1 | ! ================================================================================================================================= |
---|
2 | ! MODULE : routing_highres |
---|
3 | ! |
---|
4 | ! CONTACT : orchidee-help _at_ listes.ipsl.fr |
---|
5 | ! |
---|
6 | ! LICENCE : IPSL (2006) |
---|
7 | ! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC |
---|
8 | ! |
---|
9 | !>\BRIEF This module routes the water over the continents into the oceans and computes the water |
---|
10 | !! stored in floodplains or taken for irrigation. |
---|
11 | !! |
---|
12 | !!\n DESCRIPTION: None |
---|
13 | !! |
---|
14 | !! RECENT CHANGE(S): Now works together with the routing pre-processor : https://gitlab.in2p3.fr/ipsl/lmd/intro/routingpp |
---|
15 | !! |
---|
16 | !! REFERENCE(S) : |
---|
17 | !! |
---|
18 | !! SVN : |
---|
19 | !! $HeadURL: svn://forge.ipsl.jussieu.fr/orchidee/branches/ORCHIDEE-ROUTING/ORCHIDEE/src_sechiba/routing.f90 $ |
---|
20 | !! $Date: 2022-03-24 11:25:05 +0100 (Do, 24 MÀr 2022) $ |
---|
21 | !! $Revision: 7545 $ |
---|
22 | !! \n |
---|
23 | !_ ================================================================================================================================ |
---|
24 | ! |
---|
25 | ! |
---|
26 | ! Histoire Salee |
---|
27 | !--------------- |
---|
28 | ! La douce riviere |
---|
29 | ! Sortant de son lit |
---|
30 | ! S'est jetee ma chere |
---|
31 | ! dans les bras mais oui |
---|
32 | ! du beau fleuve |
---|
33 | ! |
---|
34 | ! L'eau coule sous les ponts |
---|
35 | ! Et puis les flots s'emeuvent |
---|
36 | ! - N'etes vous pas au courant ? |
---|
37 | ! Il parait que la riviere |
---|
38 | ! Va devenir mer |
---|
39 | ! Roland Bacri |
---|
40 | ! |
---|
41 | |
---|
42 | |
---|
43 | MODULE routing_highres |
---|
44 | |
---|
45 | USE ioipsl |
---|
46 | USE xios_orchidee |
---|
47 | USE ioipsl_para |
---|
48 | USE constantes |
---|
49 | USE constantes_var |
---|
50 | USE constantes_soil |
---|
51 | USE pft_parameters |
---|
52 | USE sechiba_io_p |
---|
53 | USE interpol_help |
---|
54 | USE grid |
---|
55 | USE mod_orchidee_para |
---|
56 | |
---|
57 | USE haversine |
---|
58 | |
---|
59 | IMPLICIT NONE |
---|
60 | PRIVATE |
---|
61 | PUBLIC :: routing_highres_main, routing_highres_initialize, routing_highres_finalize, routing_highres_clear, routing_highres_xios_initialize |
---|
62 | |
---|
63 | INTERFACE routing_hr_landgather |
---|
64 | MODULE PROCEDURE routing_hr_landgather_i1, routing_hr_landgather_i2, routing_hr_landgather_r |
---|
65 | END INTERFACE routing_hr_landgather |
---|
66 | |
---|
67 | INTEGER(i_std),PARAMETER :: WaterCp=1000.*4.1813 !! water heat capacity in J/Kg/K |
---|
68 | |
---|
69 | !! PARAMETERS |
---|
70 | INTEGER(i_std), SAVE :: nbasmax=-1 !! The maximum number of basins we wish to have per grid box (truncation of the model) (unitless) |
---|
71 | INTEGER(i_std), SAVE :: nbasmon = 4 !! Number of basins to be monitored |
---|
72 | INTEGER(i_std), SAVE :: inflows=-1 !! The maximum number of inflows (unitless) |
---|
73 | INTEGER(i_std), SAVE :: nbvmax !! The maximum number of basins we can handle at any time during the generation of the maps (unitless) |
---|
74 | !$OMP THREADPRIVATE(nbvmax) |
---|
75 | REAL(r_std), SAVE :: fast_tcst = -1. !! Property of the fast reservoir, (s/km) |
---|
76 | !$OMP THREADPRIVATE(fast_tcst) |
---|
77 | REAL(r_std), SAVE :: slow_tcst = -1. !! Property of the slow reservoir, (s/km) |
---|
78 | !$OMP THREADPRIVATE(slow_tcst) |
---|
79 | REAL(r_std), SAVE :: stream_tcst = -1. !! Property of the stream reservoir, (s/km) |
---|
80 | !$OMP THREADPRIVATE(stream_tcst) |
---|
81 | REAL(r_std), SAVE :: flood_tcst = -1. !! Property of the floodplains reservoir, (s/km) |
---|
82 | !$OMP THREADPRIVATE(flood_tcst) |
---|
83 | REAL(r_std), SAVE :: swamp_cst = -1. !! Fraction of the river transport that flows to the swamps (unitless;0-1) |
---|
84 | !$OMP THREADPRIVATE(swamp_cst) |
---|
85 | REAL(r_std), SAVE :: lim_floodcri = -1. !! Minimal orog diff between two consecutive floodplains htu (m) |
---|
86 | !$OMP THREADPRIVATE(lim_floodcri) |
---|
87 | ! |
---|
88 | ! Relation between volume and fraction of floodplains |
---|
89 | ! |
---|
90 | REAL(r_std), SAVE :: betap = 0.5 !! Ratio of the basin surface intercepted by ponds and the maximum surface of ponds (unitless;0-1) |
---|
91 | !$OMP THREADPRIVATE(betap) |
---|
92 | REAL(r_std), SAVE :: rfloodmax = 0.5 !! Maximal discharge reducer when there are floodplains |
---|
93 | !$OMP THREADPRIVATE(rfloodmax) |
---|
94 | REAL(r_std), SAVE :: overflow_tcst = 5 !! Maximal discharge reducer when there are floodplains |
---|
95 | !$OMP THREADPRIVATE(overflow_tcst) |
---|
96 | INTEGER(i_std), SAVE :: overflow_repetition = 1 !! Number of repetition of overflow for each routing step |
---|
97 | !$OMP THREADPRIVATE(overflow_repetition) |
---|
98 | ! |
---|
99 | ! Relation between maximum surface of ponds and basin surface, and drainage (mm/j) to the slow_res |
---|
100 | ! |
---|
101 | REAL(r_std), PARAMETER :: pond_bas = 50.0 !! [DISPENSABLE] - not used |
---|
102 | REAL(r_std), SAVE :: pondcri = 2000.0 !! Potential height for which all the basin is a pond (mm) |
---|
103 | !$OMP THREADPRIVATE(pondcri) |
---|
104 | ! |
---|
105 | REAL(r_std), PARAMETER :: maxevap_lake = 7.5/86400. !! Maximum evaporation rate from lakes (kg/m^2/s) |
---|
106 | ! |
---|
107 | REAL(r_std),SAVE :: dt_routing !! Routing time step (s) |
---|
108 | !$OMP THREADPRIVATE(dt_routing) |
---|
109 | ! |
---|
110 | INTEGER(i_std), SAVE :: ntemp_layer = 4 !! Number of layers to be taken to determine the ground water temperature. |
---|
111 | !$OMP THREADPRIVATE(ntemp_layer) |
---|
112 | INTEGER(i_std), SAVE :: diagunit = 87 !! Diagnostic file unit (unitless) |
---|
113 | !$OMP THREADPRIVATE(diagunit) |
---|
114 | ! |
---|
115 | ! Logicals to control model configuration |
---|
116 | ! |
---|
117 | LOGICAL, SAVE :: dofloodinfilt = .FALSE. !! Logical to choose if floodplains infiltration is activated or not (true/false) |
---|
118 | !$OMP THREADPRIVATE(dofloodinfilt) |
---|
119 | LOGICAL, SAVE :: dofloodoverflow = .FALSE. !! Logical to choose if floodplains overflow is activated or not (true/false) |
---|
120 | !$OMP THREADPRIVATE(dofloodoverflow) |
---|
121 | LOGICAL, SAVE :: doswamps = .FALSE. !! Logical to choose if swamps are activated or not (true/false) |
---|
122 | !$OMP THREADPRIVATE(doswamps) |
---|
123 | LOGICAL, SAVE :: doponds = .FALSE. !! Logical to choose if ponds are activated or not (true/false) |
---|
124 | !$OMP THREADPRIVATE(doponds) |
---|
125 | LOGICAL, SAVE :: do_rivertemp = .FALSE. |
---|
126 | !$OMP THREADPRIVATE(do_rivertemp) |
---|
127 | REAL(r_std), SAVE :: conduct_factor = 1. !! Adjustment factor for floodplains reinfiltration |
---|
128 | !$OMP THREADPRIVATE(conduct_factor) |
---|
129 | ! |
---|
130 | ! The variables describing the basins and their routing, need to be in the restart file. |
---|
131 | ! |
---|
132 | INTEGER(i_std), SAVE :: num_largest = 200 !! Number of largest river basins which should be treated as independently as rivers |
---|
133 | !! (not flow into ocean as diffusion coastal flow) (unitless) |
---|
134 | !$OMP THREADPRIVATE(num_largest) |
---|
135 | ! |
---|
136 | CHARACTER(LEN=80),SAVE :: graphfilename="routing_graph.nc" |
---|
137 | !$OMP THREADPRIVATE(graphfilename) |
---|
138 | REAL(r_std), SAVE :: undef_graphfile |
---|
139 | !$OMP THREADPRIVATE(undef_graphfile) |
---|
140 | REAL(r_std), SAVE :: graphfile_version = 0.0 |
---|
141 | !$OMP THREADPRIVATE(graphfile_version) |
---|
142 | REAL(r_std), SAVE :: maxtimestep = 1800.0 !! A reasonalble maximum time step. Actual value to be read from graphfile. |
---|
143 | !$OMP THREADPRIVATE(maxtimestep) |
---|
144 | REAL(r_std), SAVE :: time_counter !! Time counter (s) |
---|
145 | !$OMP THREADPRIVATE(time_counter) |
---|
146 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: routing_area_loc !! Surface of basin (m^2) |
---|
147 | !$OMP THREADPRIVATE(routing_area_loc) |
---|
148 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: topo_resid_loc !! Topographic index of the retention time (m) |
---|
149 | !$OMP THREADPRIVATE(topo_resid_loc) |
---|
150 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: stream_resid_loc !! Topographic index of the retention time (m) |
---|
151 | !$OMP THREADPRIVATE(stream_resid_loc) |
---|
152 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_togrid_loc !! Grid into which the basin flows (unitless) |
---|
153 | !$OMP THREADPRIVATE(route_togrid_loc) |
---|
154 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_tobasin_loc !! Basin in to which the water goes (unitless) |
---|
155 | !$OMP THREADPRIVATE(route_tobasin_loc) |
---|
156 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_nbintobas_loc !! Number of basin into current one (unitless) |
---|
157 | !$OMP THREADPRIVATE(route_nbintobas_loc) |
---|
158 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: global_basinid_loc !! ID of basin (unitless) |
---|
159 | !$OMP THREADPRIVATE(global_basinid_loc) |
---|
160 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:) :: hydrodiag_loc !! Variable to diagnose the hydrographs |
---|
161 | !$OMP THREADPRIVATE(hydrodiag_loc) |
---|
162 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: HTUdiag_loc !! Variable to diagnose the hydrographs |
---|
163 | !$OMP THREADPRIVATE(HTUdiag_loc) |
---|
164 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: HTUdiag_glo !! Variable to diagnose the hydrographs |
---|
165 | !$OMP THREADPRIVATE(HTUdiag_glo) |
---|
166 | LOGICAL, SAVE :: MonitoringinGraph=.FALSE. |
---|
167 | LOGICAL, SAVE :: ReadGraph=.FALSE. |
---|
168 | LOGICAL, SAVE :: ReadMonitoring=.FALSE. |
---|
169 | REAL(r_std), SAVE :: stream_maxresid |
---|
170 | !$OMP THREADPRIVATE(stream_maxresid) |
---|
171 | ! |
---|
172 | ! parallelism |
---|
173 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: routing_area_glo !! Surface of basin (m^2) |
---|
174 | !$OMP THREADPRIVATE(routing_area_glo) |
---|
175 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: topo_resid_glo !! Topographic index of the retention time (m) |
---|
176 | !$OMP THREADPRIVATE(topo_resid_glo) |
---|
177 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: stream_resid_glo !! Topographic index of the retention time (m) |
---|
178 | !$OMP THREADPRIVATE(stream_resid_glo) |
---|
179 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_togrid_glo !! Grid into which the basin flows (unitless) |
---|
180 | !$OMP THREADPRIVATE(route_togrid_glo) |
---|
181 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_tobasin_glo !! Basin in to which the water goes (unitless) |
---|
182 | !$OMP THREADPRIVATE(route_tobasin_glo) |
---|
183 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_nbintobas_glo !! Number of basin into current one (unitless) |
---|
184 | !$OMP THREADPRIVATE(route_nbintobas_glo) |
---|
185 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: global_basinid_glo !! ID of basin (unitless) |
---|
186 | !$OMP THREADPRIVATE(global_basinid_glo) |
---|
187 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:) :: hydrodiag_glo !! Variable to diagnose the hydrographs |
---|
188 | !$OMP THREADPRIVATE(hydrodiag_glo) |
---|
189 | ! |
---|
190 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: routing_area !! Surface of basin (m^2) |
---|
191 | !$OMP THREADPRIVATE(routing_area) |
---|
192 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: topo_resid !! Topographic index of the retention time (m) |
---|
193 | !$OMP THREADPRIVATE(topo_resid) |
---|
194 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: stream_resid !! Topographic index of the retention time (m) |
---|
195 | !$OMP THREADPRIVATE(stream_resid) |
---|
196 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: route_togrid !! Grid into which the basin flows (unitless) |
---|
197 | !$OMP THREADPRIVATE(route_togrid) |
---|
198 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: route_tobasin !! Basin in to which the water goes (unitless) |
---|
199 | !$OMP THREADPRIVATE(route_tobasin) |
---|
200 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: route_nbintobas !! Number of basin into current one (unitless) |
---|
201 | !$OMP THREADPRIVATE(route_nbintobas) |
---|
202 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: global_basinid !! ID of basin (unitless) |
---|
203 | !$OMP THREADPRIVATE(global_basinid) |
---|
204 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:) :: hydrodiag !! Variable to diagnose the hydrographs |
---|
205 | !$OMP THREADPRIVATE(hydrodiag) |
---|
206 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: slowflow_diag !! Diagnostic slow flow hydrographs (kg/dt) |
---|
207 | !$OMP THREADPRIVATE(slowflow_diag) |
---|
208 | ! |
---|
209 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: irrigated !! Area equipped for irrigation in each grid box (m^2) |
---|
210 | !$OMP THREADPRIVATE(irrigated) |
---|
211 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: floodplains_glo !! Maximal surface which can be inundated in each grid box (m^2) |
---|
212 | !$OMP THREADPRIVATE(floodplains_glo) |
---|
213 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: floodplains_loc !! Maximal surface which can be inundated in each grid box (m^2) |
---|
214 | !$OMP THREADPRIVATE(floodplains_loc) |
---|
215 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: floodplains !! Maximal surface which can be inundated in each grid box (m^2) |
---|
216 | !$OMP THREADPRIVATE(floodplains) |
---|
217 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: floodmap |
---|
218 | !! Floodplains Fraction for each grid point. |
---|
219 | !$OMP THREADPRIVATE(floodmap) |
---|
220 | |
---|
221 | !!! |
---|
222 | |
---|
223 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: stempdiag_mean !! Averaged soil temperatures |
---|
224 | !$OMP THREADPRIVATE(stempdiag_mean) |
---|
225 | ! |
---|
226 | ! FLOOD OVERFLOW |
---|
227 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: orog_min_glo !! |
---|
228 | !$OMP THREADPRIVATE(orog_min_glo)! |
---|
229 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: orog_min_loc !! |
---|
230 | !$OMP THREADPRIVATE(orog_min_loc) |
---|
231 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: orog_min !! |
---|
232 | !$OMP THREADPRIVATE(orog_min) |
---|
233 | ! |
---|
234 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_innum_glo !! |
---|
235 | !$OMP THREADPRIVATE(route_innum_glo) |
---|
236 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: route_innum_loc !! |
---|
237 | !$OMP THREADPRIVATE(route_innum_loc) |
---|
238 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:) :: route_innum !! |
---|
239 | !$OMP THREADPRIVATE(route_innum) |
---|
240 | ! |
---|
241 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:,:) :: route_ingrid_glo !! |
---|
242 | !$OMP THREADPRIVATE(route_ingrid_glo) |
---|
243 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:,:) :: route_ingrid_loc !! |
---|
244 | !$OMP THREADPRIVATE(route_ingrid_loc) |
---|
245 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:,:) :: route_ingrid !! |
---|
246 | !$OMP THREADPRIVATE(route_ingrid) |
---|
247 | ! |
---|
248 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:,:) :: route_inbasin_glo !! |
---|
249 | !$OMP THREADPRIVATE(route_inbasin_glo) |
---|
250 | INTEGER(i_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:,:) :: route_inbasin_loc !! |
---|
251 | !$OMP THREADPRIVATE(route_inbasin_loc) |
---|
252 | INTEGER(i_std), SAVE, POINTER, DIMENSION(:,:,:) :: route_inbasin !! |
---|
253 | !$OMP THREADPRIVATE(route_inbasin) |
---|
254 | ! |
---|
255 | !!! |
---|
256 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: swamp !! Maximal surface of swamps in each grid box (m^2) |
---|
257 | !$OMP THREADPRIVATE(swamp) |
---|
258 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: fp_beta_glo !! Parameter to fix the shape of the floodplain (>1 for convex edges, <1 for concave edges) (unitless) |
---|
259 | !$OMP THREADPRIVATE(fp_beta_glo) |
---|
260 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: fp_beta_loc !! Parameter to fix the shape of the floodplain (>1 for convex edges, <1 for concave edges) (unitless) |
---|
261 | !$OMP THREADPRIVATE(fp_beta_loc) |
---|
262 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: fp_beta !! Parameter to fix the shape of the floodplain (>1 for convex edges, <1 for concave edges) (unitless) |
---|
263 | !$OMP THREADPRIVATE(fp_beta) |
---|
264 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: floodcri_glo !! Potential height for which all the basin is a pond (mm) |
---|
265 | !$OMP THREADPRIVATE(floodcri_glo) |
---|
266 | REAL(r_std), SAVE, ALLOCATABLE, TARGET, DIMENSION(:,:) :: floodcri_loc !! Potential height for which all the basin is a pond (mm) |
---|
267 | !$OMP THREADPRIVATE(floodcri_loc) |
---|
268 | REAL(r_std), SAVE, POINTER, DIMENSION(:,:) :: floodcri !! Potential height for which all the basin is a pond (mm) |
---|
269 | !$OMP THREADPRIVATE(floodcri) |
---|
270 | ! |
---|
271 | ! The reservoirs, also to be put into the restart file. |
---|
272 | ! |
---|
273 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: fast_reservoir !! Water amount in the fast reservoir (kg) |
---|
274 | !$OMP THREADPRIVATE(fast_reservoir) |
---|
275 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: slow_reservoir !! Water amount in the slow reservoir (kg) |
