1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : stomate_soilcarbon |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ listes.ipsl.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Calculate soil dynamics largely following the Century model |
---|
10 | !! |
---|
11 | !!\n DESCRIPTION: None |
---|
12 | !! |
---|
13 | !! RECENT CHANGE(S): None |
---|
14 | !! |
---|
15 | !! SVN : |
---|
16 | !! $HeadURL$ |
---|
17 | !! $Date$ |
---|
18 | !! $Revision$ |
---|
19 | !! \n |
---|
20 | !_ ================================================================================================================================ |
---|
21 | |
---|
22 | MODULE stomate_soilcarbon |
---|
23 | |
---|
24 | ! modules used: |
---|
25 | |
---|
26 | USE ioipsl_para |
---|
27 | USE stomate_data |
---|
28 | USE constantes |
---|
29 | USE xios_orchidee |
---|
30 | |
---|
31 | IMPLICIT NONE |
---|
32 | |
---|
33 | ! private & public routines |
---|
34 | |
---|
35 | PRIVATE |
---|
36 | PUBLIC soilcarbon,soilcarbon_clear |
---|
37 | |
---|
38 | ! Variables shared by all subroutines in this module |
---|
39 | |
---|
40 | LOGICAL, SAVE :: firstcall_soilcarbon = .TRUE. !! Is this the first call? (true/false) |
---|
41 | !$OMP THREADPRIVATE(firstcall_soilcarbon) |
---|
42 | |
---|
43 | CONTAINS |
---|
44 | |
---|
45 | |
---|
46 | !! ================================================================================================================================ |
---|
47 | !! SUBROUTINE : soilcarbon_clear |
---|
48 | !! |
---|
49 | !>\BRIEF Set the flag ::firstcall_soilcarbon to .TRUE. and as such activate sections 1.1.2 and 1.2 of the subroutine soilcarbon |
---|
50 | !! (see below). |
---|
51 | !! |
---|
52 | !_ ================================================================================================================================ |
---|
53 | |
---|
54 | SUBROUTINE soilcarbon_clear |
---|
55 | firstcall_soilcarbon=.TRUE. |
---|
56 | ENDSUBROUTINE soilcarbon_clear |
---|
57 | |
---|
58 | |
---|
59 | !! ================================================================================================================================ |
---|
60 | !! SUBROUTINE : soilcarbon |
---|
61 | !! |
---|
62 | !>\BRIEF Computes the soil respiration and carbon stocks, essentially |
---|
63 | !! following Parton et al. (1987). |
---|
64 | !! |
---|
65 | !! DESCRIPTION : The soil is divided into 3 carbon pools, with different |
---|
66 | !! characteristic turnover times : active (1-5 years), slow (20-40 years) |
---|
67 | !! and passive (200-1500 years).\n |
---|
68 | !! There are three types of carbon transferred in the soil:\n |
---|
69 | !! - carbon input in active and slow pools from litter decomposition,\n |
---|
70 | !! - carbon fluxes between the three pools,\n |
---|
71 | !! - carbon losses from the pools to the atmosphere, i.e., soil respiration.\n |
---|
72 | !! |
---|
73 | !! The subroutine performs the following tasks:\n |
---|
74 | !! |
---|
75 | !! Section 1.\n |
---|
