1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : stomate_lcchange |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ listes.ipsl.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF Impact of land cover change on carbon stocks |
---|
10 | !! |
---|
11 | !!\n DESCRIPTION: None |
---|
12 | !! |
---|
13 | !! RECENT CHANGE(S): None |
---|
14 | !! |
---|
15 | !! REFERENCE(S) : None |
---|
16 | !! |
---|
17 | !! SVN : |
---|
18 | !! $HeadURL$ |
---|
19 | !! $Date$ |
---|
20 | !! $Revision$ |
---|
21 | !! \n |
---|
22 | !_ ================================================================================================================================ |
---|
23 | |
---|
24 | |
---|
25 | MODULE stomate_lcchange |
---|
26 | |
---|
27 | ! modules used: |
---|
28 | |
---|
29 | USE ioipsl_para |
---|
30 | USE stomate_data |
---|
31 | USE pft_parameters |
---|
32 | USE constantes |
---|
33 | |
---|
34 | IMPLICIT NONE |
---|
35 | |
---|
36 | PRIVATE |
---|
37 | PUBLIC lcchange_main |
---|
38 | |
---|
39 | CONTAINS |
---|
40 | |
---|
41 | |
---|
42 | !! ================================================================================================================================ |
---|
43 | !! SUBROUTINE : lcchange_main |
---|
44 | !! |
---|
45 | !>\BRIEF Impact of land cover change on carbon stocks |
---|
46 | !! |
---|
47 | !! DESCRIPTION : This subroutine is always activate if VEGET_UPDATE>0Y in the configuration file, which means that the |
---|
48 | !! vegetation map is updated regulary. lcchange_main is called from stomateLpj the first time step after the vegetation |
---|
49 | !! map has been changed. |
---|
50 | !! The impact of land cover change on carbon stocks is computed in this subroutine. The land cover change is written |
---|
51 | !! by the difference of current and previous "maximal" coverage fraction of a PFT. |
---|
52 | !! On the basis of this difference, the amount of 'new establishment'/'biomass export', |
---|
53 | !! and increase/decrease of each component, are estimated.\n |
---|
54 | !! |
---|
55 | !! Main structure of lpj_establish.f90 is: |
---|
56 | !! 1. Initialization |
---|
57 | !! 2. Calculation of changes in carbon stocks and biomass by land cover change |
---|
58 | !! 3. Update 10 year- and 100 year-turnover pool contents |
---|
59 | !! 4. History |
---|
60 | !! |
---|
61 | !! RECENT CHANGE(S) : None |
---|
62 | !! |
---|
63 | !! MAIN OUTPUT VARIABLE(S) : ::prod10, ::prod100, ::flux10, ::flux100, |
---|
64 | !! :: cflux_prod10 and :: cflux_prod100 |
---|
65 | !! |
---|
66 | !! REFERENCES : None |
---|
67 | !! |
---|
68 | !! FLOWCHART : |
---|
69 | !! \latexonly |
---|
70 | !! \includegraphics[scale=0.5]{lcchange.png} |
---|
71 | !! \endlatexonly |
---|
72 | !! \n |
---|
73 | !_ ================================================================================================================================ |
---|
74 | |
---|
75 | |
---|
76 | SUBROUTINE lcchange_main ( npts, dt_days, veget_cov_max_old, veget_cov_max_new, & |
---|
77 | biomass, ind, age, PFTpresent, senescence, when_growthinit, everywhere, & |
---|
78 | co2_to_bm, bm_to_litter, turnover_daily, bm_sapl, cn_ind,flux10,flux100, & |
---|