---|
276 | !$OMP THREADPRIVATE(slow_reservoir) |
---|
277 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: stream_reservoir !! Water amount in the stream reservoir (kg) |
---|
278 | !$OMP THREADPRIVATE(stream_reservoir) |
---|
279 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: flood_reservoir !! Water amount in the floodplains reservoir (kg) |
---|
280 | !$OMP THREADPRIVATE(flood_reservoir) |
---|
281 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: lake_reservoir !! Water amount in the lake reservoir (kg) |
---|
282 | !$OMP THREADPRIVATE(lake_reservoir) |
---|
283 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: pond_reservoir !! Water amount in the pond reservoir (kg) |
---|
284 | !$OMP THREADPRIVATE(pond_reservoir) |
---|
285 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: flood_frac_bas !! Flooded fraction per basin (unitless;0-1) |
---|
286 | !$OMP THREADPRIVATE(flood_frac_bas) |
---|
287 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: pond_frac !! Pond fraction per grid box (unitless;0-1) |
---|
288 | !$OMP THREADPRIVATE(pond_frac) |
---|
289 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: flood_height !! Floodplain height (mm) |
---|
290 | !$OMP THREADPRIVATE(flood_height) |
---|
291 | ! |
---|
292 | ! Reservoir temperatures |
---|
293 | ! |
---|
294 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: fast_temp !! Water temperature in the fast reservoir (K) |
---|
295 | !$OMP THREADPRIVATE(fast_temp) |
---|
296 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: slow_temp !! Water temperature in the slow reservoir (K) |
---|
297 | !$OMP THREADPRIVATE(slow_temp) |
---|
298 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: stream_temp !! Water temperature in the stream reservoir (K) |
---|
299 | !$OMP THREADPRIVATE(stream_temp) |
---|
300 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: streamlimit !! |
---|
301 | !$OMP THREADPRIVATE(streamlimit) |
---|
302 | ! |
---|
303 | ! The accumulated fluxes. |
---|
304 | ! |
---|
305 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: floodout_mean !! Accumulated flow out of floodplains (kg/m^2/dt) |
---|
306 | !$OMP THREADPRIVATE(floodout_mean) |
---|
307 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: runoff_mean !! Accumulated runoff (kg/m^2/dt) |
---|
308 | !$OMP THREADPRIVATE(runoff_mean) |
---|
309 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: drainage_mean !! Accumulated drainage (kg/m^2/dt) |
---|
310 | !$OMP THREADPRIVATE(drainage_mean) |
---|
311 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: transpot_mean !! Mean potential transpiration from the plants (kg/m^2/dt) |
---|
312 | !$OMP THREADPRIVATE(transpot_mean) |
---|
313 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: precip_mean !! Accumulated precipitation (kg/m^2/dt) |
---|
314 | !$OMP THREADPRIVATE(precip_mean) |
---|
315 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: humrel_mean !! Mean soil moisture stress, mean root extraction potential (unitless) |
---|
316 | !$OMP THREADPRIVATE(humrel_mean) |
---|
317 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: totnobio_mean !! Mean last total fraction of no bio (unitless;0-1) |
---|
318 | !$OMP THREADPRIVATE(totnobio_mean) |
---|
319 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: vegtot_mean !! Mean potentially vegetated fraction (unitless;0-1) |
---|
320 | !$OMP THREADPRIVATE(vegtot_mean) |
---|
321 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: k_litt_mean !! Mean averaged conductivity for saturated infiltration in the 'litter' layer (kg/m^2/dt) |
---|
322 | !$OMP THREADPRIVATE(k_litt_mean) |
---|
323 | ! |
---|
324 | ! The averaged outflow fluxes. |
---|
325 | ! |
---|
326 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: lakeinflow_mean !! Mean lake inflow (kg/m^2/dt) |
---|
327 | !$OMP THREADPRIVATE(lakeinflow_mean) |
---|
328 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: returnflow_mean !! Mean water flow from lakes and swamps which returns to the grid box. |
---|
329 | !! This water will go back into the hydrol module to allow re-evaporation (kg/m^2/dt) |
---|
330 | !$OMP THREADPRIVATE(returnflow_mean) |
---|
331 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: reinfiltration_mean !! Mean water flow which returns to the grid box (kg/m^2/dt) |
---|
332 | !$OMP THREADPRIVATE(reinfiltration_mean) |
---|
333 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: irrigation_mean !! Mean irrigation flux. |
---|
334 | !! This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
335 | !$OMP THREADPRIVATE(irrigation_mean) |
---|
336 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: riverflow_mean !! Mean Outflow of the major rivers. |
---|
337 | !! The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
338 | !$OMP THREADPRIVATE(riverflow_mean) |
---|
339 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: coastalflow_mean !! Mean outflow on coastal points by small basins. |
---|
340 | !! This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
341 | !$OMP THREADPRIVATE(coastalflow_mean) |
---|
342 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: floodtemp !! Temperature to decide if floodplains work (K) |
---|
343 | !$OMP THREADPRIVATE(floodtemp) |
---|
344 | INTEGER(i_std), SAVE :: floodtemp_lev !! Temperature level to decide if floodplains work (K) |
---|
345 | !$OMP THREADPRIVATE(floodtemp_lev) |
---|
346 | ! |
---|
347 | ! Diagnostic variables ... well sort of ! |
---|
348 | ! |
---|
349 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: irrig_netereq !! Irrigation requirement (water requirements by the crop for its optimal growth (kg/m^2/dt) |
---|
350 | !$OMP THREADPRIVATE(irrig_netereq) |
---|
351 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: hydrographs !! Hydrographs at the outflow of the grid box for major basins (kg/dt) |
---|
352 | !$OMP THREADPRIVATE(hydrographs) |
---|
353 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: hydrotemp !! Temperature of the largest river (in the HTUdiag sense) in the grid (K) |
---|
354 | !$OMP THREADPRIVATE(hydrotemp) |
---|
355 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: HTUhgmon !! Hydrographs to be monitored on specific HTUs (kg/dt) |
---|
356 | !$OMP THREADPRIVATE(HTUhgmon) |
---|
357 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: HTUhgmon_glo !! Hydrographs to be monitored on specific HTUs (kg/dt) |
---|
358 | !$OMP THREADPRIVATE(HTUhgmon_glo) |
---|
359 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: HTUtempmon !! Temperature to be monitored on specific HTUs (K) |
---|
360 | !$OMP THREADPRIVATE(HTUtempmon) |
---|
361 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: HTUtempmon_glo !! Temperature to be monitored on specific HTUs (K) |
---|
362 | !$OMP THREADPRIVATE(HTUtempmon_glo) |
---|
363 | ! |
---|
364 | ! Diagnostics for the various reservoirs we use (Kg/m^2) |
---|
365 | ! |
---|
366 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: fast_diag !! Diagnostic for the fast reservoir (kg/m^2) |
---|
367 | !$OMP THREADPRIVATE(fast_diag) |
---|
368 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: slow_diag !! Diagnostic for the slow reservoir (kg/m^2) |
---|
369 | !$OMP THREADPRIVATE(slow_diag) |
---|
370 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: stream_diag !! Diagnostic for the stream reservoir (kg/m^2) |
---|
371 | !$OMP THREADPRIVATE(stream_diag) |
---|
372 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: flood_diag !! Diagnostic for the floodplain reservoir (kg/m^2) |
---|
373 | !$OMP THREADPRIVATE(flood_diag) |
---|
374 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: pond_diag !! Diagnostic for the pond reservoir (kg/m^2) |
---|
375 | !$OMP THREADPRIVATE(pond_diag) |
---|
376 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: lake_diag !! Diagnostic for the lake reservoir (kg/m^2) |
---|
377 | !$OMP THREADPRIVATE(lake_diag) |
---|
378 | |
---|
379 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:) :: mask_coast !! Mask with coastal gridcells on local grid(1/0) |
---|
380 | !$OMP THREADPRIVATE(mask_coast) |
---|
381 | REAL(r_std), SAVE :: max_lake_reservoir !! Maximum limit of water in lake_reservoir [kg/m2] |
---|
382 | !$OMP THREADPRIVATE(max_lake_reservoir) |
---|
383 | INTEGER(i_std), SAVE :: nb_coast_gridcells !! Number of gridcells which can receive coastalflow |
---|
384 | !$OMP THREADPRIVATE(nb_coast_gridcells) |
---|
385 | |
---|
386 | |
---|
387 | CONTAINS |
---|
388 | !! ============================================================================================================================= |
---|
389 | !! SUBROUTINE: routing_highres_initialize |
---|
390 | !! |
---|
391 | !>\BRIEF Initialize the routing module |
---|
392 | !! |
---|
393 | !! DESCRIPTION: Initialize the routing module. Read from restart file or read the routing.nc file to initialize the |
---|
394 | !! routing scheme. |
---|
395 | !! |
---|
396 | !! RECENT CHANGE(S) |
---|
397 | !! |
---|
398 | !! REFERENCE(S) |
---|
399 | !! |
---|
400 | !! FLOWCHART |
---|
401 | !! \n |
---|
402 | !_ ============================================================================================================================== |
---|
403 | |
---|
404 | SUBROUTINE routing_highres_initialize( kjit, nbpt, index, & |
---|
405 | rest_id, hist_id, hist2_id, lalo, & |
---|
406 | neighbours, resolution, contfrac, stempdiag, & |
---|
407 | returnflow, reinfiltration, irrigation, riverflow, & |
---|
408 | coastalflow, flood_frac, flood_res ) |
---|
409 | |
---|
410 | IMPLICIT NONE |
---|
411 | |
---|
412 | !! 0.1 Input variables |
---|
413 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
414 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
415 | INTEGER(i_std), INTENT(in) :: index(nbpt) !! Indices of the points on the map (unitless) |
---|
416 | INTEGER(i_std),INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
417 | INTEGER(i_std),INTENT(in) :: hist_id !! Access to history file (unitless) |
---|
418 | INTEGER(i_std),INTENT(in) :: hist2_id !! Access to history file 2 (unitless) |
---|
419 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
420 | |
---|
421 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb) !! Vector of neighbours for each grid point |
---|
422 | !! (1=N, 2=NE, 3=E, 4=SE, 5=S, 6=SW, 7=W, 8=NW) (unitless) |
---|
423 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
424 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
425 | REAL(r_std), INTENT(in) :: stempdiag(nbpt,nslm) !! Diagnostic soil temperature profile |
---|
426 | |
---|
427 | !! 0.2 Output variables |
---|
428 | REAL(r_std), INTENT(out) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns to the grid box. |
---|
429 | !! This water will go back into the hydrol module to allow re-evaporation (kg/m^2/dt) |
---|
430 | REAL(r_std), INTENT(out) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
431 | REAL(r_std), INTENT(out) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
432 | REAL(r_std), INTENT(out) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
433 | |
---|
434 | REAL(r_std), INTENT(out) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
435 | REAL(r_std), INTENT(out) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
436 | REAL(r_std), INTENT(out) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
437 | |
---|
438 | !! 0.3 Local variables |
---|
439 | REAL(r_std), DIMENSION(nbp_glo) :: mask_coast_glo !! Mask with coastal gridcells on global grid (1/0) |
---|
440 | LOGICAL :: init_irrig !! Logical to initialize the irrigation (true/false) |
---|
441 | LOGICAL :: init_flood !! Logical to initialize the floodplains (true/false) |
---|
442 | LOGICAL :: init_swamp !! Logical to initialize the swamps (true/false) |
---|
443 | INTEGER :: ig, ib, rtg, rtb !! Index |
---|
444 | REAL(r_std) :: stream_tcst_orig |
---|
445 | INTEGER :: ier !! Error handeling |
---|
446 | !_ ================================================================================================================================ |
---|
447 | |
---|
448 | ! |
---|
449 | ! do initialisation |
---|
450 | ! |
---|
451 | nbvmax = 440 |
---|
452 | ! Here we will allocate the memory and get the fixed fields from the restart file. |
---|
453 | ! If the info is not found then we will compute the routing map. |
---|
454 | ! |
---|
455 | |
---|
456 | CALL routing_hr_init (kjit, nbpt, index, returnflow, reinfiltration, irrigation, & |
---|
457 | riverflow, coastalflow, flood_frac, flood_res, stempdiag, rest_id) |
---|
458 | |
---|
459 | routing_area => routing_area_loc |
---|
460 | floodplains => floodplains_loc |
---|
461 | topo_resid => topo_resid_loc |
---|
462 | stream_resid => stream_resid_loc |
---|
463 | route_togrid => route_togrid_loc |
---|
464 | route_tobasin => route_tobasin_loc |
---|
465 | global_basinid => global_basinid_loc |
---|
466 | hydrodiag => hydrodiag_loc |
---|
467 | fp_beta => fp_beta_loc |
---|
468 | floodcri => floodcri_loc |
---|
469 | ! |
---|
470 | route_innum => route_innum_loc |
---|
471 | route_ingrid => route_ingrid_loc |
---|
472 | route_inbasin => route_inbasin_loc |
---|
473 | orog_min => orog_min_loc |
---|
474 | |
---|
475 | ! This routine computes the routing map if the route_togrid_glo is undefined. This means that the |
---|
476 | ! map has not been initialized during the restart process.. |
---|
477 | ! |
---|
478 | !! Reads in the map of the basins and flow directions to construct the catchments of each grid box |
---|
479 | ! |
---|
480 | IF ( ReadGraph .OR. ReadMonitoring) THEN |
---|
481 | CALL routing_hr_basins_p(nbpt, lalo, neighbours, resolution, contfrac) |
---|
482 | ENDIF |
---|
483 | ! Keep the information so we can check the time step. |
---|
484 | stream_tcst_orig = stream_tcst |
---|
485 | ! |
---|
486 | IF (stream_tcst .LE. 0 .OR. fast_tcst .LE. 0 .OR. slow_tcst .LE. 0 .OR. flood_tcst .LE. 0 ) THEN |
---|
487 | CALL ipslerr(3,'routing_highres_initialize',' The time constants of the routing reservoirs were not initialized. ', & |
---|
488 | 'Please check if they are present in the HTU graph file', ' ') |
---|
489 | ELSE |
---|
490 | ! |
---|
491 | !> The time constants for the various reservoirs should be read from the graph file |
---|
492 | !> produced by routingpp (https://gitlab.in2p3.fr/ipsl/lmd/intro/routingpp). They are |
---|
493 | !> also saved in the restart file so that we do not need to read the graph file at each restart. |
---|
494 | !> But once they are set in the model the user can changed them through the run.def. |
---|
495 | !> This is a useful option to test values but should not be an operational solution. The |
---|
496 | !> correct value should be given to the model through the graph file. |
---|
497 | !> The getin_p operation cannot be done earlier as in routing_hr_init above these constant |
---|
498 | !> might not yet be known. |
---|
499 | ! |
---|
500 | !Config Key = SLOW_TCST |
---|
501 | !Config Desc = Time constant for the slow reservoir |
---|
502 | !Config If = RIVER_ROUTING |
---|
503 | !Config Def = 25.0 |
---|
504 | !Config Help = This parameters allows the user to fix the |
---|
505 | !Config time constant (s/km) of the slow reservoir |
---|
506 | !Config in order to get better river flows for |
---|
507 | !Config particular regions. |
---|
508 | !Config Units = [days] |
---|
509 | ! |
---|
510 | CALL getin_p('SLOW_TCST', slow_tcst) |
---|
511 | ! |
---|
512 | !Config Key = FAST_TCST |
---|
513 | !Config Desc = Time constant for the fast reservoir |
---|
514 | !Config If = RIVER_ROUTING |
---|
515 | !Config Def = 3.0 |
---|
516 | !Config Help = This parameters allows the user to fix the |
---|
517 | !Config time constant (s/km) of the fast reservoir |
---|
518 | !Config in order to get better river flows for |
---|
519 | !Config particular regions. |
---|
520 | !Config Units = [days] |
---|
521 | CALL getin_p('FAST_TCST', fast_tcst) |
---|
522 | |
---|
523 | !Config Key = STREAM_TCST |
---|
524 | !Config Desc = Time constant for the stream reservoir |
---|
525 | !Config If = RIVER_ROUTING |
---|
526 | !Config Def = 0.24 |
---|
527 | !Config Help = This parameters allows the user to fix the |
---|
528 | !Config time constant (s/km) of the stream reservoir |
---|
529 | !Config in order to get better river flows for |
---|
530 | !Config particular regions. |
---|
531 | !Config Units = [days] |
---|
532 | CALL getin_p('STREAM_TCST', stream_tcst) |
---|
533 | |
---|
534 | !Config Key = FLOOD_TCST |
---|
535 | !Config Desc = Time constant for the flood reservoir |
---|
536 | !Config If = RIVER_ROUTING |
---|
537 | !Config Def = 4.0 |
---|
538 | !Config Help = This parameters allows the user to fix the |
---|
539 | !Config time constant (s/km) of the flood reservoir |
---|
540 | !Config in order to get better river flows for |
---|
541 | !Config particular regions. |
---|
542 | !Config Units = [days] |
---|
543 | CALL getin_p('FLOOD_TCST', flood_tcst) |
---|
544 | |
---|
545 | !Config Key = SWAMP_CST |
---|
546 | !Config Desc = Fraction of the river that flows back to swamps |
---|
547 | !Config If = RIVER_ROUTING |
---|
548 | !Config Def = 0.2 |
---|
549 | !Config Help = This parameters allows the user to fix the |
---|
550 | !Config fraction of the river transport |
---|
551 | !Config that flows to swamps |
---|
552 | !Config Units = [-] |
---|