76 | !! The flux fractions (f) between carbon pools are defined based on Parton et |
---|
77 | !! al. (1987). The fractions are constants, except for the flux fraction from |
---|
78 | !! the active pool to the slow pool, which depends on the clay content,\n |
---|
79 | !! \latexonly |
---|
80 | !! \input{soilcarbon_eq1.tex} |
---|
81 | !! \endlatexonly\n |
---|
82 | !! In addition, to each pool is assigned a constant turnover time.\n |
---|
83 | !! |
---|
84 | !! Section 2.\n |
---|
85 | !! The carbon input, calculated in the stomate_litter module, is added to the |
---|
86 | !! carbon stock of the different pools.\n |
---|
87 | !! |
---|
88 | !! Section 3.\n |
---|
89 | !! First, the outgoing carbon flux of each pool is calculated. It is |
---|
90 | !! proportional to the product of the carbon stock and the ratio between the |
---|
91 | !! iteration time step and the residence time:\n |
---|
92 | !! \latexonly |
---|
93 | !! \input{soilcarbon_eq2.tex} |
---|
94 | !! \endlatexonly |
---|
95 | !! ,\n |
---|
96 | !! Note that in the case of crops, the additional multiplicative factor |
---|
97 | !! integrates the faster decomposition due to tillage (following Gervois et |
---|
98 | !! al. (2008)). |
---|
99 | !! In addition, the flux from the active pool depends on the clay content:\n |
---|
100 | !! \latexonly |
---|
101 | !! \input{soilcarbon_eq3.tex} |
---|
102 | !! \endlatexonly |
---|
103 | !! ,\n |
---|
104 | !! Each pool is then cut from the carbon amount corresponding to each outgoing |
---|
105 | !! flux:\n |
---|
106 | !! \latexonly |
---|
107 | !! \input{soilcarbon_eq4.tex} |
---|
108 | !! \endlatexonly\n |
---|
109 | !! Second, the flux fractions lost to the atmosphere is calculated in each pool |
---|
110 | !! by subtracting from 1 the pool-to-pool flux fractions. The soil respiration |
---|
111 | !! is then the summed contribution of all the pools,\n |
---|
112 | !! \latexonly |
---|
113 | !! \input{soilcarbon_eq5.tex} |
---|
114 | !! \endlatexonly\n |
---|
115 | !! Finally, each carbon pool accumulates the contribution of the other pools: |
---|
116 | !! \latexonly |
---|
117 | !! \input{soilcarbon_eq6.tex} |
---|
118 | !! \endlatexonly |
---|
119 | !! |
---|
120 | !! Section 4.\n |
---|
121 | !! If the flag SPINUP_ANALYTIC is set to true, the matrix A is updated following |
---|
122 | !! Lardy (2011). |
---|
123 | !! |
---|
124 | !! RECENT CHANGE(S): None |
---|
125 | !! |
---|
126 | !! MAIN OUTPUTS VARIABLE(S): carbon, resp_hetero_soil |
---|
127 | !! |
---|
128 | !! REFERENCE(S) : |
---|
129 | !! - Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of |
---|
130 | !! factors controlling soil organic matter levels in Great Plains grasslands. |
---|
131 | !! Soil Sci. Soc. Am. J., 51, 1173-1179. |
---|
132 | !! - Gervois, S., P. Ciais, N. de Noblet-Ducoudre, N. Brisson, N. Vuichard, |
---|
133 | !! and N. Viovy (2008), Carbon and water balance of European croplands |
---|
134 | !! throughout the 20th century, Global Biogeochem. Cycles, 22, GB2022, |
