,j) / leaf_age(:,j,m) )**quatre ) ) |
---|
372 | |
---|
373 | dturnover(:) = biomass(:,j,ileaf) * leaf_frac(:,j,m) * turnover_rate(:) |
---|
374 | turnover(:,j,ileaf) = turnover(:,j,ileaf) + dturnover(:) |
---|
375 | biomass(:,j,ileaf) = biomass(:,j,ileaf) - dturnover(:) |
---|
376 | |
---|
377 | ! save leaf mass change |
---|
378 | delta_lm(:,m) = - dturnover(:) |
---|
379 | |
---|
380 | dturnover(:) = biomass(:,j,iroot) * leaf_frac(:,j,m) * turnover_rate(:) |
---|
381 | turnover(:,j,iroot) = turnover(:,j,iroot) + dturnover(:) |
---|
382 | biomass(:,j,iroot) = biomass(:,j,iroot) - dturnover(:) |
---|
383 | |
---|
384 | dturnover(:) = biomass(:,j,ifruit) * leaf_frac(:,j,m) * turnover_rate(:) |
---|
385 | turnover(:,j,ifruit) = turnover(:,j,ifruit) + dturnover(:) |
---|
386 | biomass(:,j,ifruit) = biomass(:,j,ifruit) - dturnover(:) |
---|
387 | |
---|
388 | ENDWHERE |
---|
389 | |
---|
390 | ENDDO |
---|
391 | |
---|
392 | ELSE |
---|
393 | |
---|
394 | ! |
---|
395 | ! 4.2 grasses: leaves, roots, fruits, sap. |
---|
396 | ! roots, fruits, and sap follow leaves. |
---|
397 | ! |
---|
398 | |
---|
399 | ! 4.2.1 critical leaf age depends on long-term temperature: |
---|
400 | ! generally, lower turnover in cooler climates. |
---|
401 | |
---|
402 | leaf_age_crit(:,j) = & |
---|
403 | MIN( leafagecrit(j) * leaf_age_crit_coeff(1) , & |
---|
404 | MAX( leafagecrit(j) * leaf_age_crit_coeff(2) , & |
---|
405 | leafagecrit(j) - leaf_age_crit_coeff(3) * & |
---|
406 | ( tlong_ref(:)-ZeroCelsius - leaf_age_crit_tref ) ) ) |
---|
407 | |
---|
408 | ! 4.2.2 loop over leaf age classes |
---|
409 | |
---|
410 | DO m = 1, nleafages |
---|
411 | |
---|
412 | WHERE ( leaf_age(:,j,m) .GT. leaf_age_crit(:,j)/2. ) |
---|
413 | |
---|
414 | turnover_rate(:) = & |
---|
415 | MIN( 0.99_r_std, dt / ( leaf_age_crit(:,j) * & |
---|
416 | ( leaf_age_crit(:,j) / leaf_age(:,j,m) )**quatre ) ) |
---|
417 | |
---|
418 | dturnover(:) = biomass(:,j,ileaf) * leaf_frac(:,j,m) * turnover_rate(:) |
---|
419 | turnover(:,j,ileaf) = turnover(:,j,ileaf) + dturnover(:) |
---|
420 | biomass(:,j,ileaf) = biomass(:,j,ileaf) - dturnover(:) |
---|
421 | |
---|
422 | ! save leaf mass change |
---|
423 | delta_lm(:,m) = - dturnover(:) |
---|
424 | |
---|
425 | dturnover(:) = biomass(:,j,isapabove) * leaf_frac(:,j,m) * turnover_rate(:) |
---|
426 | turnover(:,j,isapabove) = turnover(:,j,isapabove) + dturnover(:) |
---|
427 | biomass(:,j,isapabove) = biomass(:,j,isapabove) - dturnover(:) |
---|
428 | |
---|
429 | dturnover(:) = biomass(:,j,iroot) * leaf_frac(:,j,m) * turnover_rate(:) |
---|
430 | turnover(:,j,iroot) = turnover(:,j,iroot) + dturnover(:) |
---|
431 | biomass(:,j,iroot) = biomass(:,j,iroot) - dturnover(:) |
---|
432 | |
---|
433 | dturnover(:) = biomass(:,j,ifruit) * leaf_frac(:,j,m) * turnover_rate(:) |
---|
434 | turnover(:,j,ifruit) = turnover(:,j,ifruit) + dturnover(:) |
---|
435 | biomass(:,j,ifruit) = biomass(:,j,ifruit) - dturnover(:) |
---|
436 | |
---|
437 | ENDWHERE |
---|
438 | |
---|
439 | |
---|
440 | ENDDO |