553 | CALL getin_p('SWAMP_CST', swamp_cst) |
---|
554 | ! |
---|
555 | !Config Key = LIM_FLOODCRI |
---|
556 | !Config Desc = Difference of orography between floodplains HTUs. |
---|
557 | !Config If = RIVER_ROUTING |
---|
558 | !Config Def = 0.3 |
---|
559 | !Config Help = This parameters allows the user to fix the |
---|
560 | !Config minimal difference of orography between two consecutive |
---|
561 | !Config floodplains HTU. |
---|
562 | !Config Units = [meter] |
---|
563 | CALL getin_p('LIM_FLOODCRI', lim_floodcri) |
---|
564 | ! |
---|
565 | ENDIF |
---|
566 | ! |
---|
567 | ! Verify that the time step is compatible with the graph file. |
---|
568 | ! If the user has changed the time constant of the stream reservoir then |
---|
569 | ! the maximum time step needs to be adjusted. |
---|
570 | ! |
---|
571 | IF ( stream_tcst_orig == 0 ) THEN |
---|
572 | WRITE(*,*) "routing_highres_initialize : Update stream_tcst ", stream_tcst_orig, stream_tcst |
---|
573 | stream_tcst_orig = stream_tcst |
---|
574 | ENDIF |
---|
575 | IF ( dt_routing > maxtimestep/stream_tcst_orig*stream_tcst ) THEN |
---|
576 | WRITE(*,*) "routing_highres_initialize : Chosen time step : ", dt_routing |
---|
577 | WRITE(*,*) "routing_highres_initialize : Recommended time step : ", maxtimestep/stream_tcst_orig*stream_tcst |
---|
578 | CALL ipslerr_p(2,'routing_highres_initialize','The chosen time step is larger than the value recommended','in the graph file.','') |
---|
579 | ENDIF |
---|
580 | ! |
---|
581 | ! |
---|
582 | ! |
---|
583 | IF (dofloodoverflow) THEN |
---|
584 | CALL routing_hr_inflows(nbp_glo, nbasmax, inflows, floodplains_glo,route_innum_glo,route_ingrid_glo,route_inbasin_glo) |
---|
585 | END IF |
---|
586 | |
---|
587 | !! Create a mask containing all possible coastal gridcells and count total number of coastal gridcells |
---|
588 | IF (is_root_prc) THEN |
---|
589 | mask_coast_glo(:)=0 |
---|
590 | DO ib=1,nbasmax |
---|
591 | DO ig=1,nbp_glo |
---|
592 | rtg = route_togrid_glo(ig,ib) |
---|
593 | rtb = route_tobasin_glo(ig,ib) |
---|
594 | ! Coastal gridcells are stored in nbasmax+2 |
---|
595 | IF ( rtb == nbasmax+2) THEN |
---|
596 | mask_coast_glo(rtg) = 1 |
---|
597 | END IF |
---|
598 | END DO |
---|
599 | END DO |
---|
600 | nb_coast_gridcells=SUM(mask_coast_glo) |
---|
601 | IF (printlev>=3) WRITE(numout,*) 'Number of coastal gridcells = ', nb_coast_gridcells |
---|
602 | |
---|
603 | IF (nb_coast_gridcells == 0)THEN |
---|
604 | CALL ipslerr(3,'routing_highres_initialize',& |
---|
605 | 'Number of coastal gridcells is zero for routing. ', & |
---|
606 | 'If this is a global run, this is an error.',& |
---|
607 | 'If this is a regional run, please check to make sure your region includes a full basin or turn routing off.') |
---|
608 | ENDIF |
---|
609 | |
---|
610 | ENDIF |
---|
611 | CALL bcast(nb_coast_gridcells) |
---|
612 | |
---|
613 | ALLOCATE(mask_coast(nbpt), stat=ier) |
---|
614 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_inititalize','Pb in allocate for mask_coast','','') |
---|
615 | CALL scatter(mask_coast_glo, mask_coast) |
---|
616 | ! |
---|
617 | ! Do we have what we need if we want to do irrigation |
---|
618 | !! Initialisation of flags for irrigated land, flood plains and swamps |
---|
619 | ! |
---|
620 | init_irrig = .FALSE. |
---|
621 | IF ( do_irrigation ) THEN |
---|
622 | IF (COUNT(irrigated .GE. undef_sechiba-1) > 0) init_irrig = .TRUE. |
---|
623 | END IF |
---|
624 | |
---|
625 | init_flood = .FALSE. |
---|
626 | IF ( do_floodplains ) THEN |
---|
627 | IF (COUNT(floodplains .GE. undef_sechiba-1) > 0) init_flood = .TRUE. |
---|
628 | END IF |
---|
629 | |
---|
630 | init_swamp = .FALSE. |
---|
631 | IF ( doswamps ) THEN |
---|
632 | IF (COUNT(swamp .GE. undef_sechiba-1) > 0 ) init_swamp = .TRUE. |
---|
633 | END IF |
---|
634 | |
---|
635 | !! If we have irrigated land, flood plains or swamps then we need to interpolate the 0.5 degree |
---|
636 | !! base data set to the resolution of the model. |
---|
637 | |
---|
638 | !IF ( init_irrig .OR. init_flood .OR. init_swamp ) THEN |
---|
639 | ! CALL routing_hr_irrigmap(nbpt, index, lalo, neighbours, resolution, & |
---|
640 | ! contfrac, init_irrig, irrigated, init_flood, floodplains, init_swamp, swamp, hist_id, hist2_id) |
---|
641 | !ENDIF |
---|
642 | |
---|
643 | IF (printlev >= 5) WRITE(numout,*) 'End of routing_highres_initialize' |
---|
644 | |
---|
645 | !! Define XIOS axis size needed for the model output |
---|
646 | !CALL xios_orchidee_addaxis("nbhtu", nbasmax, (/(REAL(ib,r_std),ib=1,nbasmax)/)) |
---|
647 | !CALL xios_orchidee_addaxis("nbasmon", nbasmon, (/(REAL(ib,r_std),ib=1,nbasmon)/)) |
---|
648 | |
---|
649 | END SUBROUTINE routing_highres_initialize |
---|
650 | |
---|
651 | !! ============================================================================================================================= |
---|
652 | !! SUBROUTINE: routing_highres_xios_initialize |
---|
653 | !! |
---|
654 | !>\BRIEF Initialize xios dependant defintion before closing context defintion |
---|
655 | !! |
---|
656 | !! DESCRIPTION: Initialize xios dependant defintion before closing context defintion. |
---|
657 | !! This subroutine is called before the xios context is closed. |
---|
658 | !! |
---|
659 | !! RECENT CHANGE(S): None |
---|
660 | !! |
---|
661 | !! REFERENCE(S): None |
---|
662 | !! |
---|
663 | !! FLOWCHART: None |
---|
664 | !! \n |
---|
665 | !_ ============================================================================================================================== |
---|
666 | |
---|
667 | SUBROUTINE routing_highres_xios_initialize |
---|
668 | USE xios |
---|
669 | IMPLICIT NONE |
---|
670 | |
---|
671 | INTEGER(i_std) ::ib |
---|
672 | |
---|
673 | ! |
---|
674 | ! If the routing_graph file is available we will extract the information in the dimensions |
---|
675 | ! and parameters. |
---|
676 | ! |
---|
677 | !Config Key = ROUTING_FILE |
---|
678 | !Config Desc = Name of file which contains the routing information graph on the model grid |
---|
679 | !Config If = RIVER_ROUTING |
---|
680 | !Config Def = routing.nc |
---|
681 | !Config Help = The file provided here should allows to route the water from one HTU |
---|
682 | !Config to another. The RoutingPP code needs to be used in order to generate |
---|
683 | !Config the routing graph for the model grid. |
---|
684 | !Config More details on : https://gitlab.in2p3.fr/ipsl/lmd/intro/routingpp |
---|
685 | !Config Units = [FILE] |
---|
686 | ! |
---|
687 | graphfilename = 'routing_graph.nc' |
---|
688 | CALL getin('ROUTING_FILE',graphfilename) |
---|
689 | CALL routing_hr_graphinfo(graphfilename, nbasmax, inflows, nbasmon, undef_graphfile, stream_tcst, fast_tcst, slow_tcst, & |
---|
690 | & flood_tcst, swamp_cst, lim_floodcri) |
---|
691 | |
---|
692 | CALL xios_orchidee_addaxis("nbhtu", nbasmax, (/(REAL(ib,r_std),ib=1,nbasmax)/)) |
---|
693 | CALL xios_orchidee_addaxis("nbasmon", nbasmon, (/(REAL(ib,r_std),ib=1,nbasmon)/)) |
---|
694 | |
---|
695 | END SUBROUTINE routing_highres_xios_initialize |
---|
696 | |
---|
697 | !! ================================================================================================================================ |
---|
698 | !! SUBROUTINE : routing_highres_main |
---|
699 | !! |
---|
700 | !>\BRIEF This module routes the water over the continents (runoff and |
---|
701 | !! drainage produced by the hydrol module) into the oceans. |
---|
702 | !! |
---|
703 | !! DESCRIPTION (definitions, functional, design, flags): |
---|
704 | !! The routing scheme (Polcher, 2003) carries the water from the runoff and drainage simulated by SECHIBA |
---|
705 | !! to the ocean through reservoirs, with some delay. The routing scheme is based on |
---|
706 | !! a parametrization of the water flow on a global scale (Miller et al., 1994; Hagemann |
---|
707 | !! and Dumenil, 1998). Given the global map of the main watersheds (Oki et al., 1999; |
---|
708 | !! Fekete et al., 1999; Vorosmarty et al., 2000) which delineates the boundaries of subbasins |
---|
709 | !! and gives the eight possible directions of water flow within the pixel, the surface |
---|
710 | !! runoff and the deep drainage are routed to the ocean. The time-step of the routing is one day. |
---|
711 | !! The scheme also diagnoses how much water is retained in the foodplains and thus return to soil |
---|
712 | !! moisture or is taken out of the rivers for irrigation. \n |
---|
713 | !! |
---|
714 | !! RECENT CHANGE(S): None |
---|
715 | !! |
---|
716 | !! MAIN OUTPUT VARIABLE(S): |
---|
717 | !! The result of the routing are 3 fluxes : |
---|
718 | !! - riverflow : The water which flows out from the major rivers. The flux will be located |
---|
719 | !! on the continental grid but this should be a coastal point. |
---|
720 | !! - coastalflow : This is the water which flows in a disperse way into the ocean. Essentially these |
---|
721 | !! are the outflows from all of the small rivers. |
---|
722 | !! - returnflow : This is the water which flows into a land-point - typically rivers which end in |
---|
723 | !! the desert. This water will go back into the hydrol module to allow re-evaporation. |
---|
724 | !! - irrigation : This is water taken from the reservoir and is being put into the upper |
---|
725 | !! layers of the soil. |
---|
726 | !! The two first fluxes are in kg/dt and the last two fluxes are in kg/(m^2dt).\n |
---|
727 | !! |
---|
728 | !! REFERENCE(S) : |
---|
729 | !! - Miller JR, Russell GL, Caliri G (1994) |
---|
730 | !! Continental-scale river flow in climate models. |
---|
731 | !! J. Clim., 7:914-928 |
---|
732 | !! - Hagemann S and Dumenil L. (1998) |
---|
733 | !! A parametrization of the lateral waterflow for the global scale. |
---|
734 | !! Clim. Dyn., 14:17-31 |
---|
735 | !! - Oki, T., T. Nishimura, and P. Dirmeyer (1999) |
---|
736 | !! Assessment of annual runoff from land surface models using total runoff integrating pathways (TRIP) |
---|
737 | !! J. Meteorol. Soc. Jpn., 77, 235-255 |
---|
738 | !! - Fekete BM, Charles V, Grabs W (2000) |
---|
739 | !! Global, composite runoff fields based on observed river discharge and simulated water balances. |
---|
740 | !! Technical report, UNH/GRDC, Global Runoff Data Centre, Koblenz |
---|
741 | !! - Vorosmarty, C., B. Fekete, B. Meybeck, and R. Lammers (2000) |
---|
742 | !! Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages |
---|
743 | !! Global Biogeochem. Cycles, 14, 599-621 |
---|
744 | !! - Vivant, A-C. (?? 2002) |
---|
745 | !! Développement du schéma de routage et des plaines d'inondation, MSc Thesis, Paris VI University |
---|
746 | !! - J. Polcher (2003) |
---|
747 | !! Les processus de surface a l'echelle globale et leurs interactions avec l'atmosphere |
---|
748 | !! Habilitation a diriger les recherches, Paris VI University, 67pp. |
---|
749 | !! |
---|
750 | !! FLOWCHART : |
---|
751 | !! \latexonly |
---|
752 | !! \includegraphics[scale=0.75]{routing_main_flowchart.png} |
---|
753 | !! \endlatexonly |
---|
754 | !! \n |
---|
755 | !_ ================================================================================================================================ |
---|
756 | |
---|
757 | SUBROUTINE routing_highres_main(kjit, nbpt, index, & |
---|
758 | & lalo, neighbours, resolution, contfrac, totfrac_nobio, veget_max, floodout, runoff, & |
---|
759 | & drainage, transpot, precip_rain, humrel, k_litt, flood_frac, flood_res, & |
---|
760 | & stempdiag, reinf_slope, returnflow, reinfiltration, irrigation, riverflow, coastalflow, rest_id, hist_id, hist2_id) |
---|
761 | |
---|
762 | IMPLICIT NONE |
---|
763 | |
---|
764 | !! 0.1 Input variables |
---|
765 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
766 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
767 | INTEGER(i_std),INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
768 | INTEGER(i_std),INTENT(in) :: hist_id !! Access to history file (unitless) |
---|
769 | INTEGER(i_std),INTENT(in) :: hist2_id !! Access to history file 2 (unitless) |
---|
770 | INTEGER(i_std), INTENT(in) :: index(nbpt) !! Indices of the points on the map (unitless) |
---|
771 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
772 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb) !! Vector of neighbours for each grid point (1=N, 2=NE, 3=E, 4=SE, 5=S, 6=SW, 7=W, 8=NW) (unitless) |
---|
773 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
774 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
775 | REAL(r_std), INTENT(in) :: totfrac_nobio(nbpt) !! Total fraction of no-vegetation (continental ice, lakes ...) (unitless;0-1) |
---|
776 | REAL(r_std), INTENT(in) :: veget_max(nbpt,nvm) !! Maximal fraction of vegetation (unitless;0-1) |
---|
777 | REAL(r_std), INTENT(in) :: floodout(nbpt) !! Grid-point flow out of floodplains (kg/m^2/dt) |
---|
778 | REAL(r_std), INTENT(in) :: runoff(nbpt) !! Grid-point runoff (kg/m^2/dt) |
---|
779 | REAL(r_std), INTENT(in) :: drainage(nbpt) !! Grid-point drainage (kg/m^2/dt) |
---|
780 | REAL(r_std), INTENT(in) :: transpot(nbpt,nvm) !! Potential transpiration of the vegetation (kg/m^2/dt) |
---|
781 | REAL(r_std), INTENT(in) :: precip_rain(nbpt) !! Rainfall (kg/m^2/dt) |
---|
782 | REAL(r_std), INTENT(in) :: k_litt(nbpt) !! Averaged conductivity for saturated infiltration in the 'litter' layer (kg/m^2/dt) |
---|
783 | REAL(r_std), INTENT(in) :: humrel(nbpt,nvm) !! Soil moisture stress, root extraction potential (unitless) |
---|
784 | REAL(r_std), INTENT(in) :: stempdiag(nbpt,nslm) !! Diagnostic soil temperature profile |
---|
785 | REAL(r_std), INTENT(in) :: reinf_slope(nbpt) !! Coefficient which determines the reinfiltration ratio in the grid box due to flat areas (unitless;0-1) |
---|
786 | |
---|
787 | !! 0.2 Output variables |
---|
788 | REAL(r_std), INTENT(out) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns to the grid box. |
---|
789 | !! This water will go back into the hydrol module to allow re-evaporation (kg/m^2/dt) |
---|
790 | REAL(r_std), INTENT(out) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
791 | REAL(r_std), INTENT(out) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
792 | REAL(r_std), INTENT(out) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
793 | REAL(r_std), INTENT(out) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
794 | REAL(r_std), INTENT(out) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
795 | REAL(r_std), INTENT(out) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
796 | |
---|
797 | !! 0.3 Local variables |
---|
798 | REAL(r_std), DIMENSION(nbpt) :: return_lakes !! Water from lakes flowing back into soil moisture (kg/m^2/dt) |
---|
799 | |
---|
800 | INTEGER(i_std) :: ig, jv !! Indices (unitless) |
---|
801 | REAL(r_std), DIMENSION(nbpt) :: tot_vegfrac_nowoody !! Total fraction occupied by grass (0-1,unitless) |
---|
802 | |
---|
803 | REAL(r_std), DIMENSION(nbpt) :: fast_diag_old !! Reservoir in the beginning of the time step |
---|
804 | REAL(r_std), DIMENSION(nbpt) :: slow_diag_old !! Reservoir in the beginning of the time step |
---|
805 | REAL(r_std), DIMENSION(nbpt) :: stream_diag_old !! Reservoir in the beginning of the time step |
---|
806 | REAL(r_std), DIMENSION(nbpt) :: lake_diag_old !! Reservoir in the beginning of the time step |
---|
807 | REAL(r_std), DIMENSION(nbpt) :: pond_diag_old !! Reservoir in the beginning of the time step |
---|
808 | REAL(r_std), DIMENSION(nbpt) :: flood_diag_old !! Reservoir in the beginning of the time step |
---|
809 | |
---|
810 | !! For water budget check in the three routing reservoirs (positive if input > output) |
---|
811 | !! Net fluxes averaged over each grid cell in kg/m^2/dt |
---|
812 | REAL(r_std), DIMENSION(nbpt) :: netflow_stream_diag !! Input - Output flow to stream reservoir |
---|
813 | REAL(r_std), DIMENSION(nbpt) :: netflow_fast_diag !! Input - Output flow to fast reservoir |
---|
814 | REAL(r_std), DIMENSION(nbpt) :: netflow_slow_diag !! Input - Output flow to slow reservoir |
---|
815 | ! |
---|
816 | REAL(r_std), DIMENSION(nbpt,nbasmax) :: stemp_total_tend, stemp_advec_tend, stemp_relax_tend |
---|
817 | ! |
---|
818 | LOGICAL, SAVE :: xios_sendonce=.TRUE. |
---|
819 | ! |
---|
820 | !_ ================================================================================================================================ |
---|
821 | |
---|
822 | ! Save reservoirs in beginning of time step to calculate the water budget |
---|
823 | fast_diag_old = fast_diag |
---|
824 | slow_diag_old = slow_diag |
---|
825 | stream_diag_old = stream_diag |
---|
826 | lake_diag_old = lake_diag |
---|
827 | pond_diag_old = pond_diag |
---|
828 | flood_diag_old = flood_diag |
---|
829 | |
---|
830 | ! |
---|
831 | !! Computes the variables averaged between routing time steps and which will be used in subsequent calculations |
---|
832 | ! |
---|
833 | floodout_mean(:) = floodout_mean(:) + floodout(:) |
---|
834 | runoff_mean(:) = runoff_mean(:) + runoff(:) |
---|
835 | drainage_mean(:) = drainage_mean(:) + drainage(:) |
---|
836 | floodtemp(:) = stempdiag(:,floodtemp_lev) |
---|
837 | precip_mean(:) = precip_mean(:) + precip_rain(:) |
---|
838 | ! |
---|
839 | !! Computes the total fraction occupied by the grasses and the crops for each grid cell |
---|
840 | tot_vegfrac_nowoody(:) = zero |
---|
841 | DO jv = 1, nvm |
---|