79 | prod10,prod100,convflux,cflux_prod10,cflux_prod100,leaf_frac,& |
---|
80 | npp_longterm, lm_lastyearmax, litter, carbon,& |
---|
81 | convfluxpft, fDeforestToProduct, fLulccResidue) |
---|
82 | |
---|
83 | |
---|
84 | IMPLICIT NONE |
---|
85 | |
---|
86 | !! 0. Variable and parameter declaration |
---|
87 | |
---|
88 | !! 0.1 Input variables |
---|
89 | |
---|
90 | INTEGER, INTENT(in) :: npts !! Domain size - number of pixels (unitless) |
---|
91 | REAL(r_std), INTENT(in) :: dt_days !! Time step of vegetation dynamics for stomate |
---|
92 | !! (days) |
---|
93 | REAL(r_std), DIMENSION(nvm, nparts,nelements), INTENT(in) :: bm_sapl !! biomass of sapling |
---|
94 | !! @tex ($gC individual^{-1}$) @endtex |
---|
95 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: veget_cov_max_old!! Current "maximal" coverage fraction of a PFT (LAI |
---|
96 | !! -> infinity) on ground |
---|
97 | REAL(r_std), DIMENSION(npts,nvm), INTENT(in) :: veget_cov_max_new!! New "maximal" coverage fraction of a PFT (LAI -> |
---|
98 | !! infinity) on ground (unitless) |
---|
99 | |
---|
100 | !! 0.2 Output variables |
---|
101 | |
---|
102 | REAL(r_std), DIMENSION(npts), INTENT(out) :: convflux !! release during first year following land cover |
---|
103 | !! change |
---|
104 | REAL(r_std), DIMENSION(npts), INTENT(out) :: cflux_prod10 !! total annual release from the 10 year-turnover |
---|
105 | !! pool @tex ($gC m^{-2}$) @endtex |
---|
106 | REAL(r_std), DIMENSION(npts), INTENT(out) :: cflux_prod100 !! total annual release from the 100 year- |
---|
107 | !! turnover pool @tex ($gC m^{-2}$) @endtex |
---|
108 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout):: turnover_daily !! Turnover rates |
---|
109 | REAL(r_std), DIMENSION(npts,nvm), INTENT(out) :: convfluxpft !! release during first year following land cover |
---|
110 | !! change |
---|
111 | REAL(r_std), DIMENSION(npts,nvm), INTENT(out) :: fDeforestToProduct !! Deforested biomass into product pool due to anthorpogenic |
---|
112 | !! land use change |
---|
113 | REAL(r_std), DIMENSION(npts,nvm), INTENT(out) :: fLulccResidue !! carbon mass flux into soil and litter due to anthropogenic land use or land cover change |
---|
114 | |
---|
115 | !! 0.3 Modified variables |
---|
116 | |
---|
117 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout):: biomass !! biomass @tex ($gC m^{-2}$) @endtex |
---|
118 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: ind !! Number of individuals @tex ($m^{-2}$) @endtex |
---|
119 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: age !! mean age (years) |
---|
120 | LOGICAL, DIMENSION(npts,nvm), INTENT(inout) :: senescence !! plant senescent (only for deciduous trees) Set |
---|
121 | !! to .FALSE. if PFT is introduced or killed |
---|
122 | LOGICAL, DIMENSION(npts,nvm), INTENT(inout) :: PFTpresent !! Is pft there (unitless) |
---|
123 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: everywhere !! is the PFT everywhere in the grid box or very |
---|
124 | !! localized (unitless) |
---|
125 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: when_growthinit !! how many days ago was the beginning of the |
---|
126 | !! growing season (days) |
---|