---|
441 | |
---|
442 | ENDIF ! tree/grass ? |
---|
443 | |
---|
444 | ! |
---|
445 | ! 4.3 recalculate fraction in each leaf age class |
---|
446 | ! new fraction = new leaf mass of that fraction / new total leaf mass |
---|
447 | ! = ( old fraction*old total leaf mass + biomass change of that fraction ) / |
---|
448 | ! new total leaf mass |
---|
449 | ! |
---|
450 | |
---|
451 | DO m = 1, nleafages |
---|
452 | |
---|
453 | WHERE ( biomass(:,j,ileaf) .GT. 0.0 ) |
---|
454 | leaf_frac(:,j,m) = ( leaf_frac(:,j,m)*lm_old(:) + delta_lm(:,m) ) / biomass(:,j,ileaf) |
---|
455 | ELSEWHERE |
---|
456 | leaf_frac(:,j,m) = zero |
---|
457 | ENDWHERE |
---|
458 | |
---|
459 | ENDDO |
---|
460 | |
---|
461 | ENDDO ! loop over PFTs |
---|
462 | |
---|
463 | ! |
---|
464 | ! 5 new (provisional) lai |
---|
465 | ! |
---|
466 | |
---|
467 | ! lai(:,ibare_sechiba) = zero |
---|
468 | ! DO j = 2, nvm |
---|
469 | ! lai(:,j) = biomass(:,j,ileaf) * sla(j) |
---|
470 | ! ENDDO |
---|
471 | |
---|
472 | ! |
---|
473 | ! 6 definitely drop leaves if very low leaf mass during senescence. |
---|
474 | ! Also drop fruits and loose fine roots. |
---|
475 | ! Set lai to zero if necessary |
---|
476 | ! Check whether leaf regrowth is immediately allowed. |
---|
477 | ! |
---|
478 | |
---|
479 | DO j = 2,nvm |
---|
480 | |
---|
481 | shed_rest(:) = .FALSE. |
---|
482 | |
---|
483 | ! |
---|
484 | ! 6.1 deciduous trees |
---|
485 | ! |
---|
486 | |
---|
487 | IF ( tree(j) .AND. ( senescence_type(j) .NE. 'none' ) ) THEN |
---|
488 | |
---|
489 | ! check whether we shed the remaining leaves |
---|
490 | |
---|
491 | WHERE ( ( biomass(:,j,ileaf) .GT. zero ) .AND. senescence(:,j) .AND. & |
---|
492 | ( biomass(:,j,ileaf) .LT. (lai_initmin(j) / 2.)/sla(j) ) ) |
---|
493 | |
---|
494 | shed_rest(:) = .TRUE. |
---|
495 | |
---|
496 | turnover(:,j,ileaf) = turnover(:,j,ileaf) + biomass(:,j,ileaf) |
---|
497 | turnover(:,j,iroot) = turnover(:,j,iroot) + biomass(:,j,iroot) |
---|
498 | turnover(:,j,ifruit) = turnover(:,j,ifruit) + biomass(:,j,ifruit) |
---|
499 | |
---|
500 | biomass(:,j,ileaf) = zero |
---|
501 | biomass(:,j,iroot) = zero |
---|
502 | biomass(:,j,ifruit) = zero |
---|
503 | |
---|
504 | |
---|
505 | |
---|
506 | ! reset leaf age |
---|
507 | leaf_meanage(:,j) = zero |
---|
508 | |
---|
509 | ENDWHERE |
---|
510 | |
---|
511 | ENDIF |
---|
512 | |
---|
513 | ! |
---|
514 | ! 6.2 grasses: also convert stems |
---|
515 | ! |
---|
516 | |
---|
517 | IF ( .NOT. tree(j) ) THEN |
---|
518 | |
---|
519 | ! Shed the remaining leaves if LAI very low. |
---|
520 | |
---|
521 | WHERE ( ( biomass(:,j,ileaf) .GT. zero ) .AND. senescence(:,j) .AND. & |
---|
522 | ( biomass(:,j,ileaf) .LT. (lai_initmin(j) / 2.)/sla(j) )) |
---|
523 | |
---|
524 | shed_rest(:) = .TRUE. |
---|
525 | |
---|
526 | turnover(:,j,ileaf) = turnover(:,j,ileaf) + biomass(:,j,ileaf) |
---|
527 | turnover(:,j,isapabove) = turnover(:,j,isapabove) + biomass(:,j,isapabove) |
---|
528 | turnover(:,j,iroot) = turnover(:,j,iroot) + biomass(:,j,iroot) |
---|