---|
135 | !! doi:10.1029/2007GB003018. |
---|
136 | !! - Lardy, R, et al., A new method to determine soil organic carbon equilibrium, |
---|
137 | !! Environmental Modelling & Software (2011), doi:10.1016|j.envsoft.2011.05.016 |
---|
138 | !! |
---|
139 | !! FLOWCHART : |
---|
140 | !! \latexonly |
---|
141 | !! \includegraphics[scale=0.5]{soilcarbon_flowchart.jpg} |
---|
142 | !! \endlatexonly |
---|
143 | !! \n |
---|
144 | !_ ================================================================================================================================ |
---|
145 | |
---|
146 | SUBROUTINE soilcarbon (npts, clay, & |
---|
147 | soilcarbon_input, control_temp, control_moist, veget_cov_max, & |
---|
148 | carbon, resp_hetero_soil, MatrixA) |
---|
149 | |
---|
150 | !! 0. Variable and parameter declaration |
---|
151 | |
---|
152 | !! 0.1 Input variables |
---|
153 | |
---|
154 | INTEGER(i_std), INTENT(in) :: npts !! Domain size (unitless) |
---|
155 | REAL(r_std), DIMENSION(npts), INTENT(in) :: clay !! Clay fraction (unitless, 0-1) |
---|
156 | REAL(r_std), DIMENSION(npts,ncarb,nvm), INTENT(in) :: soilcarbon_input !! Amount of carbon going into the carbon pools from litter decomposition \f$(gC m^{-2} day^{-1})$\f |
---|
157 | REAL(r_std), DIMENSION(npts,nlevs), INTENT(in) :: control_temp !! Temperature control of heterotrophic respiration (unitless: 0->1) |
---|
158 | REAL(r_std), DIMENSION(npts,nlevs), INTENT(in) :: control_moist !! Moisture control of heterotrophic respiration (unitless: 0.25->1) |
---|
159 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: veget_cov_max !! Fractional coverage: maximum share of the pixel taken by a pft |
---|
160 | |
---|
161 | !! 0.2 Output variables |
---|
162 | |
---|
163 | REAL(r_std), DIMENSION(npts,nvm), INTENT(out) :: resp_hetero_soil !! Soil heterotrophic respiration \f$(gC m^{-2} (dt_sechiba one_day^{-1})^{-1})$\f |
---|
164 | |
---|
165 | !! 0.3 Modified variables |
---|
166 | |
---|
167 | REAL(r_std), DIMENSION(npts,ncarb,nvm), INTENT(inout) :: carbon !! Soil carbon pools: active, slow, or passive, \f$(gC m^{2})$\f |
---|
168 | REAL(r_std), DIMENSION(npts,nvm,nbpools,nbpools), INTENT(inout) :: MatrixA !! Matrix containing the fluxes between the carbon pools |
---|
169 | !! per sechiba time step |
---|
170 | !! @tex $(gC.m^2.day^{-1})$ @endtex |
---|
171 | |
---|
172 | !! 0.4 Local variables |
---|
173 | REAL(r_std) :: dt !! Time step \f$(dt_sechiba one_day^{-1})$\f |
---|
174 | REAL(r_std), SAVE, DIMENSION(ncarb) :: carbon_tau !! Residence time in carbon pools (days) |
---|
175 | !$OMP THREADPRIVATE(carbon_tau) |
---|
176 | REAL(r_std), DIMENSION(npts,ncarb,ncarb) :: frac_carb !! Flux fractions between carbon pools |
---|
177 | !! (second index=origin, third index=destination) |
---|
178 | !! (unitless, 0-1) |
---|
179 | REAL(r_std), DIMENSION(npts,ncarb) :: frac_resp !! Flux fractions from carbon pools to the atmosphere (respiration) (unitless, 0-1) |
---|