842 | IF ( (jv /= ibare_sechiba) .AND. .NOT.(is_tree(jv)) ) THEN |
---|
843 | tot_vegfrac_nowoody(:) = tot_vegfrac_nowoody(:) + veget_max(:,jv) |
---|
844 | END IF |
---|
845 | END DO |
---|
846 | |
---|
847 | DO ig = 1, nbpt |
---|
848 | IF ( tot_vegfrac_nowoody(ig) .GT. min_sechiba ) THEN |
---|
849 | DO jv = 1,nvm |
---|
850 | IF ( (jv /= ibare_sechiba) .AND. .NOT.(is_tree(jv)) ) THEN |
---|
851 | transpot_mean(ig) = transpot_mean(ig) + transpot(ig,jv) * veget_max(ig,jv)/tot_vegfrac_nowoody(ig) |
---|
852 | END IF |
---|
853 | END DO |
---|
854 | ELSE |
---|
855 | IF (MAXVAL(veget_max(ig,2:nvm)) .GT. min_sechiba) THEN |
---|
856 | DO jv = 2, nvm |
---|
857 | transpot_mean(ig) = transpot_mean(ig) + transpot(ig,jv) * veget_max(ig,jv)/ SUM(veget_max(ig,2:nvm)) |
---|
858 | ENDDO |
---|
859 | ENDIF |
---|
860 | ENDIF |
---|
861 | ENDDO |
---|
862 | |
---|
863 | ! |
---|
864 | ! Averaged variables (i.e. *dt_sechiba/dt_routing). This accounts for the difference between the shorter |
---|
865 | ! timestep dt_sechiba of other parts of the model and the long dt_routing timestep (set to one day at present) |
---|
866 | ! |
---|
867 | totnobio_mean(:) = totnobio_mean(:) + totfrac_nobio(:)*dt_sechiba/dt_routing |
---|
868 | k_litt_mean(:) = k_litt_mean(:) + k_litt(:)*dt_sechiba/dt_routing |
---|
869 | stempdiag_mean(:,:) = stempdiag_mean(:,:) + stempdiag(:,:)*dt_sechiba/dt_routing |
---|
870 | ! |
---|
871 | ! Only potentially vegetated surfaces are taken into account. At the start of |
---|
872 | ! the growing seasons we will give more weight to these areas. |
---|
873 | ! |
---|
874 | DO jv=2,nvm |
---|
875 | DO ig=1,nbpt |
---|
876 | humrel_mean(ig) = humrel_mean(ig) + humrel(ig,jv)*veget_max(ig,jv)*dt_sechiba/dt_routing |
---|
877 | vegtot_mean(ig) = vegtot_mean(ig) + veget_max(ig,jv)*dt_sechiba/dt_routing |
---|
878 | ENDDO |
---|
879 | ENDDO |
---|
880 | ! |
---|
881 | time_counter = time_counter + dt_sechiba |
---|
882 | ! |
---|
883 | ! If the time has come we do the routing. |
---|
884 | ! |
---|
885 | IF ( NINT(time_counter) .GE. NINT(dt_routing) ) THEN |
---|
886 | ! |
---|
887 | !! Computes the transport of water in the various reservoirs |
---|
888 | ! |
---|
889 | CALL routing_hr_flow(nbpt, dt_routing, lalo, floodout_mean, runoff_mean, drainage_mean, & |
---|
890 | & vegtot_mean, totnobio_mean, transpot_mean, precip_mean, humrel_mean, k_litt_mean, floodtemp, & |
---|
891 | & stempdiag_mean, reinf_slope, lakeinflow_mean, returnflow_mean, reinfiltration_mean, & |
---|
892 | & irrigation_mean, riverflow_mean, coastalflow_mean, hydrographs, slowflow_diag, flood_frac, & |
---|
893 | & flood_res, netflow_stream_diag, netflow_fast_diag, netflow_slow_diag, & |
---|
894 | & stemp_total_tend, stemp_advec_tend, stemp_relax_tend) |
---|
895 | ! |
---|
896 | !! Responsible for storing the water in lakes |
---|
897 | ! |
---|
898 | CALL routing_hr_lake(nbpt, dt_routing, lakeinflow_mean, humrel_mean, return_lakes) |
---|
899 | ! |
---|
900 | returnflow_mean(:) = returnflow_mean(:) + return_lakes(:) |
---|
901 | |
---|
902 | time_counter = zero |
---|
903 | ! |
---|
904 | floodout_mean(:) = zero |
---|
905 | runoff_mean(:) = zero |
---|
906 | drainage_mean(:) = zero |
---|
907 | transpot_mean(:) = zero |
---|
908 | precip_mean(:) = zero |
---|
909 | ! |
---|
910 | humrel_mean(:) = zero |
---|
911 | totnobio_mean(:) = zero |
---|
912 | k_litt_mean(:) = zero |
---|
913 | stempdiag_mean(:,:) = zero |
---|
914 | vegtot_mean(:) = zero |
---|
915 | |
---|
916 | ! Change the units of the routing fluxes from kg/dt_routing into kg/dt_sechiba |
---|
917 | hydrographs(:) = hydrographs(:)/dt_routing*dt_sechiba |
---|
918 | HTUhgmon(:,:) = HTUhgmon(:,:)/dt_routing*dt_sechiba |
---|
919 | slowflow_diag(:) = slowflow_diag(:)/dt_routing*dt_sechiba |
---|
920 | |
---|
921 | ! Change the units of the routing fluxes from kg/m^2/dt_routing into kg/m^2/dt_sechiba |
---|
922 | returnflow_mean(:) = returnflow_mean(:)/dt_routing*dt_sechiba |
---|
923 | reinfiltration_mean(:) = reinfiltration_mean(:)/dt_routing*dt_sechiba |
---|
924 | irrigation_mean(:) = irrigation_mean(:)/dt_routing*dt_sechiba |
---|
925 | irrig_netereq(:) = irrig_netereq(:)/dt_routing*dt_sechiba |
---|
926 | |
---|
927 | ! Change units as above but at the same time transform the kg/dt_routing to m^3/dt_sechiba |
---|
928 | riverflow_mean(:) = riverflow_mean(:)/dt_routing*dt_sechiba/mille |
---|
929 | coastalflow_mean(:) = coastalflow_mean(:)/dt_routing*dt_sechiba/mille |
---|
930 | |
---|
931 | ! Water budget residu of the three routing reservoirs (in kg/m^2/s) |
---|
932 | ! Note that these diagnostics are done using local variables only calculated |
---|
933 | ! during the time steps when the routing is calculated |
---|
934 | CALL xios_orchidee_send_field("wbr_stream",(stream_diag - stream_diag_old - netflow_stream_diag)/dt_routing) |
---|
935 | CALL xios_orchidee_send_field("wbr_fast", (fast_diag - fast_diag_old - netflow_fast_diag)/dt_routing) |
---|
936 | CALL xios_orchidee_send_field("wbr_slow", (slow_diag - slow_diag_old - netflow_slow_diag)/dt_routing) |
---|
937 | CALL xios_orchidee_send_field("wbr_lake", (lake_diag - lake_diag_old - & |
---|
938 | lakeinflow_mean + return_lakes)/dt_routing) |
---|
939 | IF ( do_rivertemp ) THEN |
---|
940 | CALL xios_orchidee_send_field("StreamT_TotTend", stemp_total_tend) |
---|
941 | CALL xios_orchidee_send_field("StreamT_AdvTend", stemp_advec_tend) |
---|
942 | CALL xios_orchidee_send_field("StreamT_RelTend", stemp_relax_tend) |
---|
943 | ENDIF |
---|
944 | ENDIF |
---|
945 | |
---|
946 | ! |
---|
947 | ! Return the fraction of routed water for this time step. |
---|
948 | ! |
---|
949 | returnflow(:) = returnflow_mean(:) |
---|
950 | reinfiltration(:) = reinfiltration_mean(:) |
---|
951 | irrigation(:) = irrigation_mean(:) |
---|
952 | riverflow(:) = riverflow_mean(:) |
---|
953 | coastalflow(:) = coastalflow_mean(:) |
---|
954 | |
---|
955 | ! |
---|
956 | ! Write diagnostics |
---|
957 | ! |
---|
958 | IF ( xios_sendonce ) THEN |
---|
959 | ! |
---|
960 | CALL xios_orchidee_send_field("mask_coast",mask_coast) |
---|
961 | |
---|
962 | IF ( do_irrigation ) THEN |
---|
963 | CALL xios_orchidee_send_field("irrigmap",irrigated) |
---|
964 | ENDIF |
---|
965 | |
---|
966 | IF ( do_floodplains ) THEN |
---|
967 | !! May be improved by performing the operation with XIOS |
---|
968 | floodmap(:) = 0.0 |
---|
969 | DO ig=1,nbpt |
---|
970 | floodmap(ig) = SUM(floodplains(ig,:)) / (area(ig)*contfrac(ig)) |
---|
971 | END DO |
---|
972 | CALL xios_orchidee_send_field("floodmap",floodmap) |
---|
973 | ENDIF |
---|
974 | |
---|
975 | IF ( doswamps ) THEN |
---|
976 | CALL xios_orchidee_send_field("swampmap",swamp) |
---|
977 | ENDIF |
---|
978 | |
---|
979 | xios_sendonce=.FALSE. |
---|
980 | ENDIF |
---|
981 | ! |
---|
982 | ! Water storage in reservoirs [kg/m^2] |
---|
983 | CALL xios_orchidee_send_field("fastr",fast_diag) |
---|
984 | CALL xios_orchidee_send_field("slowr",slow_diag) |
---|
985 | CALL xios_orchidee_send_field("streamr",stream_diag) |
---|
986 | CALL xios_orchidee_send_field("laker",lake_diag) |
---|
987 | CALL xios_orchidee_send_field("pondr",pond_diag) |
---|
988 | CALL xios_orchidee_send_field("floodr",flood_diag) |
---|
989 | CALL xios_orchidee_send_field("floodh",flood_height) |
---|
990 | |
---|
991 | ! FLOODPLAINS |
---|
992 | CALL xios_orchidee_send_field("flood_frac",flood_frac) |
---|
993 | |
---|
994 | ! Difference between the end and the beginning of the routing time step [kg/m^2] |
---|
995 | CALL xios_orchidee_send_field("delfastr", fast_diag - fast_diag_old) |
---|
996 | CALL xios_orchidee_send_field("delslowr", slow_diag - slow_diag_old) |
---|
997 | CALL xios_orchidee_send_field("delstreamr", stream_diag - stream_diag_old) |
---|
998 | CALL xios_orchidee_send_field("dellaker", lake_diag - lake_diag_old) |
---|
999 | CALL xios_orchidee_send_field("delpondr", pond_diag - pond_diag_old) |
---|
1000 | CALL xios_orchidee_send_field("delfloodr", flood_diag - flood_diag_old) |
---|
1001 | |
---|
1002 | ! Water fluxes converted from kg/m^2/dt_sechiba into kg/m^2/s |
---|
1003 | CALL xios_orchidee_send_field("irrigation",irrigation/dt_sechiba) |
---|
1004 | CALL xios_orchidee_send_field("netirrig",irrig_netereq/dt_sechiba) |
---|
1005 | CALL xios_orchidee_send_field("riversret",returnflow/dt_sechiba) |
---|
1006 | CALL xios_orchidee_send_field("reinfiltration",reinfiltration/dt_sechiba) |
---|
1007 | |
---|
1008 | ! Transform from kg/dt_sechiba into m^3/s |
---|
1009 | CALL xios_orchidee_send_field("hydrographs",hydrographs/mille/dt_sechiba) |
---|
1010 | CALL xios_orchidee_send_field("htuhgmon",HTUhgmon/mille/dt_sechiba) |
---|
1011 | IF ( do_rivertemp ) THEN |
---|
1012 | CALL xios_orchidee_send_field("htutempmon",HTUtempmon) |
---|
1013 | CALL xios_orchidee_send_field("hydrotemp", hydrotemp) |
---|
1014 | CALL xios_orchidee_send_field("streamlimit", streamlimit) |
---|
1015 | ENDIF |
---|
1016 | CALL xios_orchidee_send_field("slowflow",slowflow_diag/mille/dt_sechiba) ! previous id name: Qb |
---|
1017 | CALL xios_orchidee_send_field("coastalflow",coastalflow/dt_sechiba) |
---|
1018 | CALL xios_orchidee_send_field("riverflow",riverflow/dt_sechiba) |
---|
1019 | |
---|
1020 | IF ( .NOT. xios_orchidee_ok) THEN |
---|
1021 | IF ( .NOT. almaoutput ) THEN |
---|
1022 | ! |
---|
1023 | CALL histwrite_p(hist_id, 'riversret', kjit, returnflow, nbpt, index) |
---|
1024 | IF (do_floodplains .OR. doponds) THEN |
---|
1025 | CALL histwrite_p(hist_id, 'reinfiltration', kjit, reinfiltration, nbpt, index) |
---|
1026 | ENDIF |
---|
1027 | CALL histwrite_p(hist_id, 'hydrographs', kjit, hydrographs/mille, nbpt, index) |
---|
1028 | ! |
---|
1029 | CALL histwrite_p(hist_id, 'fastr', kjit, fast_diag, nbpt, index) |
---|
1030 | CALL histwrite_p(hist_id, 'slowr', kjit, slow_diag, nbpt, index) |
---|
1031 | CALL histwrite_p(hist_id, 'streamr', kjit, stream_diag, nbpt, index) |
---|
1032 | IF ( do_floodplains ) THEN |
---|
1033 | CALL histwrite_p(hist_id, 'floodr', kjit, flood_diag, nbpt, index) |
---|
1034 | CALL histwrite_p(hist_id, 'floodh', kjit, flood_height, nbpt, index) |
---|
1035 | ENDIF |
---|
1036 | CALL histwrite_p(hist_id, 'pondr', kjit, pond_diag, nbpt, index) |
---|
1037 | CALL histwrite_p(hist_id, 'lakevol', kjit, lake_diag, nbpt, index) |
---|
1038 | ! |
---|
1039 | IF ( do_irrigation ) THEN |
---|
1040 | CALL histwrite_p(hist_id, 'irrigation', kjit, irrigation, nbpt, index) |
---|
1041 | CALL histwrite_p(hist_id, 'returnflow', kjit, returnflow, nbpt, index) |
---|
1042 | CALL histwrite_p(hist_id, 'netirrig', kjit, irrig_netereq, nbpt, index) |
---|
1043 | ENDIF |
---|
1044 | ! |
---|
1045 | ELSE |
---|
1046 | CALL histwrite_p(hist_id, 'SurfStor', kjit, flood_diag+pond_diag+lake_diag, nbpt, index) |
---|
1047 | CALL histwrite_p(hist_id, 'Dis', kjit, hydrographs/mille, nbpt, index) |
---|
1048 | ! |
---|
1049 | CALL histwrite_p(hist_id, 'slowr', kjit, slow_diag, nbpt, index) |
---|
1050 | CALL histwrite_p(hist_id, 'fastr', kjit, fast_diag, nbpt, index) |
---|
1051 | CALL histwrite_p(hist_id, 'streamr', kjit, stream_diag, nbpt, index) |
---|
1052 | CALL histwrite_p(hist_id, 'lakevol', kjit, lake_diag, nbpt, index) |
---|
1053 | CALL histwrite_p(hist_id, 'pondr', kjit, pond_diag, nbpt, index) |
---|
1054 | ! |
---|
1055 | IF ( do_irrigation ) THEN |
---|
1056 | CALL histwrite_p(hist_id, 'Qirrig', kjit, irrigation, nbpt, index) |
---|
1057 | CALL histwrite_p(hist_id, 'Qirrig_req', kjit, irrig_netereq, nbpt, index) |
---|
1058 | ENDIF |
---|
1059 | ! |
---|
1060 | ENDIF |
---|
1061 | IF ( hist2_id > 0 ) THEN |
---|
1062 | IF ( .NOT. almaoutput) THEN |
---|
1063 | ! |
---|
1064 | CALL histwrite_p(hist2_id, 'riversret', kjit, returnflow, nbpt, index) |
---|
1065 | IF (do_floodplains .OR. doponds) THEN |
---|
1066 | CALL histwrite_p(hist2_id, 'reinfiltration', kjit, reinfiltration, nbpt, index) |
---|
1067 | ENDIF |
---|
1068 | CALL histwrite_p(hist2_id, 'hydrographs', kjit, hydrographs/mille, nbpt, index) |
---|
1069 | ! |
---|
1070 | CALL histwrite_p(hist2_id, 'fastr', kjit, fast_diag, nbpt, index) |
---|
1071 | CALL histwrite_p(hist2_id, 'slowr', kjit, slow_diag, nbpt, index) |
---|
1072 | IF ( do_floodplains ) THEN |
---|
1073 | CALL histwrite_p(hist2_id, 'floodr', kjit, flood_diag, nbpt, index) |
---|
1074 | CALL histwrite_p(hist2_id, 'floodh', kjit, flood_height, nbpt, index) |
---|
1075 | ENDIF |
---|
1076 | CALL histwrite_p(hist2_id, 'pondr', kjit, pond_diag, nbpt, index) |
---|
1077 | CALL histwrite_p(hist2_id, 'streamr', kjit, stream_diag, nbpt, index) |
---|
1078 | CALL histwrite_p(hist2_id, 'lakevol', kjit, lake_diag, nbpt, index) |
---|
1079 | ! |
---|
1080 | IF ( do_irrigation ) THEN |
---|
1081 | CALL histwrite_p(hist2_id, 'irrigation', kjit, irrigation, nbpt, index) |
---|
1082 | CALL histwrite_p(hist2_id, 'returnflow', kjit, returnflow, nbpt, index) |
---|
1083 | CALL histwrite_p(hist2_id, 'netirrig', kjit, irrig_netereq, nbpt, index) |
---|
1084 | ENDIF |
---|
1085 | ! |
---|
1086 | ELSE |
---|
1087 | ! |
---|
1088 | CALL histwrite_p(hist2_id, 'SurfStor', kjit, flood_diag+pond_diag+lake_diag, nbpt, index) |
---|
1089 | CALL histwrite_p(hist2_id, 'Dis', kjit, hydrographs/mille, nbpt, index) |
---|
1090 | ! |
---|
1091 | ENDIF |
---|
1092 | ENDIF |
---|
1093 | ENDIF |
---|
1094 | ! |
---|
1095 | ! |
---|
1096 | END SUBROUTINE routing_highres_main |
---|
1097 | |
---|
1098 | !! ============================================================================================================================= |
---|
1099 | !! SUBROUTINE: routing_highres_finalize |
---|
1100 | !! |
---|
1101 | !>\BRIEF Write to restart file |
---|
1102 | !! |
---|
1103 | !! DESCRIPTION: Write module variables to restart file |
---|
1104 | !! |
---|
1105 | !! RECENT CHANGE(S) |
---|
1106 | !! |
---|
1107 | !! REFERENCE(S) |
---|
1108 | !! |
---|
1109 | !! FLOWCHART |
---|
1110 | !! \n |
---|
1111 | !_ ============================================================================================================================== |
---|
1112 | |
---|
1113 | SUBROUTINE routing_highres_finalize( kjit, nbpt, rest_id, flood_frac, flood_res ) |
---|
1114 | |
---|
1115 | IMPLICIT NONE |
---|
1116 | |
---|
1117 | !! 0.1 Input variables |
---|
1118 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
1119 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
1120 | INTEGER(i_std),INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
1121 | REAL(r_std), INTENT(in) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
1122 | REAL(r_std), INTENT(in) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
1123 | |
---|
1124 | !! 0.2 Local variables |
---|
1125 | |
---|
1126 | !_ ================================================================================================================================ |
---|
1127 | |
---|
1128 | ! |
---|
1129 | ! Write restart variables |
---|
1130 | ! |
---|
1131 | CALL restput_p (rest_id, 'routingcounter', kjit, time_counter) |
---|
1132 | |
---|
1133 | CALL restput_p (rest_id, 'streamtcst', kjit, stream_tcst) |
---|
1134 | CALL restput_p (rest_id, 'slowtcst', kjit, slow_tcst) |
---|
1135 | CALL restput_p (rest_id, 'fasttcst', kjit, fast_tcst) |
---|
1136 | CALL restput_p (rest_id, 'floodtcst', kjit, flood_tcst) |
---|
1137 | CALL restput_p (rest_id, 'swampcst', kjit, swamp_cst) |
---|
1138 | |
---|
1139 | CALL restput_p (rest_id, 'lim_floodcri', kjit, lim_floodcri) |
---|
1140 | |
---|
1141 | CALL restput_p (rest_id, 'nbasmax', kjit, nbasmax) |
---|
1142 | CALL restput_p (rest_id, 'nbasmon', kjit, nbasmon) |
---|
1143 | CALL restput_p (rest_id, 'inflows', kjit, inflows) |
---|
1144 | |
---|
1145 | CALL restput_p (rest_id, 'routingarea', nbp_glo, nbasmax, 1, kjit, routing_area, 'scatter', nbp_glo, index_g) |
---|
1146 | CALL restput_p (rest_id, 'routetogrid', nbp_glo, nbasmax, 1, kjit, REAL(route_togrid,r_std), 'scatter', & |
---|
1147 | nbp_glo, index_g) |
---|
1148 | CALL restput_p (rest_id, 'routetobasin', nbp_glo, nbasmax, 1, kjit, REAL(route_tobasin,r_std), 'scatter', & |
---|
1149 | nbp_glo, index_g) |
---|
1150 | CALL restput_p (rest_id, 'routenbintobas', nbp_glo, nbasmax, 1, kjit, REAL(route_nbintobas,r_std), 'scatter', & |
---|
1151 | nbp_glo, index_g) |
---|
1152 | CALL restput_p (rest_id, 'basinid', nbp_glo, nbasmax, 1, kjit, REAL(global_basinid,r_std), 'scatter', & |
---|
1153 | nbp_glo, index_g) |
---|
1154 | CALL restput_p (rest_id, 'topoindex', nbp_glo, nbasmax, 1, kjit, topo_resid, 'scatter', nbp_glo, index_g) |
---|
1155 | CALL restput_p (rest_id, 'topoindex_stream', nbp_glo, nbasmax, 1, kjit, stream_resid, 'scatter', nbp_glo, index_g) |
---|
1156 | CALL restput_p (rest_id, 'fastres', nbp_glo, nbasmax, 1, kjit, fast_reservoir, 'scatter', nbp_glo, index_g) |
---|
1157 | CALL restput_p (rest_id, 'slowres', nbp_glo, nbasmax, 1, kjit, slow_reservoir, 'scatter', nbp_glo, index_g) |
---|
1158 | CALL restput_p (rest_id, 'streamres', nbp_glo, nbasmax, 1, kjit, stream_reservoir, 'scatter',nbp_glo,index_g) |
---|
1159 | CALL restput_p (rest_id, 'floodres', nbp_glo, nbasmax, 1, kjit, flood_reservoir, 'scatter', nbp_glo, index_g) |
---|
1160 | CALL restput_p (rest_id, 'floodh', nbp_glo, nbasmax, 1, kjit, flood_height, 'scatter', nbp_glo, index_g) |
---|
1161 | CALL restput_p (rest_id, 'flood_frac_bas', nbp_glo, nbasmax, 1, kjit, flood_frac_bas, 'scatter', nbp_glo, index_g) |
---|