529 | turnover(:,j,ifruit) = turnover(:,j,ifruit) + biomass(:,j,ifruit) |
---|
530 | |
---|
531 | biomass(:,j,ileaf) = zero |
---|
532 | biomass(:,j,isapabove) = zero |
---|
533 | biomass(:,j,iroot) = zero |
---|
534 | biomass(:,j,ifruit) = zero |
---|
535 | |
---|
536 | |
---|
537 | |
---|
538 | ! reset leaf age |
---|
539 | leaf_meanage(:,j) = zero |
---|
540 | |
---|
541 | ENDWHERE |
---|
542 | |
---|
543 | ENDIF |
---|
544 | |
---|
545 | ! |
---|
546 | ! 6.3 reset leaf age structure |
---|
547 | ! |
---|
548 | |
---|
549 | DO m = 1, nleafages |
---|
550 | |
---|
551 | WHERE ( shed_rest(:) ) |
---|
552 | |
---|
553 | leaf_age(:,j,m) = zero |
---|
554 | leaf_frac(:,j,m) = zero |
---|
555 | |
---|
556 | ENDWHERE |
---|
557 | |
---|
558 | ENDDO |
---|
559 | |
---|
560 | ENDDO |
---|
561 | |
---|
562 | ! |
---|
563 | ! 7 Elephants, cows, gazelles. No lions. |
---|
564 | ! Does not modify leaf age structure. |
---|
565 | ! |
---|
566 | |
---|
567 | IF ( ok_herbivores ) THEN |
---|
568 | |
---|
569 | ! herbivore activity allowed. Eat when there are leaves. Otherwise, |
---|
570 | ! there won't be many fruits anyway. |
---|
571 | |
---|
572 | DO j = 2,nvm |
---|
573 | |
---|
574 | IF ( tree(j) ) THEN |
---|
575 | |
---|
576 | ! trees: only leaves and fruits are affected |
---|
577 | |
---|
578 | WHERE ( biomass(:,j,ileaf) .GT. zero ) |
---|
579 | ! added by shilong |
---|
580 | WHERE (herbivores(:,j).GT. zero) |
---|
581 | dturnover(:) = biomass(:,j,ileaf) * dt / herbivores(:,j) |
---|
582 | turnover(:,j,ileaf) = turnover(:,j,ileaf) + dturnover(:) |
---|
583 | biomass(:,j,ileaf) = biomass(:,j,ileaf) - dturnover(:) |
---|
584 | |
---|
585 | dturnover(:) = biomass(:,j,ifruit) * dt / herbivores(:,j) |
---|
586 | turnover(:,j,ifruit) = turnover(:,j,ifruit) + dturnover(:) |
---|
587 | biomass(:,j,ifruit) = biomass(:,j,ifruit) - dturnover(:) |
---|
588 | ENDWHERE |
---|
589 | ENDWHERE |
---|
590 | |
---|
591 | ELSE |
---|
592 | |
---|
593 | ! grasses: the whole biomass above the ground: leaves, fruits, stems |
---|
594 | |
---|
595 | WHERE ( biomass(:,j,ileaf) .GT. zero ) |
---|
596 | ! added by shilong |
---|
597 | WHERE (herbivores(:,j) .GT. zero) |
---|
598 | dturnover(:) = biomass(:,j,ileaf) * dt / herbivores(:,j) |
---|
599 | turnover(:,j,ileaf) = turnover(:,j,ileaf) + dturnover(:) |
---|
600 | biomass(:,j,ileaf) = biomass(:,j,ileaf) - dturnover(:) |
---|
601 | |
---|
602 | dturnover(:) = biomass(:,j,isapabove) * dt / herbivores(:,j) |
---|
603 | turnover(:,j,isapabove) = turnover(:,j,isapabove) + dturnover(:) |
---|
604 | biomass(:,j,isapabove) = biomass(:,j,isapabove) - dturnover(:) |
---|
605 | |
---|
606 | dturnover(:) = biomass(:,j,ifruit) * dt / herbivores(:,j) |
---|
607 | turnover(:,j,ifruit) = turnover(:,j,ifruit) + dturnover(:) |
---|
608 | biomass(:,j,ifruit) = biomass(:,j,ifruit) - dturnover(:) |
---|
609 | ENDWHERE |
---|
610 | |
---|
611 | ENDWHERE |
---|
612 | |
---|
613 | ENDIF ! tree/grass? |
---|
614 | |
---|
615 | ENDDO ! loop over PFTs |
---|
616 | |
---|
617 | ENDIF |
---|