180 | REAL(r_std), DIMENSION(npts,ncarb,nelements) :: fluxtot !! Total flux out of carbon pools \f$(gC m^{2})$\f |
---|
181 | REAL(r_std), DIMENSION(npts,ncarb,ncarb,nelements) :: flux !! Fluxes between carbon pools \f$(gC m^{2})$\f |
---|
182 | CHARACTER(LEN=7), DIMENSION(ncarb) :: carbon_str !! Name of the carbon pools for informative outputs (unitless) |
---|
183 | INTEGER(i_std) :: k,kk,m,j,ij !! Indices (unitless) |
---|
184 | REAL(r_std), DIMENSION(npts,nvm,ncarb) :: decomp_rate_soilcarbon !! Decomposition rate of the soil carbon pools (s) |
---|
185 | REAL(r_std), DIMENSION(npts,ncarb) :: tsoilpools !! Diagnostic for soil carbon turnover rate by pool (1/s) |
---|
186 | |
---|
187 | !_ ================================================================================================================================ |
---|
188 | |
---|
189 | !! printlev is the level of diagnostic information, 0 (none) to 4 (full) |
---|
190 | IF (printlev>=3) WRITE(numout,*) 'Entering soilcarbon' |
---|
191 | |
---|
192 | !! 1. Initializations |
---|
193 | dt = dt_sechiba/one_day |
---|
194 | !! 1.1 Get soil "constants" |
---|
195 | !! 1.1.1 Flux fractions between carbon pools: depend on clay content, recalculated each time |
---|
196 | ! From active pool: depends on clay content |
---|
197 | frac_carb(:,iactive,iactive) = zero |
---|
198 | frac_carb(:,iactive,ipassive) = frac_carb_ap |
---|
199 | frac_carb(:,iactive,islow) = un - (metabolic_ref_frac - active_to_pass_clay_frac*clay(:)) - frac_carb(:,iactive,ipassive) |
---|
200 | |
---|
201 | ! 1.1.1.2 from slow pool |
---|
202 | |
---|
203 | frac_carb(:,islow,islow) = zero |
---|
204 | frac_carb(:,islow,iactive) = frac_carb_sa |
---|
205 | frac_carb(:,islow,ipassive) = frac_carb_sp |
---|
206 | |
---|
207 | ! From passive pool |
---|
208 | frac_carb(:,ipassive,ipassive) = zero |
---|
209 | frac_carb(:,ipassive,iactive) = frac_carb_pa |
---|
210 | frac_carb(:,ipassive,islow) = frac_carb_ps |
---|
211 | |
---|
212 | IF ( firstcall_soilcarbon ) THEN |
---|
213 | |
---|
214 | !! 1.1.2 Residence times in carbon pools (days) |
---|
215 | carbon_tau(iactive) = carbon_tau_iactive * one_year ! 1.5 years. This is same as CENTURY. But, in Parton et al. (1987), it's weighted by moisture and temperature dependences. |
---|
216 | carbon_tau(islow) = carbon_tau_islow * one_year ! 25 years. This is same as CENTURY. But, in Parton et al. (1987), it's weighted by moisture and temperature dependences. |
---|
217 | carbon_tau(ipassive) = carbon_tau_ipassive * one_year ! 1000 years. This is same as CENTURY. But, in Parton et al. (1987), it's weighted by moisture and temperature dependences. |
---|
218 | |
---|
219 | !! 1.2 Messages : display the residence times |
---|
220 | carbon_str(iactive) = 'active' |
---|
221 | carbon_str(islow) = 'slow' |
---|
222 | carbon_str(ipassive) = 'passive' |
---|
223 | |
---|
224 | IF (printlev >= 2) THEN |
---|
225 | WRITE(numout,*) 'soilcarbon:' |
---|
226 | WRITE(numout,*) ' > minimal carbon residence time in carbon pools (d):' |