1162 | CALL restput_p (rest_id, 'pond_frac', nbp_glo, 1, 1, kjit, pond_frac, 'scatter', nbp_glo, index_g) |
---|
1163 | CALL restput_p (rest_id, 'flood_frac', nbp_glo, 1, 1, kjit, flood_frac, 'scatter', nbp_glo, index_g) |
---|
1164 | CALL restput_p (rest_id, 'flood_res', nbp_glo, 1, 1, kjit, flood_res, 'scatter', nbp_glo, index_g) |
---|
1165 | |
---|
1166 | IF ( do_rivertemp ) THEN |
---|
1167 | CALL restput_p (rest_id, 'fasttemp', nbp_glo, nbasmax, 1, kjit, fast_temp, 'scatter', nbp_glo, index_g) |
---|
1168 | CALL restput_p (rest_id, 'slowtemp', nbp_glo, nbasmax, 1, kjit, slow_temp, 'scatter', nbp_glo, index_g) |
---|
1169 | CALL restput_p (rest_id, 'streamtemp', nbp_glo, nbasmax, 1, kjit, stream_temp, 'scatter',nbp_glo,index_g) |
---|
1170 | ENDIF |
---|
1171 | |
---|
1172 | |
---|
1173 | CALL restput_p (rest_id, 'lakeres', nbp_glo, 1, 1, kjit, lake_reservoir, 'scatter', nbp_glo, index_g) |
---|
1174 | CALL restput_p (rest_id, 'pondres', nbp_glo, 1, 1, kjit, pond_reservoir, 'scatter', nbp_glo, index_g) |
---|
1175 | |
---|
1176 | CALL restput_p (rest_id, 'lakeinflow', nbp_glo, 1, 1, kjit, lakeinflow_mean, 'scatter', nbp_glo, index_g) |
---|
1177 | CALL restput_p (rest_id, 'returnflow', nbp_glo, 1, 1, kjit, returnflow_mean, 'scatter', nbp_glo, index_g) |
---|
1178 | CALL restput_p (rest_id, 'reinfiltration', nbp_glo, 1, 1, kjit, reinfiltration_mean, 'scatter', nbp_glo, index_g) |
---|
1179 | CALL restput_p (rest_id, 'riverflow', nbp_glo, 1, 1, kjit, riverflow_mean, 'scatter', nbp_glo, index_g) |
---|
1180 | CALL restput_p (rest_id, 'coastalflow', nbp_glo, 1, 1, kjit, coastalflow_mean, 'scatter', nbp_glo, index_g) |
---|
1181 | CALL restput_p (rest_id, 'hydrographs', nbp_glo, 1, 1, kjit, hydrographs, 'scatter', nbp_glo, index_g) |
---|
1182 | CALL restput_p (rest_id, 'htuhgmon', nbp_glo, nbasmon, 1, kjit, HTUhgmon, 'scatter', nbp_glo, index_g) |
---|
1183 | CALL restput_p (rest_id, 'slowflow_diag', nbp_glo, 1, 1, kjit, slowflow_diag, 'scatter', nbp_glo, index_g) |
---|
1184 | IF ( do_rivertemp ) THEN |
---|
1185 | CALL restput_p (rest_id, 'hydrotemp', nbp_glo, 1, 1, kjit, hydrotemp, 'scatter', nbp_glo, index_g) |
---|
1186 | CALL restput_p (rest_id, 'htutempmon', nbp_glo, nbasmon, 1, kjit, HTUtempmon, 'scatter', nbp_glo, index_g) |
---|
1187 | ENDIF |
---|
1188 | ! |
---|
1189 | ! Keep track of the accumulated variables |
---|
1190 | ! |
---|
1191 | CALL restput_p (rest_id, 'floodout_route', nbp_glo, 1, 1, kjit, floodout_mean, 'scatter', nbp_glo, index_g) |
---|
1192 | CALL restput_p (rest_id, 'runoff_route', nbp_glo, 1, 1, kjit, runoff_mean, 'scatter', nbp_glo, index_g) |
---|
1193 | CALL restput_p (rest_id, 'drainage_route', nbp_glo, 1, 1, kjit, drainage_mean, 'scatter', nbp_glo, index_g) |
---|
1194 | CALL restput_p (rest_id, 'transpot_route', nbp_glo, 1, 1, kjit, transpot_mean, 'scatter', nbp_glo, index_g) |
---|
1195 | CALL restput_p (rest_id, 'precip_route', nbp_glo, 1, 1, kjit, precip_mean, 'scatter', nbp_glo, index_g) |
---|
1196 | CALL restput_p (rest_id, 'humrel_route', nbp_glo, 1, 1, kjit, humrel_mean, 'scatter', nbp_glo, index_g) |
---|
1197 | CALL restput_p (rest_id, 'totnobio_route', nbp_glo, 1, 1, kjit, totnobio_mean, 'scatter', nbp_glo, index_g) |
---|
1198 | CALL restput_p (rest_id, 'k_litt_route', nbp_glo, 1, 1, kjit, k_litt_mean, 'scatter', nbp_glo, index_g) |
---|
1199 | CALL restput_p (rest_id, 'vegtot_route', nbp_glo, 1, 1, kjit, vegtot_mean, 'scatter', nbp_glo, index_g) |
---|
1200 | CALL restput_p (rest_id, 'stempdiag_route', nbp_glo, nslm, 1, kjit, stempdiag_mean, 'scatter', nbp_glo, index_g) |
---|
1201 | |
---|
1202 | CALL restput_p (rest_id, 'gridrephtu', nbp_glo, 1, 1, kjit, REAL(hydrodiag,r_std), 'scatter', nbp_glo, index_g) |
---|
1203 | CALL restput_p (rest_id, 'htudiag', nbp_glo, nbasmon, 1, kjit, REAL(HTUdiag_loc,r_std), 'scatter', nbp_glo, index_g) |
---|
1204 | |
---|
1205 | IF ( do_irrigation ) THEN |
---|
1206 | CALL restput_p (rest_id, 'irrigated', nbp_glo, 1, 1, kjit, irrigated, 'scatter', nbp_glo, index_g) |
---|
1207 | CALL restput_p (rest_id, 'irrigation', nbp_glo, 1, 1, kjit, irrigation_mean, 'scatter', nbp_glo, index_g) |
---|
1208 | ENDIF |
---|
1209 | |
---|
1210 | IF ( do_floodplains ) THEN |
---|
1211 | CALL restput_p (rest_id, 'floodplains', nbp_glo, nbasmax, 1, kjit, floodplains, 'scatter', nbp_glo, index_g) |
---|
1212 | CALL restput_p (rest_id, 'floodcri', nbp_glo, nbasmax, 1, kjit, floodcri, 'scatter', nbp_glo, index_g) |
---|
1213 | CALL restput_p (rest_id, 'floodp_beta', nbp_glo, nbasmax, 1, kjit, fp_beta, 'scatter', nbp_glo, index_g) |
---|
1214 | ENDIF |
---|
1215 | IF ( dofloodoverflow ) THEN |
---|
1216 | CALL restput_p (rest_id, 'orog_min', nbp_glo, nbasmax, 1,kjit,orog_min, 'scatter', nbp_glo, index_g) |
---|
1217 | END IF |
---|
1218 | IF ( doswamps ) THEN |
---|
1219 | CALL restput_p (rest_id, 'swamp', nbp_glo, 1, 1, kjit, swamp, 'scatter', nbp_glo, index_g) |
---|
1220 | ENDIF |
---|
1221 | |
---|
1222 | END SUBROUTINE routing_highres_finalize |
---|
1223 | |
---|
1224 | !! ================================================================================================================================ |
---|
1225 | !! SUBROUTINE : routing_hr_init |
---|
1226 | !! |
---|
1227 | !>\BRIEF This subroutine allocates the memory and get the fixed fields from the restart file. |
---|
1228 | !! |
---|
1229 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
1230 | !! |
---|
1231 | !! RECENT CHANGE(S): None |
---|
1232 | !! |
---|
1233 | !! MAIN OUTPUT VARIABLE(S): |
---|
1234 | !! |
---|
1235 | !! REFERENCES : None |
---|
1236 | !! |
---|
1237 | !! FLOWCHART :None |
---|
1238 | !! \n |
---|
1239 | !_ ================================================================================================================================ |
---|
1240 | |
---|
1241 | SUBROUTINE routing_hr_init(kjit, nbpt, index, returnflow, reinfiltration, irrigation, & |
---|
1242 | & riverflow, coastalflow, flood_frac, flood_res, stempdiag, rest_id) |
---|
1243 | ! |
---|
1244 | IMPLICIT NONE |
---|
1245 | ! |
---|
1246 | ! interface description |
---|
1247 | ! |
---|
1248 | !! INPUT VARIABLES |
---|
1249 | INTEGER(i_std), INTENT(in) :: kjit !! Time step number (unitless) |
---|
1250 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
1251 | INTEGER(i_std), DIMENSION (nbpt), INTENT(in) :: index !! Indices of the points on the map (unitless) |
---|
1252 | REAL(r_std), DIMENSION(nbpt,nslm),INTENT(in) :: stempdiag !! Temperature profile in soil |
---|
1253 | INTEGER(i_std), INTENT(in) :: rest_id !! Restart file identifier (unitless) |
---|
1254 | ! |
---|
1255 | !! OUTPUT VARIABLES |
---|
1256 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: returnflow !! The water flow from lakes and swamps which returns into the grid box. |
---|
1257 | !! This water will go back into the hydrol module to allow re-evaporation (kg/m^2/dt) |
---|
1258 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: reinfiltration !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
1259 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: irrigation !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil.(kg/m^2/dt) |
---|
1260 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: riverflow !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
1261 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: coastalflow !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
1262 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: flood_frac !! Flooded fraction of the grid box (unitless;0-1) |
---|
1263 | REAL(r_std), DIMENSION (nbpt),INTENT(out) :: flood_res !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
1264 | ! |
---|
1265 | !! LOCAL VARIABLES |
---|
1266 | CHARACTER(LEN=80) :: var_name !! To store variables names for I/O (unitless) |
---|
1267 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: tmp_real_g !! A temporary real array for the integers |
---|
1268 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: tmp_real ! |
---|
1269 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: tmp_real_g2 |
---|
1270 | REAL(r_std) :: ratio !! Diagnostic ratio to check that dt_routing is a multiple of dt_sechiba (unitless) |
---|
1271 | REAL(r_std) :: totarea !! Total area of basin (m^2) |
---|
1272 | INTEGER(i_std) :: ier, ig, im, ib, ipn(1), nbhtumon !! Indices (unitless) |
---|
1273 | REAL(r_std) :: nbasmon_tmp, nbasmax_tmp, inflows_tmp |
---|
1274 | |
---|
1275 | !_ ================================================================================================================================ |
---|
1276 | ! |
---|
1277 | ! |
---|
1278 | ! These variables will require the configuration infrastructure |
---|
1279 | ! |
---|
1280 | !Config Key = DT_ROUTING |
---|
1281 | !Config If = RIVER_ROUTING |
---|
1282 | !Config Desc = Time step of the routing scheme |
---|
1283 | !Config Def = one_day |
---|
1284 | !Config Help = This values gives the time step in seconds of the routing scheme. |
---|
1285 | !Config It should be multiple of the main time step of ORCHIDEE. One day |
---|
1286 | !Config is a good value. |
---|
1287 | !Config Units = [seconds] |
---|
1288 | ! |
---|
1289 | dt_routing = one_day |
---|
1290 | CALL getin_p('DT_ROUTING', dt_routing) |
---|
1291 | ! |
---|
1292 | ! |
---|
1293 | ! |
---|
1294 | !Config Key = DO_FLOODINFILT |
---|
1295 | !Config Desc = Should floodplains reinfiltrate into the soil |
---|
1296 | !Config If = RIVER_ROUTING |
---|
1297 | !Config Def = n |
---|
1298 | !Config Help = This parameters allows the user to ask the model |
---|
1299 | !Config to take into account the flood plains reinfiltration |
---|
1300 | !Config into the soil moisture. It then can go |
---|
1301 | !Config back to the slow and fast reservoirs |
---|
1302 | !Config Units = [FLAG] |
---|
1303 | ! |
---|
1304 | dofloodinfilt = .FALSE. |
---|
1305 | IF ( do_floodplains ) CALL getin_p('DO_FLOODINFILT', dofloodinfilt) |
---|
1306 | ! |
---|
1307 | !Config Key = CONDUCT_FACTOR_FP |
---|
1308 | !Config Desc = Adjustment factor for floodplains reinfiltration |
---|
1309 | !Config If = RIVER_ROUTING |
---|
1310 | !Config Def = n |
---|
1311 | !Config Help = Factor used to reduce the infiltration from the |
---|
1312 | !Config floodplains. For a value of 1, the infiltration is |
---|
1313 | !Config unchanged, for a value of 0 there is no infiltration. |
---|
1314 | !Config Units = - |
---|
1315 | ! |
---|
1316 | conduct_factor = 1.0 |
---|
1317 | IF ( do_floodplains ) CALL getin_p('CONDUCT_FACTOR_FP', conduct_factor) |
---|
1318 | ! |
---|
1319 | ! |
---|
1320 | !Config Key = DO_FLOODOVERFLOW |
---|
1321 | !Config Desc = Should floodplains overflow to upstream HTUs floodplains |
---|
1322 | !Config If = RIVER_ROUTING |
---|
1323 | !Config Def = n |
---|
1324 | !Config Help = This parameters allows the user to ask the model |
---|
1325 | !Config to take into account the overflow of the |
---|
1326 | !Config floodplains. The water can flow to the upstream |
---|
1327 | !Config floodplains reservoir if the current flood height |
---|
1328 | !Config is higher than the upstream one. |
---|
1329 | !Config Units = [FLAG] |
---|
1330 | ! |
---|
1331 | dofloodoverflow = .FALSE. |
---|
1332 | IF ( do_floodplains ) CALL getin_p('DO_FLOODOVERFLOW', dofloodoverflow) |
---|
1333 | ! |
---|
1334 | !Config Key = OVERFLOW_REPETITION |
---|
1335 | !Config Desc = Repetition of overflow at each routing time step |
---|
1336 | !Config If = RIVER_ROUTING |
---|
1337 | !Config Def = n |
---|
1338 | !Config Help = This parameters allows the user to ask the model |
---|
1339 | !Config repeat the overflow a certain amount of time |
---|
1340 | !Config in order to have more stability with lower |
---|
1341 | !Config overflow time step. |
---|
1342 | !Config Units = [FLAG] |
---|
1343 | ! |
---|
1344 | overflow_repetition = 1 |
---|
1345 | IF ( do_floodplains ) CALL getin_p('OVERFLOW_REPETITION', overflow_repetition) |
---|
1346 | ! |
---|
1347 | !Config Key = R_FLOODMAX |
---|
1348 | !Config Desc = Maximal values for R factor |
---|
1349 | !Config If = DO_FLOODPLAINS |
---|
1350 | !Config Def = 0.5 |
---|
1351 | !Config Help = R is the factor of reduction of the stream discharge |
---|
1352 | !Config if there is floodplains. This is the maximal value |
---|
1353 | !Config when the HTU is fully filled. |
---|
1354 | !Config R = 1 -> discharge = 0 |
---|
1355 | !Config R = 0 -> Maximal discharge |
---|
1356 | ! |
---|
1357 | rfloodmax = 0.5 |
---|
1358 | IF ( do_floodplains ) CALL getin_p('R_FLOODMAX', rfloodmax) |
---|
1359 | ! |
---|
1360 | !Config Key = OVERFLOW_TCST |
---|
1361 | !Config Desc = Time Constant for overflow in day |
---|
1362 | !Config If = DO_FLOODPLAINS |
---|
1363 | !Config Def = 1 |
---|
1364 | !Config Help = OVERFLOW_TCST is the time constant |
---|
1365 | !Config For the floodplains overflow |
---|
1366 | ! |
---|
1367 | overflow_tcst = 1 |
---|
1368 | IF ( do_floodplains ) CALL getin_p('OVERFLOW_TCST', overflow_tcst) |
---|
1369 | ! |
---|
1370 | !Config Key = DO_SWAMPS |
---|
1371 | !Config Desc = Should we include swamp parameterization |
---|
1372 | !Config If = RIVER_ROUTING |
---|
1373 | !Config Def = n |
---|
1374 | !Config Help = This parameters allows the user to ask the model |
---|
1375 | !Config to take into account the swamps and return |
---|
1376 | !Config the water into the bottom of the soil. It then can go |
---|
1377 | !Config back to the atmopshere. This tried to simulate |
---|
1378 | !Config internal deltas of rivers. |
---|
1379 | !Config Units = [FLAG] |
---|
1380 | ! |
---|
1381 | doswamps = .FALSE. |
---|
1382 | CALL getin_p('DO_SWAMPS', doswamps) |
---|
1383 | ! |
---|
1384 | !Config Key = DO_PONDS |
---|
1385 | !Config Desc = Should we include ponds |
---|
1386 | !Config If = RIVER_ROUTING |
---|
1387 | !Config Def = n |
---|
1388 | !Config Help = This parameters allows the user to ask the model |
---|
1389 | !Config to take into account the ponds and return |
---|
1390 | !Config the water into the soil moisture. It then can go |
---|
1391 | !Config back to the atmopshere. This tried to simulate |
---|
1392 | !Config little ponds especially in West Africa. |
---|
1393 | !Config Units = [FLAG] |
---|
1394 | ! |
---|
1395 | doponds = .FALSE. |
---|
1396 | CALL getin_p('DO_PONDS', doponds) |
---|
1397 | ! |
---|
1398 | !Config Key = FLOOD_BETA |
---|
1399 | !Config Desc = Parameter to fix the shape of the floodplain |
---|
1400 | !Config If = RIVER_ROUTING |
---|
1401 | !Config Def = 2.0 |
---|
1402 | !Config Help = Parameter to fix the shape of the floodplain |
---|
1403 | !Config (>1 for convex edges, <1 for concave edges) |
---|
1404 | !Config Units = [-] |
---|
1405 | |
---|
1406 | ! ANTHONY OLD FLOODPLAINS |
---|
1407 | !CALL getin_p("FLOOD_BETA", beta) |
---|
1408 | ! |
---|
1409 | !Config Key = POND_BETAP |
---|
1410 | !Config Desc = Ratio of the basin surface intercepted by ponds and the maximum surface of ponds |
---|
1411 | !Config If = RIVER_ROUTING |
---|
1412 | !Config Def = 0.5 |
---|
1413 | !Config Help = |
---|
1414 | !Config Units = [-] |
---|
1415 | CALL getin_p("POND_BETAP", betap) |
---|
1416 | ! |
---|
1417 | !Config Key = FLOOD_CRI |
---|
1418 | !Config Desc = Potential height for which all the basin is flooded |
---|
1419 | !Config If = DO_FLOODPLAINS or DO_PONDS |
---|
1420 | !Config Def = 2000. |
---|
1421 | !Config Help = |
---|
1422 | !Config Units = [mm] |
---|
1423 | |
---|
1424 | ! ANTHONY OLD FLOODPLAINS |
---|
1425 | !CALL getin_p("FLOOD_CRI", floodcri) |
---|
1426 | ! |
---|
1427 | !Config Key = POND_CRI |
---|
1428 | !Config Desc = Potential height for which all the basin is a pond |
---|
1429 | !Config If = DO_FLOODPLAINS or DO_PONDS |
---|
1430 | !Config Def = 2000. |
---|
1431 | !Config Help = |
---|
1432 | !Config Units = [mm] |
---|
1433 | CALL getin_p("POND_CRI", pondcri) |
---|
1434 | |
---|
1435 | !Config Key = MAX_LAKE_RESERVOIR |
---|
1436 | !Config Desc = Maximum limit of water in lake_reservoir |
---|
1437 | !Config If = RIVER_ROUTING |
---|
1438 | !Config Def = 7000 |
---|
1439 | !Config Help = |
---|
1440 | !Config Units = [kg/m2(routing area)] |
---|
1441 | max_lake_reservoir = 7000 |
---|
1442 | CALL getin_p("MAX_LAKE_RESERVOIR", max_lake_reservoir) |
---|
1443 | |
---|
1444 | !Config Key = DO_RIVERTEMP |
---|
1445 | !Config Desc = Activates the river temperature calculations |
---|
1446 | !Config If = |
---|
1447 | !Config Def = False |
---|
1448 | !Config Help = |
---|
1449 | !Config Units = - |
---|
1450 | do_rivertemp = .FALSE. |
---|
1451 | CALL getin_p("DO_RIVERTEMP", do_rivertemp) |
---|
1452 | ! |
---|
1453 | ! |
---|
1454 | ! In order to simplify the time cascade check that dt_routing |
---|
1455 | ! is a multiple of dt_sechiba |
---|
1456 | ! |
---|
1457 | ratio = dt_routing/dt_sechiba |
---|
1458 | IF ( ABS(NINT(ratio) - ratio) .GT. 10*EPSILON(ratio)) THEN |
---|
1459 | WRITE(numout,*) 'WARNING -- WARNING -- WARNING -- WARNING' |
---|
1460 | WRITE(numout,*) "The chosen time step for the routing is not a multiple of the" |
---|
1461 | WRITE(numout,*) "main time step of the model. We will change dt_routing so that" |
---|
1462 | WRITE(numout,*) "this condition os fulfilled" |
---|
1463 | dt_routing = NINT(ratio) * dt_sechiba |
---|
1464 | WRITE(numout,*) 'THE NEW DT_ROUTING IS : ', dt_routing |
---|
1465 | ENDIF |
---|
1466 | ! |
---|
1467 | IF ( dt_routing .LT. dt_sechiba) THEN |