618 | |
---|
619 | ! |
---|
620 | ! 8 fruit turnover for trees |
---|
621 | ! |
---|
622 | |
---|
623 | DO j = 2,nvm |
---|
624 | |
---|
625 | IF ( tree(j) ) THEN |
---|
626 | |
---|
627 | !SZ correction of a mass destroying bug |
---|
628 | dturnover(:) = biomass(:,j,ifruit) * dt / tau_fruit(j) |
---|
629 | turnover(:,j,ifruit) = turnover(:,j,ifruit) + dturnover(:) |
---|
630 | biomass(:,j,ifruit) = biomass(:,j,ifruit) - dturnover(:) |
---|
631 | !!$ turnover(:,j,ifruit) = biomass(:,j,ifruit) * dt / tau_fruit(j) |
---|
632 | !!$ biomass(:,j,ifruit) = biomass(:,j,ifruit) - turnover(:,j,ifruit) |
---|
633 | |
---|
634 | ENDIF |
---|
635 | |
---|
636 | ENDDO |
---|
637 | |
---|
638 | ! |
---|
639 | ! 9 Conversion of sapwood to heartwood |
---|
640 | ! This is not added to "turnover" as the biomass is not lost! |
---|
641 | ! |
---|
642 | |
---|
643 | DO j = 2,nvm |
---|
644 | |
---|
645 | IF ( tree(j) ) THEN |
---|
646 | |
---|
647 | ! for age calculations |
---|
648 | |
---|
649 | IF ( .NOT. control%ok_dgvm ) THEN |
---|
650 | hw_old(:) = biomass(:,j,iheartabove) + biomass(:,j,iheartbelow) |
---|
651 | ENDIF |
---|
652 | |
---|
653 | ! |
---|
654 | ! 9.1 Calculate the rate of conversion and update masses |
---|
655 | ! |
---|
656 | |
---|
657 | ! above the ground |
---|
658 | |
---|
659 | sapconv(:) = biomass(:,j,isapabove) * dt / tau_sap(j) |
---|
660 | biomass(:,j,isapabove) = biomass(:,j,isapabove) - sapconv(:) |
---|
661 | biomass(:,j,iheartabove) = biomass(:,j,iheartabove) + sapconv(:) |
---|
662 | |
---|
663 | ! below the ground |
---|
664 | |
---|
665 | sapconv(:) = biomass(:,j,isapbelow) * dt / tau_sap(j) |
---|
666 | biomass(:,j,isapbelow) = biomass(:,j,isapbelow) - sapconv(:) |
---|
667 | biomass(:,j,iheartbelow) = biomass(:,j,iheartbelow) + sapconv(:) |
---|
668 | |
---|
669 | |
---|
670 | ! |
---|
671 | ! 9.2 If vegetation is not dynamic, identify the age of the heartwood |
---|
672 | ! to the age of the whole tree (otherwise, the age of the tree is |
---|
673 | ! treated in the establishment routine). |
---|
674 | ! Creation of new heartwood decreases the age of the plant. |
---|
675 | ! |
---|
676 | |
---|
677 | IF ( .NOT. control%ok_dgvm ) THEN |
---|
678 | |
---|
679 | hw_new(:) = biomass(:,j,iheartabove) + biomass(:,j,iheartbelow) |
---|
680 | |
---|
681 | WHERE ( hw_new(:) .GT. zero ) |
---|
682 | |
---|
683 | age(:,j) = age(:,j) * hw_old(:)/hw_new(:) |
---|
684 | |
---|
685 | ENDWHERE |
---|
686 | |
---|
687 | ENDIF |
---|
688 | |
---|
689 | ENDIF |
---|
690 | |
---|
691 | ENDDO |
---|
692 | |
---|
693 | ! |
---|
694 | ! history |
---|
695 | ! |
---|
696 | |
---|
697 | CALL histwrite (hist_id_stomate, 'LEAF_AGE', itime, & |
---|
698 | leaf_meanage, npts*nvm, horipft_index) |
---|
699 | CALL histwrite (hist_id_stomate, 'HERBIVORES', itime, & |
---|
700 | herbivores, npts*nvm, horipft_index) |
---|
701 | |
---|
702 | IF (bavard.GE.4) WRITE(numout,*) 'Leaving turnover' |
---|
703 | |
---|
704 | END SUBROUTINE turn |
---|
705 | |
---|
706 | END MODULE stomate_turnover |
---|