---|
227 | DO k = 1, ncarb ! Loop over carbon pools |
---|
228 | WRITE(numout,*) '(1, ::carbon_str(k)):',carbon_str(k),' : (1, ::carbon_tau(k)):',carbon_tau(k) |
---|
229 | ENDDO |
---|
230 | WRITE(numout,*) ' > flux fractions between carbon pools: depend on clay content' |
---|
231 | END IF |
---|
232 | firstcall_soilcarbon = .FALSE. |
---|
233 | |
---|
234 | ENDIF |
---|
235 | |
---|
236 | !! 1.3 Set soil respiration and decomposition rate to zero |
---|
237 | resp_hetero_soil(:,:) = zero |
---|
238 | decomp_rate_soilcarbon(:,:,:) = zero |
---|
239 | |
---|
240 | !! 2. Update the carbon stocks with the different soil carbon input |
---|
241 | |
---|
242 | carbon(:,:,:) = carbon(:,:,:) + soilcarbon_input(:,:,:) * dt |
---|
243 | |
---|
244 | !! 3. Fluxes between carbon reservoirs, and to the atmosphere (respiration) \n |
---|
245 | |
---|
246 | !! 3.1. Determine the respiration fraction : what's left after |
---|
247 | ! subtracting all the 'pool-to-pool' flux fractions |
---|
248 | ! Diagonal elements of frac_carb are zero |
---|
249 | ! VPP killer: |
---|
250 | ! frac_resp(:,:) = 1. - SUM( frac_carb(:,:,:), DIM=3 ) |
---|
251 | frac_resp(:,:) = un - frac_carb(:,:,iactive) - frac_carb(:,:,islow) - & |
---|
252 | frac_carb(:,:,ipassive) |
---|
253 | |
---|
254 | !! 3.2. Calculate fluxes |
---|
255 | |
---|
256 | DO m = 1, nvm ! Loop over # PFTs |
---|
257 | |
---|
258 | !! 3.2.1. Flux out of pools |
---|
259 | |
---|
260 | DO k = 1, ncarb ! Loop over carbon pools from which the flux comes |
---|
261 | |
---|
262 | ! Determine total flux out of pool |
---|
263 | ! S.L. Piao 2006/05/05 - for crop multiply tillage factor of decomposition |
---|
264 | ! Not crop |
---|
265 | IF ( natural(m) ) THEN |
---|
266 | fluxtot(:,k,icarbon) = dt/carbon_tau(k) * carbon(:,k,m) * & |
---|
267 | control_moist(:,ibelow) * control_temp(:,ibelow) |
---|
268 | |
---|
269 | decomp_rate_soilcarbon(:,m,k)=dt/carbon_tau(k) * & |
---|
270 | control_moist(:,ibelow) * control_temp(:,ibelow) |
---|
271 | ! C3 crop |
---|
272 | ELSEIF ( (.NOT. natural(m)) .AND. (.NOT. is_c4(m)) ) THEN |
---|
273 | fluxtot(:,k,icarbon) = dt/carbon_tau(k) * carbon(:,k,m) * & |
---|
274 | control_moist(:,ibelow) * control_temp(:,ibelow) * flux_tot_coeff(1) |
---|
275 | decomp_rate_soilcarbon(:,m,k)=dt/carbon_tau(k) * & |
---|
276 | control_moist(:,ibelow) * control_temp(:,ibelow)*flux_tot_coeff(1) |
---|
277 | ! C4 Crop |
---|
278 | ELSEIF ( (.NOT. natural(m)) .AND. is_c4(m) ) THEN |
---|
279 | fluxtot(:,k,icarbon) = dt/carbon_tau(k) * carbon(:,k,m) * & |
---|
280 | control_moist(:,ibelow) * control_temp(:,ibelow) * flux_tot_coeff(2) |
---|
281 | decomp_rate_soilcarbon(:,m,k)=dt/carbon_tau(k) * & |
---|
282 | control_moist(:,ibelow) *control_temp(:,ibelow)*flux_tot_coeff(2) |
---|
283 | ENDIF |
---|
284 | ! END - S.L. Piao 2006/05/05 - for crop multiply tillage factor of decomposition |
---|
285 | |
---|
286 | ! Carbon flux from active pools depends on clay content |
---|
287 | IF ( k .EQ. iactive ) THEN |