127 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: co2_to_bm !! biomass uptaken |
---|
128 | !! @tex ($gC m^{-2} day^{-1}$) @endtex |
---|
129 | REAL(r_std), DIMENSION(npts,nvm,nparts,nelements), INTENT(inout) :: bm_to_litter !! conversion of biomass to litter |
---|
130 | !! @tex ($gC m^{-2} day^{-1}$) @endtex |
---|
131 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: cn_ind !! crown area of individuals |
---|
132 | !! @tex ($m^{2}$) @endtex |
---|
133 | REAL(r_std), DIMENSION(npts,0:10), INTENT(inout) :: prod10 !! products remaining in the 10 year-turnover |
---|
134 | !! pool after the annual release for each |
---|
135 | !! compartment (10 + 1 : input from year of land |
---|
136 | !! cover change) |
---|
137 | REAL(r_std), DIMENSION(npts,0:100), INTENT(inout) :: prod100 !! products remaining in the 100 year-turnover |
---|
138 | !! pool after the annual release for each |
---|
139 | !! compartment (100 + 1 : input from year of land |
---|
140 | !! cover change) |
---|
141 | REAL(r_std), DIMENSION(npts,10), INTENT(inout) :: flux10 !! annual release from the 10/100 year-turnover |
---|
142 | !! pool compartments |
---|
143 | REAL(r_std), DIMENSION(npts,100), INTENT(inout) :: flux100 !! annual release from the 10/100 year-turnover |
---|
144 | !! pool compartments |
---|
145 | REAL(r_std), DIMENSION(npts,nvm,nleafages), INTENT(inout) :: leaf_frac !! fraction of leaves in leaf age class |
---|
146 | !! (unitless) |
---|
147 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: lm_lastyearmax !! last year's maximum leaf mass for each PFT |
---|
148 | !! @tex ($gC m^{-2}$) @endtex |
---|
149 | REAL(r_std), DIMENSION(npts,nvm), INTENT(inout) :: npp_longterm !! "long term" net primary productivity |
---|
150 | !! @tex ($gC m^{-2} year^{-1}$) @endtex |
---|
151 | REAL(r_std),DIMENSION(npts,nlitt,nvm,nlevs,nelements), INTENT(inout):: litter !! metabolic and structural litter, above and |
---|
152 | !! below ground @tex ($gC m^{-2}$) @endtex |
---|
153 | REAL(r_std),DIMENSION(npts,ncarb,nvm), INTENT(inout) :: carbon !! carbon pool: active, slow, or passive |
---|
154 | |
---|
155 | !! @tex ($gC m^{-2}$) @endtex |
---|
156 | |
---|
157 | !! 0.4 Local variables |
---|
158 | |
---|
159 | INTEGER(i_std) :: i, j, k, l, m !! indices (unitless) |
---|
160 | REAL(r_std),DIMENSION(npts,nelements) :: bm_new !! biomass increase @tex ($gC m^{-2}$) @endtex |
---|
161 | REAL(r_std),DIMENSION(npts,nparts,nelements) :: biomass_loss !! biomass loss @tex ($gC m^{-2}$) @endtex |
---|
162 | REAL(r_std) :: above !! aboveground biomass @tex ($gC m^{-2}$) @endtex |
---|
163 | REAL(r_std),DIMENSION(npts,nlitt,nlevs,nelements) :: dilu_lit !! Litter dilution @tex ($gC m^{-2}$) @endtex |
---|
164 | REAL(r_std),DIMENSION(npts,ncarb) :: dilu_soil_carbon !! Soil Carbondilution @tex ($gC m^{-2}$) @endtex |
---|
165 | REAL(r_std),DIMENSION(nvm) :: delta_veg !! changes in "maximal" coverage fraction of PFT |
---|
166 | REAL(r_std) :: delta_veg_sum !! sum of delta_veg |
---|
167 | REAL(r_std),DIMENSION(npts,nvm) :: delta_ind !! change in number of individuals |
---|
168 | |
---|
169 | !_ ================================================================================================================================ |