---|
1468 | WRITE(numout,*) 'WARNING -- WARNING -- WARNING -- WARNING' |
---|
1469 | WRITE(numout,*) 'The routing timestep can not be smaller than the one' |
---|
1470 | WRITE(numout,*) 'of the model. We reset its value to the model''s timestep.' |
---|
1471 | WRITE(numout,*) 'The old DT_ROUTING is : ', dt_routing |
---|
1472 | dt_routing = dt_sechiba |
---|
1473 | WRITE(numout,*) 'THE NEW DT_ROUTING IS : ', dt_routing |
---|
1474 | ENDIF |
---|
1475 | ! |
---|
1476 | ! If the routing_graph file is available we will extract the information in the dimensions |
---|
1477 | ! and parameters. |
---|
1478 | ! |
---|
1479 | !Config Key = ROUTING_FILE |
---|
1480 | !Config Desc = Name of file which contains the routing information graph on the model grid |
---|
1481 | !Config If = RIVER_ROUTING |
---|
1482 | !Config Def = routing.nc |
---|
1483 | !Config Help = The file provided here should allows to route the water from one HTU |
---|
1484 | !Config to another. The RoutingPP code needs to be used in order to generate |
---|
1485 | !Config the routing graph for the model grid. |
---|
1486 | !Config More details on : https://gitlab.in2p3.fr/ipsl/lmd/intro/routingpp |
---|
1487 | !Config Units = [FILE] |
---|
1488 | ! |
---|
1489 | !graphfilename = 'routing_graph.nc' |
---|
1490 | !CALL getin('ROUTING_FILE',graphfilename) |
---|
1491 | !CALL routing_hr_graphinfo(graphfilename, nbasmax, inflows, nbasmon, undef_graphfile, stream_tcst, fast_tcst, slow_tcst, & & flood_tcst, swamp_cst, lim_floodcri) |
---|
1492 | ! At this stage we could have an option to force reading of graph |
---|
1493 | ! |
---|
1494 | ! Constants which can be in the restart file |
---|
1495 | ! |
---|
1496 | var_name ="routingcounter" |
---|
1497 | CALL ioconf_setatt_p('UNITS', 's') |
---|
1498 | CALL ioconf_setatt_p('LONG_NAME','Time counter for the routing scheme') |
---|
1499 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, time_counter) |
---|
1500 | CALL setvar_p (time_counter, val_exp, 'NO_KEYWORD', zero) |
---|
1501 | |
---|
1502 | ! Parameters which are in the restart file |
---|
1503 | IF (stream_tcst .LE. 0 ) THEN |
---|
1504 | var_name ="streamtcst" |
---|
1505 | CALL ioconf_setatt_p('UNITS', 's/km') |
---|
1506 | CALL ioconf_setatt_p('LONG_NAME','Time constant for the stream reservoir') |
---|
1507 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, stream_tcst) |
---|
1508 | ENDIF |
---|
1509 | IF (slow_tcst .LE. 0 ) THEN |
---|
1510 | var_name ="slowtcst" |
---|
1511 | CALL ioconf_setatt_p('UNITS', 's/km') |
---|
1512 | CALL ioconf_setatt_p('LONG_NAME','Time constant for the slow reservoir') |
---|
1513 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, slow_tcst) |
---|
1514 | ENDIF |
---|
1515 | IF (fast_tcst .LE. 0 ) THEN |
---|
1516 | var_name ="fasttcst" |
---|
1517 | CALL ioconf_setatt_p('UNITS', 's/km') |
---|
1518 | CALL ioconf_setatt_p('LONG_NAME','Time constant for the fast reservoir') |
---|
1519 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, fast_tcst) |
---|
1520 | ENDIF |
---|
1521 | IF (flood_tcst .LE. 0 ) THEN |
---|
1522 | var_name ="floodtcst" |
---|
1523 | CALL ioconf_setatt_p('UNITS', 's/km') |
---|
1524 | CALL ioconf_setatt_p('LONG_NAME','Time constant for the flood reservoir') |
---|
1525 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, flood_tcst) |
---|
1526 | ENDIF |
---|
1527 | IF (swamp_cst .LE. 0 ) THEN |
---|
1528 | var_name ="swampcst" |
---|
1529 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1530 | CALL ioconf_setatt_p('LONG_NAME','Fraction of the river transport that flows to the swamps') |
---|
1531 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, swamp_cst) |
---|
1532 | ENDIF |
---|
1533 | IF (lim_floodcri .LE. 0 ) THEN |
---|
1534 | var_name ="lim_floodcri" |
---|
1535 | CALL ioconf_setatt_p('UNITS', 'm') |
---|
1536 | CALL ioconf_setatt_p('LONG_NAME','Minimal difference of orography consecutive floodplains HTUs') |
---|
1537 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, lim_floodcri) |
---|
1538 | ENDIF |
---|
1539 | ! |
---|
1540 | ! Number of HTUs |
---|
1541 | ! |
---|
1542 | var_name ="nbasmax" |
---|
1543 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1544 | CALL ioconf_setatt_p('LONG_NAME','Number of HTU per grid box') |
---|
1545 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, nbasmax_tmp) |
---|
1546 | CALL routing_hr_restartconsistency(var_name, nbasmax, nbasmax_tmp) |
---|
1547 | ! |
---|
1548 | ! Number of inflows |
---|
1549 | ! |
---|
1550 | var_name ="inflows" |
---|
1551 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1552 | CALL ioconf_setatt_p('LONG_NAME','Maximum number of inflows per HTU') |
---|
1553 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, inflows_tmp) |
---|
1554 | CALL routing_hr_restartconsistency(var_name, inflows, inflows_tmp) |
---|
1555 | ! |
---|
1556 | ! Dimension of HTU monitoring variable |
---|
1557 | ! |
---|
1558 | var_name ="nbasmon" |
---|
1559 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1560 | CALL ioconf_setatt_p('LONG_NAME','Number of HTU to be monitored') |
---|
1561 | CALL restget_p (rest_id, var_name, kjit, .TRUE., zero, nbasmon_tmp) |
---|
1562 | CALL routing_hr_restartconsistency(var_name, nbasmon, nbasmon_tmp) |
---|
1563 | ! |
---|
1564 | ! Continuation of extraction from restart file. |
---|
1565 | ! |
---|
1566 | ALLOCATE (routing_area_loc(nbpt,nbasmax), stat=ier) |
---|
1567 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for routing_area_loc','','') |
---|
1568 | |
---|
1569 | ALLOCATE (routing_area_glo(nbp_glo,nbasmax)) |
---|
1570 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for routing_area_glo','','') |
---|
1571 | IF ( .NOT. ReadGraph ) THEN |
---|
1572 | var_name = 'routingarea' |
---|
1573 | IF (is_root_prc) THEN |
---|
1574 | CALL ioconf_setatt('UNITS', 'm^2') |
---|
1575 | CALL ioconf_setatt('LONG_NAME','Area of basin') |
---|
1576 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., routing_area_glo, "gather", nbp_glo, index_g) |
---|
1577 | ENDIF |
---|
1578 | CALL scatter(routing_area_glo,routing_area_loc) |
---|
1579 | routing_area=>routing_area_loc |
---|
1580 | ENDIF |
---|
1581 | CALL scatter(routing_area_glo,routing_area_loc) |
---|
1582 | routing_area=>routing_area_loc |
---|
1583 | |
---|
1584 | |
---|
1585 | IF ( do_floodplains ) THEN |
---|
1586 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1587 | !! ANTHONY - BETA |
---|
1588 | ALLOCATE (fp_beta_loc(nbpt,nbasmax), stat=ier) |
---|
1589 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for fp_beta_loc','','') |
---|
1590 | |
---|
1591 | ALLOCATE (fp_beta_glo(nbp_glo,nbasmax)) |
---|
1592 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for fp_beta_glo','','') |
---|
1593 | |
---|
1594 | IF ( .NOT. ReadGraph ) THEN |
---|
1595 | IF (is_root_prc) THEN |
---|
1596 | var_name = 'floodp_beta' |
---|
1597 | CALL ioconf_setatt('UNITS', '-') |
---|
1598 | CALL ioconf_setatt('LONG_NAME','Beta parameter for floodplains') |
---|
1599 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., fp_beta_glo, "gather", nbp_glo, index_g) |
---|
1600 | ENDIF |
---|
1601 | CALL scatter(fp_beta_glo,fp_beta_loc) |
---|
1602 | fp_beta=>fp_beta_loc |
---|
1603 | END IF |
---|
1604 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1605 | |
---|
1606 | !!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1607 | !! ANTHONY - h0 - floodcri |
---|
1608 | ALLOCATE (floodcri_loc(nbpt,nbasmax), stat=ier) |
---|
1609 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for floodcri_loc','','') |
---|
1610 | |
---|
1611 | ALLOCATE (floodcri_glo(nbp_glo,nbasmax)) |
---|
1612 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for floodcri_glo','','') |
---|
1613 | |
---|
1614 | IF ( .NOT. ReadGraph ) THEN |
---|
1615 | IF (is_root_prc) THEN |
---|
1616 | var_name = 'floodcri' |
---|
1617 | CALL ioconf_setatt('UNITS', 'mm') |
---|
1618 | CALL ioconf_setatt('LONG_NAME','Height of complete flood') |
---|
1619 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., floodcri_glo, "gather", nbp_glo, index_g) |
---|
1620 | END IF |
---|
1621 | CALL scatter(floodcri_glo,floodcri_loc) |
---|
1622 | floodcri=>floodcri_loc |
---|
1623 | ENDIF |
---|
1624 | END IF |
---|
1625 | |
---|
1626 | ALLOCATE (tmp_real_g(nbp_glo,nbasmax), stat=ier) |
---|
1627 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for tmp_real_g','','') |
---|
1628 | |
---|
1629 | ALLOCATE (route_togrid_loc(nbpt,nbasmax), stat=ier) |
---|
1630 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_togrid_loc','','') |
---|
1631 | ALLOCATE (route_togrid_glo(nbp_glo,nbasmax), stat=ier) ! used in global in routing_hr_flow |
---|
1632 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_togrid_glo','','') |
---|
1633 | |
---|
1634 | IF ( .NOT. ReadGraph ) THEN |
---|
1635 | IF (is_root_prc) THEN |
---|
1636 | var_name = 'routetogrid' |
---|
1637 | CALL ioconf_setatt('UNITS', '-') |
---|
1638 | CALL ioconf_setatt('LONG_NAME','Grid into which the basin flows') |
---|
1639 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_g, "gather", nbp_glo, index_g) |
---|
1640 | route_togrid_glo(:,:) = undef_int |
---|
1641 | WHERE ( tmp_real_g .LT. val_exp ) |
---|
1642 | route_togrid_glo = NINT(tmp_real_g) |
---|
1643 | ENDWHERE |
---|
1644 | ENDIF |
---|
1645 | CALL bcast(route_togrid_glo) ! used in global in routing_hr_flow |
---|
1646 | CALL scatter(route_togrid_glo,route_togrid_loc) |
---|
1647 | route_togrid=>route_togrid_loc |
---|
1648 | ENDIF |
---|
1649 | ! |
---|
1650 | ALLOCATE (route_tobasin_loc(nbpt,nbasmax), stat=ier) |
---|
1651 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_tobasin_loc','','') |
---|
1652 | |
---|
1653 | ALLOCATE (route_tobasin_glo(nbp_glo,nbasmax), stat=ier) |
---|
1654 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_tobasin_glo','','') |
---|
1655 | |
---|
1656 | IF ( .NOT. ReadGraph ) THEN |
---|
1657 | IF (is_root_prc) THEN |
---|
1658 | var_name = 'routetobasin' |
---|
1659 | CALL ioconf_setatt('UNITS', '-') |
---|
1660 | CALL ioconf_setatt('LONG_NAME','Basin in to which the water goes') |
---|
1661 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_g, "gather", nbp_glo, index_g) |
---|
1662 | route_tobasin_glo = undef_int |
---|
1663 | WHERE ( tmp_real_g .LT. val_exp ) |
---|
1664 | route_tobasin_glo = NINT(tmp_real_g) |
---|
1665 | ENDWHERE |
---|
1666 | num_largest = COUNT(route_tobasin_glo .EQ. nbasmax+3) |
---|
1667 | ENDIF |
---|
1668 | CALL scatter(route_tobasin_glo,route_tobasin_loc) |
---|
1669 | CALL bcast(num_largest) |
---|
1670 | route_tobasin=>route_tobasin_loc |
---|
1671 | ENDIF |
---|
1672 | ! |
---|
1673 | ! nbintobasin |
---|
1674 | ! |
---|
1675 | ALLOCATE (route_nbintobas_loc(nbpt,nbasmax), stat=ier) |
---|
1676 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_nbintobas_loc','','') |
---|
1677 | ALLOCATE (route_nbintobas_glo(nbp_glo,nbasmax), stat=ier) |
---|
1678 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_nbintobas_glo','','') |
---|
1679 | |
---|
1680 | IF ( .NOT. ReadGraph ) THEN |
---|
1681 | IF (is_root_prc) THEN |
---|
1682 | var_name = 'routenbintobas' |
---|
1683 | CALL ioconf_setatt('UNITS', '-') |
---|
1684 | CALL ioconf_setatt('LONG_NAME','Number of basin into current one') |
---|
1685 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_g, "gather", nbp_glo, index_g) |
---|
1686 | route_nbintobas_glo = undef_int |
---|
1687 | WHERE ( tmp_real_g .LT. val_exp ) |
---|
1688 | route_nbintobas_glo = NINT(tmp_real_g) |
---|
1689 | ENDWHERE |
---|
1690 | ENDIF |
---|
1691 | CALL scatter(route_nbintobas_glo,route_nbintobas_loc) |
---|
1692 | route_nbintobas=>route_nbintobas_loc |
---|
1693 | ENDIF |
---|
1694 | ! |
---|
1695 | ALLOCATE (global_basinid_loc(nbpt,nbasmax), stat=ier) |
---|
1696 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for global_basinid_loc','','') |
---|
1697 | ALLOCATE (global_basinid_glo(nbp_glo,nbasmax), stat=ier) |
---|
1698 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for global_basinid_glo','','') |
---|
1699 | |
---|
1700 | IF ( .NOT. ReadGraph ) THEN |
---|
1701 | IF (is_root_prc) THEN |
---|
1702 | var_name = 'basinid' |
---|
1703 | CALL ioconf_setatt('UNITS', '-') |
---|
1704 | CALL ioconf_setatt('LONG_NAME','ID of basin') |
---|
1705 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., tmp_real_g, "gather", nbp_glo, index_g) |
---|
1706 | global_basinid_glo = undef_int |
---|
1707 | WHERE ( tmp_real_g .LT. val_exp ) |
---|
1708 | global_basinid_glo = NINT(tmp_real_g) |
---|
1709 | ENDWHERE |
---|
1710 | ENDIF |
---|
1711 | CALL scatter(global_basinid_glo,global_basinid_loc) |
---|
1712 | global_basinid=>global_basinid_loc |
---|
1713 | ENDIF |
---|
1714 | ! |
---|
1715 | ALLOCATE (topo_resid_loc(nbpt,nbasmax), stat=ier) |
---|
1716 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for topo_resid_loc','','') |
---|
1717 | ALLOCATE (topo_resid_glo(nbp_glo,nbasmax), stat=ier) |
---|
1718 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for topo_resid_glo','','') |
---|
1719 | |
---|
1720 | IF ( .NOT. ReadGraph ) THEN |
---|
1721 | IF (is_root_prc) THEN |
---|
1722 | var_name = 'topoindex' |
---|
1723 | CALL ioconf_setatt('UNITS', 'km') |
---|
1724 | CALL ioconf_setatt('LONG_NAME','Topographic index of the residence time') |
---|
1725 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., topo_resid_glo, "gather", nbp_glo, index_g) |
---|
1726 | ENDIF |
---|
1727 | CALL scatter(topo_resid_glo,topo_resid_loc) |
---|
1728 | topo_resid=>topo_resid_loc |
---|
1729 | ENDIF |
---|
1730 | ! |
---|
1731 | ALLOCATE (stream_resid_loc(nbpt,nbasmax), stat=ier) |
---|
1732 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for stream_resid_loc','','') |
---|
1733 | ALLOCATE (stream_resid_glo(nbp_glo,nbasmax), stat=ier) |
---|
1734 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for stream_resid_glo','','') |
---|
1735 | |
---|
1736 | IF ( .NOT. ReadGraph ) THEN |
---|
1737 | IF (is_root_prc) THEN |
---|
1738 | var_name = 'topoindex_stream' |
---|
1739 | CALL ioconf_setatt('UNITS', 'km') |
---|
1740 | CALL ioconf_setatt('LONG_NAME','Topographic index of the residence time') |
---|
1741 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., stream_resid_glo, "gather", nbp_glo, index_g) |
---|
1742 | stream_maxresid=MAXVAL(stream_resid_glo, MASK=stream_resid_glo .LT. undef_graphfile) |
---|
1743 | ENDIF |
---|
1744 | CALL bcast(stream_maxresid) |
---|
1745 | CALL scatter(stream_resid_glo,stream_resid_loc) |
---|
1746 | stream_resid=>stream_resid_loc |
---|
1747 | ENDIF |
---|
1748 | ! |
---|
1749 | ALLOCATE (fast_reservoir(nbpt,nbasmax), stat=ier) |
---|
1750 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for fast_reservoir','','') |
---|
1751 | var_name = 'fastres' |
---|
1752 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1753 | CALL ioconf_setatt_p('LONG_NAME','Water in the fast reservoir') |
---|
1754 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., fast_reservoir, "gather", nbp_glo, index_g) |
---|
1755 | CALL setvar_p (fast_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1756 | |
---|
1757 | ALLOCATE (slow_reservoir(nbpt,nbasmax), stat=ier) |
---|
1758 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for slow_reservoir','','') |
---|
1759 | var_name = 'slowres' |
---|
1760 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1761 | CALL ioconf_setatt_p('LONG_NAME','Water in the slow reservoir') |
---|
1762 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., slow_reservoir, "gather", nbp_glo, index_g) |
---|
1763 | CALL setvar_p (slow_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1764 | |
---|
1765 | ALLOCATE (stream_reservoir(nbpt,nbasmax), stat=ier) |
---|
1766 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for stream_reservoir','','') |
---|
1767 | var_name = 'streamres' |
---|
1768 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1769 | CALL ioconf_setatt_p('LONG_NAME','Water in the stream reservoir') |
---|
1770 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., stream_reservoir, "gather", nbp_glo, index_g) |
---|
1771 | CALL setvar_p (stream_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1772 | |
---|
1773 | ALLOCATE (flood_reservoir(nbpt,nbasmax), stat=ier) |
---|
1774 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for flood_reservoir','','') |
---|
1775 | var_name = 'floodres' |
---|
1776 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1777 | CALL ioconf_setatt_p('LONG_NAME','Water in the flood reservoir') |
---|
1778 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., flood_reservoir, "gather", nbp_glo, index_g) |
---|
1779 | CALL setvar_p (flood_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1780 | |
---|
1781 | ALLOCATE (flood_frac_bas(nbpt,nbasmax), stat=ier) |
---|
1782 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for flood_frac_bas','','') |
---|
1783 | var_name = 'flood_frac_bas' |
---|
1784 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1785 | CALL ioconf_setatt_p('LONG_NAME','Flooded fraction per basin') |
---|
1786 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., flood_frac_bas, "gather", nbp_glo, index_g) |
---|
1787 | CALL setvar_p (flood_frac_bas, val_exp, 'NO_KEYWORD', zero) |
---|
1788 | |
---|
1789 | ALLOCATE (flood_height(nbpt, nbasmax), stat=ier) |
---|
1790 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for flood_height','','') |