---|
288 | fluxtot(:,k,icarbon) = fluxtot(:,k,icarbon) * ( un - flux_tot_coeff(3) * clay(:) ) |
---|
289 | decomp_rate_soilcarbon(:,m,k)=decomp_rate_soilcarbon(:,m,k)* ( un - flux_tot_coeff(3) * clay(:) ) |
---|
290 | ENDIF |
---|
291 | |
---|
292 | ! Update the loss in each carbon pool |
---|
293 | carbon(:,k,m) = carbon(:,k,m) - fluxtot(:,k,icarbon) |
---|
294 | |
---|
295 | ! Fluxes towards the other pools (k -> kk) |
---|
296 | DO kk = 1, ncarb ! Loop over the carbon pools where the flux goes |
---|
297 | flux(:,k,kk,icarbon) = frac_carb(:,k,kk) * fluxtot(:,k,icarbon) |
---|
298 | ENDDO |
---|
299 | ENDDO ! End of loop over carbon pools |
---|
300 | |
---|
301 | !! 3.2.2 respiration |
---|
302 | !BE CAREFUL: Here resp_hetero_soil is divided by dt to have a value which corresponds to |
---|
303 | ! the sechiba time step but then in stomate.f90 resp_hetero_soil is multiplied by dt. |
---|
304 | ! Perhaps it could be simplified. Moreover, we must totally adapt the routines to the dt_sechiba/one_day |
---|
305 | ! time step and avoid some constructions that could create bug during future developments. |
---|
306 | ! |
---|
307 | ! VPP killer: |
---|
308 | ! resp_hetero_soil(:,m) = SUM( frac_resp(:,:) * fluxtot(:,:), DIM=2 ) / dt |
---|
309 | |
---|
310 | resp_hetero_soil(:,m) = & |
---|
311 | ( frac_resp(:,iactive) * fluxtot(:,iactive,icarbon) + & |
---|
312 | frac_resp(:,islow) * fluxtot(:,islow,icarbon) + & |
---|
313 | frac_resp(:,ipassive) * fluxtot(:,ipassive,icarbon) ) / dt |
---|
314 | |
---|
315 | !! 3.2.3 add fluxes to active, slow, and passive pools |
---|
316 | ! VPP killer: |
---|
317 | ! carbon(:,:,m) = carbon(:,:,m) + SUM( flux(:,:,:), DIM=2 ) |
---|
318 | |
---|
319 | DO k = 1, ncarb ! Loop over carbon pools |
---|
320 | carbon(:,k,m) = carbon(:,k,m) + & |
---|
321 | flux(:,iactive,k,icarbon) + flux(:,ipassive,k,icarbon) + flux(:,islow,k,icarbon) |
---|
322 | ENDDO ! Loop over carbon pools |
---|
323 | |
---|
324 | ENDDO ! End loop over PFTs |
---|
325 | |
---|
326 | !! 4. (Quasi-)Analytical Spin-up |
---|
327 | |
---|
328 | !! 4.1.1 Finish to fill MatrixA with fluxes between soil pools |
---|
329 | |
---|
330 | IF (spinup_analytic) THEN |
---|
331 | |
---|
332 | DO m = 2,nvm |
---|
333 | |
---|
334 | ! flux leaving the active pool |
---|
335 | MatrixA(:,m,iactive_pool,iactive_pool) = moins_un * & |
---|
336 | dt/carbon_tau(iactive) * & |
---|
337 | control_moist(:,ibelow) * control_temp(:,ibelow) * & |
---|
338 | ( 1. - flux_tot_coeff(3) * clay(:)) |
---|
339 | |
---|
340 | ! flux received by the active pool from the slow pool |
---|
341 | MatrixA(:,m,iactive_pool,islow_pool) = frac_carb(:,islow,iactive)*dt/carbon_tau(islow) * & |
---|
342 | control_moist(:,ibelow) * control_temp(:,ibelow) |
---|
343 | |
---|
344 | ! flux received by the active pool from the passive pool |
---|
345 | MatrixA(:,m,iactive_pool,ipassive_pool) = frac_carb(:,ipassive,iactive)*dt/carbon_tau(ipassive) * & |
---|
346 | control_moist(:,ibelow) * control_temp(:,ibelow) |