---|
170 | |
---|
171 | IF (printlev>=3) WRITE(numout,*) 'Entering lcchange_main' |
---|
172 | |
---|
173 | !! 1. initialization |
---|
174 | |
---|
175 | prod10(:,0) = zero |
---|
176 | prod100(:,0) = zero |
---|
177 | above = zero |
---|
178 | convflux(:) = zero |
---|
179 | convfluxpft(:,:) = zero |
---|
180 | cflux_prod10(:) = zero |
---|
181 | cflux_prod100(:) = zero |
---|
182 | delta_ind(:,:) = zero |
---|
183 | delta_veg(:) = zero |
---|
184 | fDeforestToProduct(:,:) = zero |
---|
185 | fLulccResidue(:,:) = zero |
---|
186 | |
---|
187 | |
---|
188 | |
---|
189 | !! 3. calculation of changes in carbon stocks and biomass by land cover change\n |
---|
190 | |
---|
191 | DO i = 1, npts ! Loop over # pixels - domain size |
---|
192 | |
---|
193 | !! 3.1 initialization of carbon stocks\n |
---|
194 | delta_veg(:) = veget_cov_max_new(i,:)-veget_cov_max_old(i,:) |
---|
195 | delta_veg_sum = SUM(delta_veg,MASK=delta_veg.LT.0.) |
---|
196 | |
---|
197 | dilu_lit(i,:,:,:) = zero |
---|
198 | dilu_soil_carbon(i,:) = zero |
---|
199 | biomass_loss(i,:,:) = zero |
---|
200 | |
---|
201 | !! 3.2 if vegetation coverage decreases, compute dilution of litter, soil carbon, and biomass.\n |
---|
202 | DO j=2, nvm |
---|
203 | IF ( delta_veg(j) < -min_stomate ) THEN |
---|
204 | dilu_lit(i,:,:,:) = dilu_lit(i,:,:,:) + delta_veg(j)*litter(i,:,j,:,:) / delta_veg_sum |
---|
205 | dilu_soil_carbon(i,:) = dilu_soil_carbon(i,:) + delta_veg(j) * carbon(i,:,j) / delta_veg_sum |
---|
206 | biomass_loss(i,:,:) = biomass_loss(i,:,:) + biomass(i,j,:,:)*delta_veg(j) / delta_veg_sum |
---|
207 | ENDIF |
---|
208 | ENDDO |
---|
209 | |
---|
210 | !! 3.3 |
---|
211 | DO j=2, nvm ! Loop over # PFTs |
---|
212 | |
---|
213 | !! 3.3.1 The case that vegetation coverage of PFTj increases |
---|
214 | IF ( delta_veg(j) > min_stomate) THEN |
---|
215 | |
---|
216 | !! 3.3.1.1 Initial setting of new establishment |
---|
217 | IF (veget_cov_max_old(i,j) .LT. min_stomate) THEN |
---|
218 | IF (is_tree(j)) THEN |
---|
219 | |
---|
220 | ! cn_sapl(j)=0.5; stomate_data.f90 |
---|
221 | cn_ind(i,j) = cn_sapl(j) |
---|
222 | ELSE |
---|
223 | cn_ind(i,j) = un |
---|
224 | ENDIF |
---|
225 | ind(i,j)= delta_veg(j) / cn_ind(i,j) |
---|
226 | PFTpresent(i,j) = .TRUE. |
---|
227 | everywhere(i,j) = 1. |
---|
228 | senescence(i,j) = .FALSE. |
---|
229 | age(i,j) = zero |
---|
230 | |
---|
231 | ! large_value = 1.E33_r_std |
---|
232 | when_growthinit(i,j) = large_value |
---|
233 | leaf_frac(i,j,1) = 1.0 |
---|
234 | npp_longterm(i,j) = npp_longterm_init |
---|
235 | lm_lastyearmax(i,j) = bm_sapl(j,ileaf,icarbon) * ind(i,j) |
---|
236 | ENDIF |
---|
237 | IF ( cn_ind(i,j) > min_stomate ) THEN |
---|
238 | delta_ind(i,j) = delta_veg(j) / cn_ind(i,j) |
---|
239 | ENDIF |
---|
240 | |
---|
241 | !! 3.3.1.2 Update of biomass in each each carbon stock component |
---|
242 | !! Update of biomass in each each carbon stock component (leaf, sapabove, sapbelow, |
---|
243 | !> heartabove, heartbelow, root, fruit, and carbres)\n |
---|
244 | DO k = 1, nparts ! loop over # carbon stock components, nparts = 8; stomate_constant.f90 |
---|
245 | DO l = 1,nelements ! loop over # elements |
---|