---|
1791 | var_name = 'floodh' |
---|
1792 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1793 | CALL ioconf_setatt_p('LONG_NAME','') |
---|
1794 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., flood_height, "gather", nbp_glo, index_g) |
---|
1795 | CALL setvar_p (flood_height, val_exp, 'NO_KEYWORD', zero) |
---|
1796 | |
---|
1797 | ALLOCATE (pond_frac(nbpt), stat=ier) |
---|
1798 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for pond_frac','','') |
---|
1799 | var_name = 'pond_frac' |
---|
1800 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1801 | CALL ioconf_setatt_p('LONG_NAME','Pond fraction per grid box') |
---|
1802 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., pond_frac, "gather", nbp_glo, index_g) |
---|
1803 | CALL setvar_p (pond_frac, val_exp, 'NO_KEYWORD', zero) |
---|
1804 | |
---|
1805 | var_name = 'flood_frac' |
---|
1806 | CALL ioconf_setatt_p('UNITS', '-') |
---|
1807 | CALL ioconf_setatt_p('LONG_NAME','Flooded fraction per grid box') |
---|
1808 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., flood_frac, "gather", nbp_glo, index_g) |
---|
1809 | CALL setvar_p (flood_frac, val_exp, 'NO_KEYWORD', zero) |
---|
1810 | |
---|
1811 | var_name = 'flood_res' |
---|
1812 | CALL ioconf_setatt_p('UNITS','mm') |
---|
1813 | CALL ioconf_setatt_p('LONG_NAME','Flooded quantity (estimation)') |
---|
1814 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., flood_res, "gather", nbp_glo, index_g) |
---|
1815 | CALL setvar_p (flood_res, val_exp, 'NO_KEYWORD', zero) |
---|
1816 | ! flood_res = zero |
---|
1817 | |
---|
1818 | ALLOCATE (lake_reservoir(nbpt), stat=ier) |
---|
1819 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for lake_reservoir','','') |
---|
1820 | var_name = 'lakeres' |
---|
1821 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1822 | CALL ioconf_setatt_p('LONG_NAME','Water in the lake reservoir') |
---|
1823 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., lake_reservoir, "gather", nbp_glo, index_g) |
---|
1824 | CALL setvar_p (lake_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1825 | |
---|
1826 | ALLOCATE (pond_reservoir(nbpt), stat=ier) |
---|
1827 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for pond_reservoir','','') |
---|
1828 | var_name = 'pondres' |
---|
1829 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
1830 | CALL ioconf_setatt_p('LONG_NAME','Water in the pond reservoir') |
---|
1831 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., pond_reservoir, "gather", nbp_glo, index_g) |
---|
1832 | CALL setvar_p (pond_reservoir, val_exp, 'NO_KEYWORD', zero) |
---|
1833 | ! |
---|
1834 | ! Map of irrigated areas |
---|
1835 | ! |
---|
1836 | IF ( do_irrigation ) THEN |
---|
1837 | ALLOCATE (irrigated(nbpt), stat=ier) |
---|
1838 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for irrigated','','') |
---|
1839 | var_name = 'irrigated' |
---|
1840 | CALL ioconf_setatt_p('UNITS', 'm^2') |
---|
1841 | CALL ioconf_setatt_p('LONG_NAME','Surface of irrigated area') |
---|
1842 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., irrigated, "gather", nbp_glo, index_g) |
---|
1843 | CALL setvar_p (irrigated, val_exp, 'NO_KEYWORD', undef_sechiba) |
---|
1844 | ENDIF |
---|
1845 | |
---|
1846 | IF ( do_floodplains ) THEN |
---|
1847 | ALLOCATE (floodmap(nbpt), stat=ier) |
---|
1848 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for floodmap','','') |
---|
1849 | |
---|
1850 | ALLOCATE (floodplains_loc(nbpt,nbasmax), stat=ier) |
---|
1851 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for floodplains_loc','','') |
---|
1852 | |
---|
1853 | ALLOCATE (floodplains_glo(nbp_glo,nbasmax), stat=ier) |
---|
1854 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for floodplains_glo','','') |
---|
1855 | IF ( .NOT. ReadGraph ) THEN |
---|
1856 | IF (is_root_prc) THEN |
---|
1857 | var_name = 'floodplains' |
---|
1858 | CALL ioconf_setatt_p('UNITS', 'm^2') |
---|
1859 | CALL ioconf_setatt_p('LONG_NAME','Surface which can be flooded') |
---|
1860 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., floodplains_glo, "gather", nbp_glo, index_g) |
---|
1861 | END IF |
---|
1862 | CALL scatter(floodplains_glo,floodplains_loc) |
---|
1863 | floodplains=>floodplains_loc |
---|
1864 | END IF |
---|
1865 | ENDIF |
---|
1866 | !!! |
---|
1867 | !!! ANTHONY : OVERFLOW |
---|
1868 | !!! |
---|
1869 | IF ( dofloodoverflow) THEN |
---|
1870 | ALLOCATE (orog_min_loc(nbpt,nbasmax), stat=ier) |
---|
1871 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for orog_min_loc','','') |
---|
1872 | ALLOCATE (orog_min_glo(nbp_glo,nbasmax), stat=ier) |
---|
1873 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for orog_min_glo','','') |
---|
1874 | !! |
---|
1875 | IF ( .NOT. ReadGraph ) THEN |
---|
1876 | IF (is_root_prc) THEN |
---|
1877 | var_name = 'orog_min' |
---|
1878 | CALL ioconf_setatt('UNITS', 'm') |
---|
1879 | CALL ioconf_setatt('LONG_NAME','HTU minimum orography') |
---|
1880 | CALL restget (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., orog_min_glo, "gather", nbp_glo, index_g) |
---|
1881 | END IF |
---|
1882 | CALL scatter(orog_min_glo,orog_min_loc) |
---|
1883 | orog_min=>orog_min_loc |
---|
1884 | END IF |
---|
1885 | ! |
---|
1886 | ALLOCATE (route_innum_loc(nbpt,nbasmax), stat=ier) |
---|
1887 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_innum_loc','','') |
---|
1888 | ALLOCATE (route_innum_glo(nbp_glo,nbasmax), stat=ier) |
---|
1889 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_innum_glo','','') |
---|
1890 | CALL scatter(route_innum_glo,route_innum_loc) |
---|
1891 | route_innum=>route_innum_loc |
---|
1892 | ! |
---|
1893 | ALLOCATE (route_ingrid_loc(nbpt,nbasmax, inflows), stat=ier) |
---|
1894 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_ingrid_loc','','') |
---|
1895 | ALLOCATE (route_ingrid_glo(nbp_glo,nbasmax,inflows), stat=ier) |
---|
1896 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_ingrid_glo','','') |
---|
1897 | CALL scatter(route_ingrid_glo,route_ingrid_loc) |
---|
1898 | route_ingrid=>route_ingrid_loc |
---|
1899 | ! |
---|
1900 | ALLOCATE (route_inbasin_loc(nbpt,nbasmax, inflows), stat=ier) |
---|
1901 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_inbasin_loc','','') |
---|
1902 | ALLOCATE (route_inbasin_glo(nbp_glo,nbasmax, inflows), stat=ier) |
---|
1903 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for route_inbasin_glo','','') |
---|
1904 | CALL scatter(route_inbasin_glo,route_inbasin_loc) |
---|
1905 | route_inbasin=>route_inbasin_loc |
---|
1906 | END IF |
---|
1907 | !!! |
---|
1908 | !!! |
---|
1909 | !!! |
---|
1910 | IF ( doswamps ) THEN |
---|
1911 | ALLOCATE (swamp(nbpt), stat=ier) |
---|
1912 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for swamp','','') |
---|
1913 | var_name = 'swamp' |
---|
1914 | CALL ioconf_setatt_p('UNITS', 'm^2') |
---|
1915 | CALL ioconf_setatt_p('LONG_NAME','Surface which can become swamp') |
---|
1916 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., swamp, "gather", nbp_glo, index_g) |
---|
1917 | CALL setvar_p (swamp, val_exp, 'NO_KEYWORD', undef_sechiba) |
---|
1918 | ENDIF |
---|
1919 | ! |
---|
1920 | ! Put into the restart file the fluxes so that they can be regenerated at restart. |
---|
1921 | ! |
---|
1922 | ALLOCATE (lakeinflow_mean(nbpt), stat=ier) |
---|
1923 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for lakeinflow_mean','','') |
---|
1924 | var_name = 'lakeinflow' |
---|
1925 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
1926 | CALL ioconf_setatt_p('LONG_NAME','Lake inflow') |
---|
1927 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., lakeinflow_mean, "gather", nbp_glo, index_g) |
---|
1928 | CALL setvar_p (lakeinflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1929 | |
---|
1930 | ALLOCATE (returnflow_mean(nbpt), stat=ier) |
---|
1931 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for returnflow_mean','','') |
---|
1932 | var_name = 'returnflow' |
---|
1933 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2/dt') |
---|
1934 | CALL ioconf_setatt_p('LONG_NAME','Deep return flux') |
---|
1935 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., returnflow_mean, "gather", nbp_glo, index_g) |
---|
1936 | CALL setvar_p (returnflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1937 | returnflow(:) = returnflow_mean(:) |
---|
1938 | |
---|
1939 | ALLOCATE (reinfiltration_mean(nbpt), stat=ier) |
---|
1940 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for reinfiltration_mean','','') |
---|
1941 | var_name = 'reinfiltration' |
---|
1942 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2/dt') |
---|
1943 | CALL ioconf_setatt_p('LONG_NAME','Top return flux') |
---|
1944 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., reinfiltration_mean, "gather", nbp_glo, index_g) |
---|
1945 | CALL setvar_p (reinfiltration_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1946 | reinfiltration(:) = reinfiltration_mean(:) |
---|
1947 | |
---|
1948 | ALLOCATE (irrigation_mean(nbpt), stat=ier) |
---|
1949 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for irrigation_mean','','') |
---|
1950 | ALLOCATE (irrig_netereq(nbpt), stat=ier) |
---|
1951 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for irrig_netereq','','') |
---|
1952 | irrig_netereq(:) = zero |
---|
1953 | |
---|
1954 | IF ( do_irrigation ) THEN |
---|
1955 | var_name = 'irrigation' |
---|
1956 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
1957 | CALL ioconf_setatt_p('LONG_NAME','Artificial irrigation flux') |
---|
1958 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., irrigation_mean, "gather", nbp_glo, index_g) |
---|
1959 | CALL setvar_p (irrigation_mean, val_exp, 'NO_KEYWORD', zero) |
---|
1960 | ELSE |
---|
1961 | irrigation_mean(:) = zero |
---|
1962 | ENDIF |
---|
1963 | irrigation(:) = irrigation_mean(:) |
---|
1964 | |
---|
1965 | IF ( do_rivertemp ) THEN |
---|
1966 | ALLOCATE (fast_temp(nbpt,nbasmax), stat=ier) |
---|
1967 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for fast_temp','','') |
---|
1968 | var_name = 'fasttemp' |
---|
1969 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
1970 | CALL ioconf_setatt_p('LONG_NAME','Water temperature in the fast reservoir') |
---|
1971 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., fast_temp, "gather", nbp_glo, index_g) |
---|
1972 | |
---|
1973 | ALLOCATE (slow_temp(nbpt,nbasmax), stat=ier) |
---|
1974 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for slow_temp','','') |
---|
1975 | var_name = 'slowtemp' |
---|
1976 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
1977 | CALL ioconf_setatt_p('LONG_NAME','Water temperature in the slow reservoir') |
---|
1978 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., slow_temp, "gather", nbp_glo, index_g) |
---|
1979 | |
---|
1980 | IF ( COUNT(fast_temp == val_exp) == nbpt*nbasmax ) THEN |
---|
1981 | CALL groudwatertemp(nbpt, nbasmax, nslm, stempdiag, diaglev, fast_temp, slow_temp) |
---|
1982 | ENDIF |
---|
1983 | |
---|
1984 | ALLOCATE (stream_temp(nbpt,nbasmax), stat=ier) |
---|
1985 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for stream_temp','','') |
---|
1986 | var_name = 'streamtemp' |
---|
1987 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
1988 | CALL ioconf_setatt_p('LONG_NAME','Water temperature in the stream reservoir') |
---|
1989 | CALL restget_p (rest_id, var_name, nbp_glo, nbasmax, 1, kjit, .TRUE., stream_temp, "gather", nbp_glo, index_g) |
---|
1990 | |
---|
1991 | IF ( COUNT(stream_temp == val_exp) == nbpt*nbasmax ) THEN |
---|
1992 | DO ig=1,nbpt |
---|
1993 | stream_temp(ig,:) = stempdiag(ig,1) |
---|
1994 | ENDDO |
---|
1995 | ENDIF |
---|
1996 | ENDIF |
---|
1997 | |
---|
1998 | ALLOCATE (riverflow_mean(nbpt), stat=ier) |
---|
1999 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for riverflow_mean','','') |
---|
2000 | var_name = 'riverflow' |
---|
2001 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
2002 | CALL ioconf_setatt_p('LONG_NAME','River flux into the sea') |
---|
2003 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., riverflow_mean, "gather", nbp_glo, index_g) |
---|
2004 | CALL setvar_p (riverflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2005 | riverflow(:) = riverflow_mean(:) |
---|
2006 | |
---|
2007 | ALLOCATE (coastalflow_mean(nbpt), stat=ier) |
---|
2008 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for coastalflow_mean','','') |
---|
2009 | var_name = 'coastalflow' |
---|
2010 | CALL ioconf_setatt_p('UNITS', 'Kg/dt') |
---|
2011 | CALL ioconf_setatt_p('LONG_NAME','Diffuse flux into the sea') |
---|
2012 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., coastalflow_mean, "gather", nbp_glo, index_g) |
---|
2013 | CALL setvar_p (coastalflow_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2014 | coastalflow(:) = coastalflow_mean(:) |
---|
2015 | |
---|
2016 | ! Locate it at the 2m level |
---|
2017 | ipn = MINLOC(ABS(zlt-2)) |
---|
2018 | floodtemp_lev = ipn(1) |
---|
2019 | ALLOCATE (floodtemp(nbpt), stat=ier) |
---|
2020 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for floodtemp','','') |
---|
2021 | floodtemp(:) = stempdiag(:,floodtemp_lev) |
---|
2022 | |
---|
2023 | ALLOCATE(hydrographs(nbpt), stat=ier) |
---|
2024 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for hydrographs','','') |
---|
2025 | var_name = 'hydrographs' |
---|
2026 | CALL ioconf_setatt_p('UNITS', 'kg/dt_sechiba') |
---|
2027 | CALL ioconf_setatt_p('LONG_NAME','Hydrograph at outlow of grid') |
---|
2028 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., hydrographs, "gather", nbp_glo, index_g) |
---|
2029 | CALL setvar_p (hydrographs, val_exp, 'NO_KEYWORD', zero) |
---|
2030 | |
---|
2031 | ALLOCATE(hydrotemp(nbpt), stat=ier) |
---|
2032 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for hydrotemp','','') |
---|
2033 | var_name = 'hydrotemp' |
---|
2034 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
2035 | CALL ioconf_setatt_p('LONG_NAME','Temperature of most significant river of grid') |
---|
2036 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., hydrotemp, "gather", nbp_glo, index_g) |
---|
2037 | CALL setvar_p (hydrotemp, val_exp, 'NO_KEYWORD', ZeroCelsius) |
---|
2038 | |
---|
2039 | ALLOCATE(slowflow_diag(nbpt), stat=ier) |
---|
2040 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for slowflow_diag','','') |
---|
2041 | var_name = 'slowflow_diag' |
---|
2042 | CALL ioconf_setatt_p('UNITS', 'kg/dt_sechiba') |
---|
2043 | CALL ioconf_setatt_p('LONG_NAME','Slowflow hydrograph at outlow of grid') |
---|
2044 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE.,slowflow_diag, "gather", nbp_glo, index_g) |
---|
2045 | CALL setvar_p (slowflow_diag, val_exp, 'NO_KEYWORD', zero) |
---|
2046 | ! |
---|
2047 | ! Grid diagnostic at representative HTU |
---|
2048 | ! |
---|
2049 | ALLOCATE(hydrodiag_loc(nbpt),hydrodiag_glo(nbp_glo),stat=ier) |
---|
2050 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for hydrodiag_glo','','') |
---|
2051 | IF ( .NOT. ReadGraph ) THEN |
---|
2052 | IF (is_root_prc) THEN |
---|
2053 | ALLOCATE(tmp_real(nbp_glo)) |
---|
2054 | var_name = 'gridrephtu' |
---|
2055 | CALL ioconf_setatt('UNITS', '-') |
---|
2056 | CALL ioconf_setatt('LONG_NAME','Representative HTU for the grid') |
---|
2057 | CALL restget(rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE.,tmp_real, "gather", nbp_glo, index_g) |
---|
2058 | hydrodiag_glo(:) = 1 |
---|
2059 | WHERE ( tmp_real .LT. val_exp ) |
---|
2060 | hydrodiag_glo = NINT(tmp_real) |
---|
2061 | ENDWHERE |
---|
2062 | DEALLOCATE(tmp_real) |
---|
2063 | ENDIF |
---|
2064 | CALL scatter(hydrodiag_glo, hydrodiag_loc) |
---|
2065 | ENDIF |
---|
2066 | ! |
---|
2067 | ! Station diagnostics |
---|
2068 | ! |
---|
2069 | ALLOCATE(HTUdiag_loc(nbpt,nbasmon), stat=ier) |
---|
2070 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for HTUdiag_loc','','') |
---|
2071 | ALLOCATE(HTUdiag_glo(nbp_glo,nbasmon), stat=ier) |
---|
2072 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for HTUdiag_glo','','') |
---|
2073 | ALLOCATE(tmp_real_g2(nbp_glo,nbasmon), stat=ier) |
---|
2074 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for tmp_real_g2','','') |
---|
2075 | ! |
---|
2076 | IF (is_root_prc) THEN |
---|
2077 | var_name = 'htudiag' |
---|
2078 | CALL ioconf_setatt('UNITS', 'index') |
---|
2079 | CALL ioconf_setatt('LONG_NAME','Index of HTU to be monitored') |
---|
2080 | CALL restget(rest_id, var_name, nbp_glo, nbasmon, 1, kjit, .TRUE., tmp_real_g2, "gather", nbp_glo, index_g) |
---|
2081 | HTUdiag_glo(:,:) = -1 |
---|
2082 | WHERE ( tmp_real_g2 .LT. val_exp ) |
---|
2083 | HTUdiag_glo = NINT(tmp_real_g2) |
---|
2084 | ENDWHERE |
---|
2085 | nbhtumon = 0 |
---|
2086 | DO ig=1,nbp_glo |
---|
2087 | DO im=1,nbasmon |
---|
2088 | IF ( HTUdiag_glo(ig,im) > 0 ) THEN |
---|
2089 | nbhtumon = nbhtumon + 1 |
---|
2090 | ENDIF |
---|
2091 | ENDDO |
---|
2092 | ENDDO |
---|
2093 | WRITE(numout,*) "After restget : Found a total of ", nbhtumon, " HTUs to be monitored and written into HTUhgmon" |
---|
2094 | ENDIF |
---|
2095 | CALL scatter(HTUdiag_glo, HTUdiag_loc) |
---|
2096 | CALL bcast(nbhtumon) |
---|
2097 | DEALLOCATE(tmp_real_g2) |
---|
2098 | ! |
---|
2099 | ALLOCATE(HTUhgmon(nbpt,nbasmon), stat=ier) |
---|
2100 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for HTUhgmon','','') |