---|
347 | |
---|
348 | ! flux received by the slow pool from the active pool |
---|
349 | MatrixA(:,m,islow_pool,iactive_pool) = frac_carb(:,iactive,islow) *& |
---|
350 | dt/carbon_tau(iactive) * & |
---|
351 | control_moist(:,ibelow) * control_temp(:,ibelow) * & |
---|
352 | ( 1. - flux_tot_coeff(3) * clay(:) ) |
---|
353 | |
---|
354 | ! flux leaving the slow pool |
---|
355 | MatrixA(:,m,islow_pool,islow_pool) = moins_un * & |
---|
356 | dt/carbon_tau(islow) * & |
---|
357 | control_moist(:,ibelow) * control_temp(:,ibelow) |
---|
358 | |
---|
359 | ! flux received by the passive pool from the active pool |
---|
360 | MatrixA(:,m,ipassive_pool,iactive_pool) = frac_carb(:,iactive,ipassive)* & |
---|
361 | dt/carbon_tau(iactive) * & |
---|
362 | control_moist(:,ibelow) * control_temp(:,ibelow) *& |
---|
363 | ( 1. - flux_tot_coeff(3) * clay(:) ) |
---|
364 | |
---|
365 | ! flux received by the passive pool from the slow pool |
---|
366 | MatrixA(:,m,ipassive_pool,islow_pool) = frac_carb(:,islow,ipassive) * & |
---|
367 | dt/carbon_tau(islow) * & |
---|
368 | control_moist(:,ibelow) * control_temp(:,ibelow) |
---|
369 | |
---|
370 | ! flux leaving the passive pool |
---|
371 | MatrixA(:,m,ipassive_pool,ipassive_pool) = moins_un * & |
---|
372 | dt/carbon_tau(ipassive) * & |
---|
373 | control_moist(:,ibelow) * control_temp(:,ibelow) |
---|
374 | |
---|
375 | |
---|
376 | IF ( (.NOT. natural(m)) .AND. (.NOT. is_c4(m)) ) THEN ! C3crop |
---|
377 | |
---|
378 | ! flux leaving the active pool |
---|
379 | MatrixA(:,m,iactive_pool,iactive_pool) = MatrixA(:,m,iactive_pool,iactive_pool) * & |
---|
380 | flux_tot_coeff(1) |
---|
381 | |
---|
382 | ! flux received by the active pool from the slow pool |
---|
383 | MatrixA(:,m,iactive_pool,islow_pool)= MatrixA(:,m,iactive_pool,islow_pool) * & |
---|
384 | flux_tot_coeff(1) |
---|
385 | |
---|
386 | ! flux received by the active pool from the passive pool |
---|
387 | MatrixA(:,m,iactive_pool,ipassive_pool) = MatrixA(:,m,iactive_pool,ipassive_pool) * & |
---|
388 | flux_tot_coeff(1) |
---|
389 | |
---|
390 | ! flux received by the slow pool from the active pool |
---|
391 | MatrixA(:,m,islow_pool,iactive_pool) = MatrixA(:,m,islow_pool,iactive_pool) * & |
---|
392 | flux_tot_coeff(1) |
---|
393 | |
---|
394 | ! flux leaving the slow pool |
---|
395 | MatrixA(:,m,islow_pool,islow_pool) = MatrixA(:,m,islow_pool,islow_pool) * & |
---|
396 | flux_tot_coeff(1) |
---|
397 | |
---|
398 | ! flux received by the passive pool from the active pool |
---|
399 | MatrixA(:,m,ipassive_pool,iactive_pool) = MatrixA(:,m,ipassive_pool,iactive_pool) * & |
---|
400 | flux_tot_coeff(1) |
---|
401 | |
---|
402 | ! flux received by the passive pool from the slow pool |
---|
403 | MatrixA(:,m,ipassive_pool,islow_pool) = MatrixA(:,m,ipassive_pool,islow_pool) * & |
---|
404 | flux_tot_coeff(1) |
---|
405 | |
---|
406 | ! flux leaving the passive pool |
---|
407 | MatrixA(:,m,ipassive_pool,ipassive_pool) = MatrixA(:,m,ipassive_pool,ipassive_pool) *& |