246 | |
---|
247 | bm_new(i,l) = delta_ind(i,j) * bm_sapl(j,k,l) |
---|
248 | IF (veget_cov_max_old(i,j) .GT. min_stomate) THEN |
---|
249 | |
---|
250 | ! in the case that bm_new is overestimated compared with biomass? |
---|
251 | IF ((bm_new(i,l)/delta_veg(j)) > biomass(i,j,k,l)) THEN |
---|
252 | bm_new(i,l) = biomass(i,j,k,l)*delta_veg(j) |
---|
253 | ENDIF |
---|
254 | ENDIF |
---|
255 | biomass(i,j,k,l) = ( biomass(i,j,k,l) * veget_cov_max_old(i,j) + bm_new(i,l) ) / veget_cov_max_new(i,j) |
---|
256 | co2_to_bm(i,j) = co2_to_bm(i,j) + (bm_new(i,icarbon)* dt_days) / (one_year * veget_cov_max_new(i,j)) |
---|
257 | END DO ! loop over # elements |
---|
258 | ENDDO ! loop over # carbon stock components |
---|
259 | |
---|
260 | !! 3.3.1.3 Calculation of dilution in litter, soil carbon, and input of litter |
---|
261 | !! In this 'IF statement', dilu_* is zero. Formulas for litter and soil carbon |
---|
262 | !! could be shortend?? Are the following formulas correct? |
---|
263 | |
---|
264 | ! Litter |
---|
265 | litter(i,:,j,:,:)=(litter(i,:,j,:,:) * veget_cov_max_old(i,j) + & |
---|
266 | dilu_lit(i,:,:,:) * delta_veg(j)) / veget_cov_max_new(i,j) |
---|
267 | |
---|
268 | ! Soil carbon |
---|
269 | carbon(i,:,j)=(carbon(i,:,j) * veget_cov_max_old(i,j) + dilu_soil_carbon(i,:) * delta_veg(j)) / veget_cov_max_new(i,j) |
---|
270 | |
---|
271 | DO l = 1,nelements |
---|
272 | |
---|
273 | ! Litter input |
---|
274 | bm_to_litter(i,j,isapbelow,l) = (bm_to_litter(i,j,isapbelow,l) * veget_cov_max_old(i,j) + & |
---|
275 | biomass_loss(i,isapbelow,l)*delta_veg(j)) / veget_cov_max_new(i,j) |
---|
276 | bm_to_litter(i,j,iheartbelow,l) = (bm_to_litter(i,j,iheartbelow,l) * veget_cov_max_old(i,j) + & |
---|
277 | biomass_loss(i,iheartbelow,l) *delta_veg(j)) / veget_cov_max_new(i,j) |
---|
278 | bm_to_litter(i,j,iroot,l) = (bm_to_litter(i,j,iroot,l) * veget_cov_max_old(i,j) + & |
---|
279 | biomass_loss(i,iroot,l)*delta_veg(j)) / veget_cov_max_new(i,j) |
---|
280 | bm_to_litter(i,j,ifruit,l) = (bm_to_litter(i,j,ifruit,l) * veget_cov_max_old(i,j) + & |
---|
281 | biomass_loss(i,ifruit,l)*delta_veg(j)) / veget_cov_max_new(i,j) |
---|
282 | bm_to_litter(i,j,icarbres,l) = (bm_to_litter(i,j,icarbres,l) * veget_cov_max_old(i,j) + & |
---|
283 | biomass_loss(i,icarbres,l) *delta_veg(j)) / veget_cov_max_new(i,j) |
---|
284 | bm_to_litter(i,j,ileaf,l) = (bm_to_litter(i,j,ileaf,l) * veget_cov_max_old(i,j) + & |
---|
285 | biomass_loss(i,ileaf,l)*delta_veg(j)) / veget_cov_max_new(i,j) |
---|
286 | |
---|
287 | END DO |
---|
288 | |
---|
289 | age(i,j)=age(i,j)*veget_cov_max_old(i,j)/veget_cov_max_new(i,j) |
---|
290 | |
---|
291 | !! 3.3.2 The case that vegetation coverage of PFTj is no change or decreases |
---|
292 | ELSE |
---|
293 | |
---|
294 | !! 3.3.2.1 Biomass export |
---|
295 | ! coeff_lcchange_*: Coeff of biomass export for the year, decade, and century |
---|
296 | above = biomass(i,j,isapabove,icarbon) + biomass(i,j,iheartabove,icarbon) |
---|
297 | convflux(i) = convflux(i) - ( coeff_lcchange_1(j) * above * delta_veg(j) ) |
---|
298 | convfluxpft(i,j)= convfluxpft(i,j) - (coeff_lcchange_1(j) * above * delta_veg(j) ) |
---|
299 | prod10(i,0) = prod10(i,0) - ( coeff_lcchange_10(j) * above * delta_veg(j) ) |
---|
300 | prod100(i,0) = prod100(i,0) - ( coeff_lcchange_100(j) * above * delta_veg(j) ) |
---|
301 | |
---|
302 | fDeforestToProduct(i,j) = - above * delta_veg(j) |
---|
303 | fLulccResidue(i,j) = - ( biomass(i,j,isapbelow,icarbon) & |
---|
304 | + biomass(i,j,iheartbelow,icarbon) & |
---|
305 | + biomass(i,j,iroot,icarbon) & |
---|
306 | + biomass(i,j,ifruit,icarbon) & |
---|
307 | + biomass(i,j,icarbres,icarbon) & |
---|
308 | + biomass(i,j,ileaf,icarbon) ) * delta_veg(j) |
---|
309 | !! 3.3.2.2 Total reduction |
---|
310 | !! If the vegetation is to small, it has been set to 0. |
---|
311 | IF ( veget_cov_max_new(i,j) .LT. min_stomate ) THEN |
---|
312 | |
---|
313 | ind(i,j) = zero |
---|
314 | biomass(i,j,:,:) = zero |
---|
315 | PFTpresent(i,j) = .FALSE. |
---|
316 | senescence(i,j) = .FALSE. |
---|
317 | age(i,j) = zero |
---|
318 | when_growthinit(i,j) = undef |
---|
319 | everywhere(i,j) = zero |
---|
320 | carbon(i,:,j) = zero |
---|
321 | litter(i,:,j,:,:) = zero |
---|
322 | bm_to_litter(i,j,:,:) = zero |
---|
323 | turnover_daily(i,j,:,:) = zero |
---|
324 | |
---|
325 | ENDIF |
---|
326 | |
---|
327 | ENDIF ! End if PFT's coverage reduction |
---|
328 | |
---|
329 | ENDDO ! Loop over # PFTs |
---|
330 | |
---|
331 | !! 3.4 update 10 year-turnover pool content following flux emission |
---|
332 | !! (linear decay (10%) of the initial carbon input) |
---|
333 | DO l = 0, 8 |
---|
334 | m = 10 - l |
---|
335 | cflux_prod10(i) = cflux_prod10(i) + flux10(i,m) |
---|
336 | prod10(i,m) = prod10(i,m-1) - flux10(i,m-1) |
---|
337 | flux10(i,m) = flux10(i,m-1) |
---|
338 | |
---|
339 | IF (prod10(i,m) .LT. 1.0) prod10(i,m) = zero |
---|
340 | ENDDO |
---|
341 | |
---|
342 | cflux_prod10(i) = cflux_prod10(i) + flux10(i,1) |
---|
343 | flux10(i,1) = 0.1 * prod10(i,0) |
---|
344 | prod10(i,1) = prod10(i,0) |
---|
345 | |
---|
346 | !! 3.5 update 100 year-turnover pool content following flux emission\n |
---|
347 | DO l = 0, 98 |
---|
348 | m = 100 - l |
---|
349 | cflux_prod100(i) = cflux_prod100(i) + flux100(i,m) |
---|
350 | prod100(i,m) = prod100(i,m-1) - flux100(i,m-1) |
---|
351 | flux100(i,m) = flux100(i,m-1) |
---|
352 | |
---|
353 | IF (prod100(i,m).LT.1.0) prod100(i,m) = zero |
---|
354 | ENDDO |
---|
355 | |
---|
356 | cflux_prod100(i) = cflux_prod100(i) + flux100(i,1) |
---|
357 | flux100(i,1) = 0.01 * prod100(i,0) |
---|
358 | prod100(i,1) = prod100(i,0) |
---|
359 | prod10(i,0) = zero |
---|
360 | prod100(i,0) = zero |
---|
361 | |
---|
362 | |
---|
363 | ENDDO ! Loop over # pixels - domain size |
---|
364 | |
---|
365 | !! 4. history |
---|
366 | convflux = convflux/one_year*dt_days |
---|
367 | convfluxpft = convfluxpft/one_year*dt_days |
---|
368 | fDeforestToProduct= fDeforestToProduct/one_year*dt_days |
---|
369 | fLulccResidue = fLulccResidue/one_year*dt_days |
---|
370 | cflux_prod10 = cflux_prod10/one_year*dt_days |
---|
371 | cflux_prod100 = cflux_prod100/one_year*dt_days |
---|
372 | |
---|
373 | |
---|
374 | IF (printlev>=4) WRITE(numout,*) 'Leaving lcchange_main' |
---|
375 | |
---|
376 | END SUBROUTINE lcchange_main |
---|
377 | |
---|
378 | END MODULE stomate_lcchange |
---|