---|
408 | flux_tot_coeff(1) |
---|
409 | |
---|
410 | ENDIF ! (.NOT. natural(m)) .AND. (.NOT. is_c4(m)) |
---|
411 | |
---|
412 | |
---|
413 | IF ( (.NOT. natural(m)) .AND. is_c4(m) ) THEN ! C4crop |
---|
414 | |
---|
415 | ! flux leaving the active pool |
---|
416 | MatrixA(:,m,iactive_pool,iactive_pool) = MatrixA(:,m,iactive_pool,iactive_pool) * & |
---|
417 | flux_tot_coeff(2) |
---|
418 | |
---|
419 | ! flux received by the active pool from the slow pool |
---|
420 | MatrixA(:,m,iactive_pool,islow_pool)= MatrixA(:,m,iactive_pool,islow_pool) * & |
---|
421 | flux_tot_coeff(2) |
---|
422 | |
---|
423 | ! flux received by the active pool from the passive pool |
---|
424 | MatrixA(:,m,iactive_pool,ipassive_pool) = MatrixA(:,m,iactive_pool,ipassive_pool) * & |
---|
425 | flux_tot_coeff(2) |
---|
426 | |
---|
427 | ! flux received by the slow pool from the active pool |
---|
428 | MatrixA(:,m,islow_pool,iactive_pool) = MatrixA(:,m,islow_pool,iactive_pool) * & |
---|
429 | flux_tot_coeff(2) |
---|
430 | |
---|
431 | ! flux leaving the slow pool |
---|
432 | MatrixA(:,m,islow_pool,islow_pool) = MatrixA(:,m,islow_pool,islow_pool) * & |
---|
433 | flux_tot_coeff(2) |
---|
434 | |
---|
435 | ! flux received by the passive pool from the active pool |
---|
436 | MatrixA(:,m,ipassive_pool,iactive_pool) = MatrixA(:,m,ipassive_pool,iactive_pool) * & |
---|
437 | flux_tot_coeff(2) |
---|
438 | |
---|
439 | ! flux received by the passive pool from the slow pool |
---|
440 | MatrixA(:,m,ipassive_pool,islow_pool) = MatrixA(:,m,ipassive_pool,islow_pool) * & |
---|
441 | flux_tot_coeff(2) |
---|
442 | |
---|
443 | ! flux leaving the passive pool |
---|
444 | MatrixA(:,m,ipassive_pool,ipassive_pool) = MatrixA(:,m,ipassive_pool,ipassive_pool) * & |
---|
445 | flux_tot_coeff(2) |
---|
446 | |
---|
447 | ENDIF ! (.NOT. natural(m)) .AND. is_c4(m) |
---|
448 | |
---|
449 | IF (printlev>=4) WRITE(numout,*)'Finish to fill MatrixA' |
---|
450 | |
---|
451 | ENDDO ! Loop over # PFTS |
---|
452 | |
---|
453 | |
---|
454 | ! 4.2 Add Identity for each submatrix(7,7) |
---|
455 | |
---|
456 | DO j = 1,nbpools |
---|
457 | MatrixA(:,:,j,j) = MatrixA(:,:,j,j) + un |
---|
458 | ENDDO |
---|
459 | |
---|
460 | ENDIF ! (spinup_analytic) |
---|
461 | |
---|
462 | |
---|
463 | ! Output diagnostics |
---|
464 | DO k = 1, ncarb ! Loop over carbon pools |
---|
465 | DO ij = 1, npts |
---|
466 | IF (SUM(decomp_rate_soilcarbon(ij,:,k)*veget_cov_max(ij,:)) > min_sechiba) THEN |
---|
467 | tsoilpools(ij,k) = 1./(SUM(decomp_rate_soilcarbon(ij,:,k)*veget_cov_max(ij,:))/dt_sechiba) |
---|
468 | ELSE |
---|
469 | tsoilpools(ij,k) = xios_default_val |
---|
470 | END IF |
---|
471 | END DO |
---|
472 | END DO |
---|
473 | CALL xios_orchidee_send_field("tSoilPools",tsoilpools) |
---|
474 | |
---|
475 | IF (printlev>=4) WRITE(numout,*) 'Leaving soilcarbon' |
---|
476 | |
---|
477 | END SUBROUTINE soilcarbon |
---|
478 | |
---|
479 | END MODULE stomate_soilcarbon |
---|