---|
2101 | ALLOCATE(HTUhgmon_glo(nbp_glo,nbasmon), stat=ier) |
---|
2102 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for HTUhgmon_glo','','') |
---|
2103 | ! |
---|
2104 | IF (is_root_prc) THEN |
---|
2105 | var_name = 'htuhgmon' |
---|
2106 | CALL ioconf_setatt('UNITS', 'kg/dt_sechiba') |
---|
2107 | CALL ioconf_setatt('LONG_NAME','Hydrograph at selected HTU of grid') |
---|
2108 | CALL restget(rest_id, var_name, nbp_glo, nbasmon, 1, kjit, .TRUE., HTUhgmon_glo, "gather", nbp_glo, index_g) |
---|
2109 | WHERE ( HTUhgmon_glo .GE. val_exp ) |
---|
2110 | HTUhgmon_glo = zero |
---|
2111 | ENDWHERE |
---|
2112 | ENDIF |
---|
2113 | CALL scatter(HTUhgmon_glo, HTUhgmon) |
---|
2114 | DEALLOCATE(HTUhgmon_glo) |
---|
2115 | ! |
---|
2116 | ! Restart of the temperature monitoring |
---|
2117 | ! |
---|
2118 | ALLOCATE(HTUtempmon(nbpt,nbasmon), stat=ier) |
---|
2119 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for HTUtempmon','','') |
---|
2120 | ALLOCATE(HTUtempmon_glo(nbp_glo,nbasmon), stat=ier) |
---|
2121 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for HTUtempmon_glo','','') |
---|
2122 | ! |
---|
2123 | IF (is_root_prc) THEN |
---|
2124 | var_name = 'htutempmon' |
---|
2125 | CALL ioconf_setatt('UNITS', 'K') |
---|
2126 | CALL ioconf_setatt('LONG_NAME','Temperature at selected HTU of grid') |
---|
2127 | CALL restget(rest_id, var_name, nbp_glo, nbasmon, 1, kjit, .TRUE., HTUtempmon_glo, "gather", nbp_glo, index_g) |
---|
2128 | WHERE ( HTUtempmon_glo .GE. val_exp ) |
---|
2129 | HTUtempmon_glo = ZeroCelsius |
---|
2130 | ENDWHERE |
---|
2131 | HTUtempmon_glo(:,:) = ZeroCelsius |
---|
2132 | ENDIF |
---|
2133 | CALL scatter(HTUtempmon_glo, HTUtempmon) |
---|
2134 | DEALLOCATE(HTUtempmon_glo) |
---|
2135 | ! |
---|
2136 | ! The diagnostic variables, they are initialized from the above restart variables. |
---|
2137 | ! |
---|
2138 | ALLOCATE(fast_diag(nbpt), slow_diag(nbpt), stream_diag(nbpt), flood_diag(nbpt), & |
---|
2139 | & pond_diag(nbpt), lake_diag(nbpt), stat=ier) |
---|
2140 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for fast_diag,..','','') |
---|
2141 | |
---|
2142 | fast_diag(:) = zero |
---|
2143 | slow_diag(:) = zero |
---|
2144 | stream_diag(:) = zero |
---|
2145 | flood_diag(:) = zero |
---|
2146 | pond_diag(:) = zero |
---|
2147 | lake_diag(:) = zero |
---|
2148 | |
---|
2149 | DO ig=1,nbpt |
---|
2150 | totarea = zero |
---|
2151 | DO ib=1,nbasmax |
---|
2152 | totarea = totarea + routing_area(ig,ib) |
---|
2153 | fast_diag(ig) = fast_diag(ig) + fast_reservoir(ig,ib) |
---|
2154 | slow_diag(ig) = slow_diag(ig) + slow_reservoir(ig,ib) |
---|
2155 | stream_diag(ig) = stream_diag(ig) + stream_reservoir(ig,ib) |
---|
2156 | flood_diag(ig) = flood_diag(ig) + flood_reservoir(ig,ib) |
---|
2157 | ENDDO |
---|
2158 | ! |
---|
2159 | fast_diag(ig) = fast_diag(ig)/totarea |
---|
2160 | slow_diag(ig) = slow_diag(ig)/totarea |
---|
2161 | stream_diag(ig) = stream_diag(ig)/totarea |
---|
2162 | flood_diag(ig) = flood_diag(ig)/totarea |
---|
2163 | ! |
---|
2164 | ! This is the volume of the lake scaled to the entire grid. |
---|
2165 | ! It would be better to scale it to the size of the lake |
---|
2166 | ! but this information is not yet available. |
---|
2167 | ! |
---|
2168 | lake_diag(ig) = lake_reservoir(ig)/totarea |
---|
2169 | ! |
---|
2170 | ENDDO |
---|
2171 | ! |
---|
2172 | ! Get from the restart the fluxes we accumulated. |
---|
2173 | ! |
---|
2174 | ALLOCATE (floodout_mean(nbpt), stat=ier) |
---|
2175 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for floodout_mean','','') |
---|
2176 | var_name = 'floodout_route' |
---|
2177 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
2178 | CALL ioconf_setatt_p('LONG_NAME','Accumulated flow out of floodplains for routing') |
---|
2179 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., floodout_mean, "gather", nbp_glo, index_g) |
---|
2180 | CALL setvar_p (floodout_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2181 | |
---|
2182 | ALLOCATE (runoff_mean(nbpt), stat=ier) |
---|
2183 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for runoff_mean','','') |
---|
2184 | var_name = 'runoff_route' |
---|
2185 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
2186 | CALL ioconf_setatt_p('LONG_NAME','Accumulated runoff for routing') |
---|
2187 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., runoff_mean, "gather", nbp_glo, index_g) |
---|
2188 | CALL setvar_p (runoff_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2189 | |
---|
2190 | ALLOCATE(drainage_mean(nbpt), stat=ier) |
---|
2191 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for drainage_mean','','') |
---|
2192 | var_name = 'drainage_route' |
---|
2193 | CALL ioconf_setatt_p('UNITS', 'Kg') |
---|
2194 | CALL ioconf_setatt_p('LONG_NAME','Accumulated drainage for routing') |
---|
2195 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., drainage_mean, "gather", nbp_glo, index_g) |
---|
2196 | CALL setvar_p (drainage_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2197 | |
---|
2198 | ALLOCATE(transpot_mean(nbpt), stat=ier) |
---|
2199 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for transpot_mean','','') |
---|
2200 | var_name = 'transpot_route' |
---|
2201 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2') |
---|
2202 | CALL ioconf_setatt_p('LONG_NAME','Accumulated potential transpiration for routing/irrigation') |
---|
2203 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., transpot_mean, "gather", nbp_glo, index_g) |
---|
2204 | CALL setvar_p (transpot_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2205 | |
---|
2206 | ALLOCATE(precip_mean(nbpt), stat=ier) |
---|
2207 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for precip_mean','','') |
---|
2208 | var_name = 'precip_route' |
---|
2209 | CALL ioconf_setatt_p('UNITS', 'Kg/m^2') |
---|
2210 | CALL ioconf_setatt_p('LONG_NAME','Accumulated rain precipitation for irrigation') |
---|
2211 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., precip_mean, "gather", nbp_glo, index_g) |
---|
2212 | CALL setvar_p (precip_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2213 | |
---|
2214 | ALLOCATE(humrel_mean(nbpt), stat=ier) |
---|
2215 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for humrel_mean','','') |
---|
2216 | var_name = 'humrel_route' |
---|
2217 | CALL ioconf_setatt_p('UNITS', '-') |
---|
2218 | CALL ioconf_setatt_p('LONG_NAME','Mean humrel for irrigation') |
---|
2219 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., humrel_mean, "gather", nbp_glo, index_g) |
---|
2220 | CALL setvar_p (humrel_mean, val_exp, 'NO_KEYWORD', un) |
---|
2221 | |
---|
2222 | ALLOCATE(k_litt_mean(nbpt), stat=ier) |
---|
2223 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for k_litt_mean','','') |
---|
2224 | var_name = 'k_litt_route' |
---|
2225 | CALL ioconf_setatt_p('UNITS', '-') |
---|
2226 | CALL ioconf_setatt_p('LONG_NAME','Mean cond. for litter') |
---|
2227 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., k_litt_mean, "gather", nbp_glo, index_g) |
---|
2228 | CALL setvar_p (k_litt_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2229 | |
---|
2230 | ALLOCATE(totnobio_mean(nbpt), stat=ier) |
---|
2231 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for totnobio_mean','','') |
---|
2232 | var_name = 'totnobio_route' |
---|
2233 | CALL ioconf_setatt_p('UNITS', '-') |
---|
2234 | CALL ioconf_setatt_p('LONG_NAME','Last Total fraction of no bio for irrigation') |
---|
2235 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., totnobio_mean, "gather", nbp_glo, index_g) |
---|
2236 | CALL setvar_p (totnobio_mean, val_exp, 'NO_KEYWORD', zero) |
---|
2237 | |
---|
2238 | ALLOCATE(vegtot_mean(nbpt), stat=ier) |
---|
2239 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for vegtot_mean','','') |
---|
2240 | var_name = 'vegtot_route' |
---|
2241 | CALL ioconf_setatt_p('UNITS', '-') |
---|
2242 | CALL ioconf_setatt_p('LONG_NAME','Last Total fraction of vegetation') |
---|
2243 | CALL restget_p (rest_id, var_name, nbp_glo, 1, 1, kjit, .TRUE., vegtot_mean, "gather", nbp_glo, index_g) |
---|
2244 | CALL setvar_p (vegtot_mean, val_exp, 'NO_KEYWORD', un) |
---|
2245 | ! |
---|
2246 | ALLOCATE(stempdiag_mean(nbpt,nslm), stat=ier) |
---|
2247 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_init','Pb in allocate for stempdiag_mean','','') |
---|
2248 | var_name = 'stempdiag_route' |
---|
2249 | CALL ioconf_setatt_p('UNITS', 'K') |
---|
2250 | CALL ioconf_setatt_p('LONG_NAME','Mean temperature profile') |
---|
2251 | CALL restget_p (rest_id, var_name, nbp_glo, nslm, 1, kjit, .TRUE., stempdiag_mean, "gather", nbp_glo, index_g) |
---|
2252 | CALL setvar_p (stempdiag_mean, val_exp, 'NO_KEYWORD', Zero) |
---|
2253 | ! |
---|
2254 | DEALLOCATE(tmp_real_g) |
---|
2255 | ! |
---|
2256 | ! Other variables |
---|
2257 | ! |
---|
2258 | ALLOCATE(streamlimit(nbpt), stat=ier) |
---|
2259 | ! |
---|
2260 | END SUBROUTINE routing_hr_init |
---|
2261 | ! |
---|
2262 | !! ================================================================================================================================ |
---|
2263 | !! SUBROUTINE : routing_hr_restartconsistency |
---|
2264 | !! |
---|
2265 | !>\BRIEF : This subroutine will verify that the important dimensions for the routing exist in the restart file |
---|
2266 | !! or can be read from the routing_graph.nc file. This ensures that if the restart and graph file are |
---|
2267 | !! not consistent the latter is read and overwrite whatever was in the restart. Then the user will be |
---|
2268 | !! using the new routing graph from the routing_graph.nc and not whatever is in the restart. |
---|
2269 | !! \n |
---|
2270 | !_ ================================================================================================================================ |
---|
2271 | |
---|
2272 | SUBROUTINE routing_hr_restartconsistency(varname, dimgraph, dimrestart) |
---|
2273 | ! |
---|
2274 | IMPLICIT NONE |
---|
2275 | ! |
---|
2276 | !! INPUT VARIABLES |
---|
2277 | CHARACTER(LEN=80), INTENT(in) :: varname !! Name of dimension |
---|
2278 | INTEGER(i_std), INTENT(inout) :: dimgraph !! Dimension read in the graph file and also final result. |
---|
2279 | REAL(r_std), INTENT(in) :: dimrestart !! Dimension read in the restart file. |
---|
2280 | ! |
---|
2281 | ! Case when the routing_hr_graphinfo could not get any information from the routing_graph.nc |
---|
2282 | IF ( dimgraph < un ) THEN |
---|
2283 | IF ( dimrestart > zero ) THEN |
---|
2284 | ! Only information from the restart. |
---|
2285 | dimgraph = NINT(dimrestart) |
---|
2286 | ELSE |
---|
2287 | WRITE(*,*) "Problem : No information in the routing_graph file and no routing information in restart ", TRIM(varname) |
---|
2288 | CALL ipslerr(3,'routing_hr_restartconsistency',& |
---|
2289 | 'No routing_graph file availble and no information in restart.', & |
---|
2290 | 'Cannot perform routing in ORCHIDEE.', ' ') |
---|
2291 | ENDIF |
---|
2292 | |
---|
2293 | ! Information from the routing_graph.nc file exists ! |
---|
2294 | ELSE |
---|
2295 | IF ( dimgraph .NE. NINT(dimrestart) ) THEN |
---|
2296 | WRITE(*,*) "Problem for ", TRIM(varname)," in restart is not the same as in routing_graph.nc " |
---|
2297 | WRITE(*,*) "Value of ", TRIM(varname), " in restart file : ", dimrestart |
---|
2298 | WRITE(*,*) "Value of ", TRIM(varname), " in routing_graph.nc file : ", dimgraph |
---|
2299 | CALL ipslerr(2,'routing_hr_restartconsistency',& |
---|
2300 | 'The value of dimension provided is not consistant with the one in routing_graph file.', & |
---|
2301 | 'We will read a new graph from the given file.', ' ') |
---|
2302 | ReadGraph = .TRUE. |
---|
2303 | ELSE |
---|
2304 | !! Nothing to do |
---|
2305 | ENDIF |
---|
2306 | ENDIF |
---|
2307 | END SUBROUTINE routing_hr_restartconsistency |
---|
2308 | !! ================================================================================================================================ |
---|
2309 | !! SUBROUTINE : routing_highres_clear |
---|
2310 | !! |
---|
2311 | !>\BRIEF : This subroutine deallocates the block memory previously allocated. |
---|
2312 | !! \n |
---|
2313 | !_ ================================================================================================================================ |
---|
2314 | |
---|
2315 | SUBROUTINE routing_highres_clear() |
---|
2316 | |
---|
2317 | IF (ALLOCATED(routing_area_loc)) DEALLOCATE(routing_area_loc) |
---|
2318 | IF (ALLOCATED(route_togrid_loc)) DEALLOCATE(route_togrid_loc) |
---|
2319 | IF (ALLOCATED(route_tobasin_loc)) DEALLOCATE(route_tobasin_loc) |
---|
2320 | IF (ALLOCATED(route_nbintobas_loc)) DEALLOCATE(route_nbintobas_loc) |
---|
2321 | IF (ALLOCATED(global_basinid_loc)) DEALLOCATE(global_basinid_loc) |
---|
2322 | IF (ALLOCATED(topo_resid_loc)) DEALLOCATE(topo_resid_loc) |
---|
2323 | IF (ALLOCATED(stream_resid_loc)) DEALLOCATE(stream_resid_loc) |
---|
2324 | IF (ALLOCATED(routing_area_glo)) DEALLOCATE(routing_area_glo) |
---|
2325 | IF (ALLOCATED(route_togrid_glo)) DEALLOCATE(route_togrid_glo) |
---|
2326 | IF (ALLOCATED(route_tobasin_glo)) DEALLOCATE(route_tobasin_glo) |
---|
2327 | IF (ALLOCATED(route_nbintobas_glo)) DEALLOCATE(route_nbintobas_glo) |
---|
2328 | IF (ALLOCATED(global_basinid_glo)) DEALLOCATE(global_basinid_glo) |
---|
2329 | IF (ALLOCATED(topo_resid_glo)) DEALLOCATE(topo_resid_glo) |
---|
2330 | IF (ALLOCATED(stream_resid_glo)) DEALLOCATE(stream_resid_glo) |
---|
2331 | IF (ALLOCATED(fast_reservoir)) DEALLOCATE(fast_reservoir) |
---|
2332 | IF (ALLOCATED(slow_reservoir)) DEALLOCATE(slow_reservoir) |
---|
2333 | IF (ALLOCATED(stream_reservoir)) DEALLOCATE(stream_reservoir) |
---|
2334 | |
---|
2335 | IF (ALLOCATED(fast_temp)) DEALLOCATE(fast_temp) |
---|
2336 | IF (ALLOCATED(slow_temp)) DEALLOCATE(slow_temp) |
---|
2337 | IF (ALLOCATED(stream_temp)) DEALLOCATE(stream_temp) |
---|
2338 | |
---|
2339 | IF (ALLOCATED(flood_reservoir)) DEALLOCATE(flood_reservoir) |
---|
2340 | IF (ALLOCATED(flood_frac_bas)) DEALLOCATE(flood_frac_bas) |
---|
2341 | IF (ALLOCATED(flood_height)) DEALLOCATE(flood_height) |
---|
2342 | IF (ALLOCATED(pond_frac)) DEALLOCATE(pond_frac) |
---|
2343 | IF (ALLOCATED(lake_reservoir)) DEALLOCATE(lake_reservoir) |
---|
2344 | IF (ALLOCATED(pond_reservoir)) DEALLOCATE(pond_reservoir) |
---|
2345 | IF (ALLOCATED(returnflow_mean)) DEALLOCATE(returnflow_mean) |
---|
2346 | IF (ALLOCATED(reinfiltration_mean)) DEALLOCATE(reinfiltration_mean) |
---|
2347 | IF (ALLOCATED(riverflow_mean)) DEALLOCATE(riverflow_mean) |
---|
2348 | IF (ALLOCATED(coastalflow_mean)) DEALLOCATE(coastalflow_mean) |
---|
2349 | IF (ALLOCATED(lakeinflow_mean)) DEALLOCATE(lakeinflow_mean) |
---|
2350 | IF (ALLOCATED(runoff_mean)) DEALLOCATE(runoff_mean) |
---|
2351 | IF (ALLOCATED(floodout_mean)) DEALLOCATE(floodout_mean) |
---|
2352 | IF (ALLOCATED(drainage_mean)) DEALLOCATE(drainage_mean) |
---|
2353 | IF (ALLOCATED(transpot_mean)) DEALLOCATE(transpot_mean) |
---|
2354 | IF (ALLOCATED(precip_mean)) DEALLOCATE(precip_mean) |
---|
2355 | IF (ALLOCATED(humrel_mean)) DEALLOCATE(humrel_mean) |
---|
2356 | IF (ALLOCATED(k_litt_mean)) DEALLOCATE(k_litt_mean) |
---|
2357 | IF (ALLOCATED(stempdiag_mean)) DEALLOCATE(stempdiag_mean) |
---|
2358 | IF (ALLOCATED(totnobio_mean)) DEALLOCATE(totnobio_mean) |
---|
2359 | IF (ALLOCATED(vegtot_mean)) DEALLOCATE(vegtot_mean) |
---|
2360 | IF (ALLOCATED(floodtemp)) DEALLOCATE(floodtemp) |
---|
2361 | IF (ALLOCATED(hydrodiag_loc)) DEALLOCATE(hydrodiag_loc) |
---|
2362 | IF (ALLOCATED(hydrodiag_glo)) DEALLOCATE(hydrodiag_glo) |
---|
2363 | IF (ALLOCATED(hydrographs)) DEALLOCATE(hydrographs) |
---|
2364 | IF (ALLOCATED(hydrotemp)) DEALLOCATE(hydrotemp) |
---|
2365 | IF (ALLOCATED(HTUhgmon)) DEALLOCATE(HTUhgmon) |
---|
2366 | IF (ALLOCATED(HTUhgmon_glo)) DEALLOCATE(HTUhgmon_glo) |
---|
2367 | IF (ALLOCATED(HTUtempmon)) DEALLOCATE(HTUtempmon) |
---|
2368 | IF (ALLOCATED(HTUtempmon_glo)) DEALLOCATE(HTUtempmon_glo) |
---|
2369 | IF (ALLOCATED(slowflow_diag)) DEALLOCATE(slowflow_diag) |
---|
2370 | IF (ALLOCATED(irrigation_mean)) DEALLOCATE(irrigation_mean) |
---|
2371 | IF (ALLOCATED(irrigated)) DEALLOCATE(irrigated) |
---|
2372 | IF (ALLOCATED(floodplains_glo)) DEALLOCATE(floodplains_glo) |
---|
2373 | IF (ALLOCATED(floodplains_loc)) DEALLOCATE(floodplains_loc) |
---|
2374 | IF (ALLOCATED(swamp)) DEALLOCATE(swamp) |
---|
2375 | IF (ALLOCATED(fast_diag)) DEALLOCATE(fast_diag) |
---|
2376 | IF (ALLOCATED(slow_diag)) DEALLOCATE(slow_diag) |
---|
2377 | IF (ALLOCATED(stream_diag)) DEALLOCATE(stream_diag) |
---|
2378 | IF (ALLOCATED(flood_diag)) DEALLOCATE(flood_diag) |
---|
2379 | IF (ALLOCATED(pond_diag)) DEALLOCATE(pond_diag) |
---|
2380 | IF (ALLOCATED(lake_diag)) DEALLOCATE(lake_diag) |
---|
2381 | ! |
---|
2382 | IF (ALLOCATED(route_innum_loc)) DEALLOCATE(route_innum_loc) |
---|
2383 | IF (ALLOCATED(route_ingrid_loc)) DEALLOCATE(route_ingrid_loc) |
---|
2384 | IF (ALLOCATED(route_inbasin_loc)) DEALLOCATE(route_inbasin_loc) |
---|
2385 | IF (ALLOCATED(route_innum_glo)) DEALLOCATE(route_innum_glo) |
---|
2386 | IF (ALLOCATED(route_ingrid_glo)) DEALLOCATE(route_ingrid_glo) |
---|
2387 | IF (ALLOCATED(route_inbasin_glo)) DEALLOCATE(route_inbasin_glo) |
---|
2388 | ! |
---|
2389 | IF (ALLOCATED(orog_min_loc)) DEALLOCATE(orog_min_loc) |
---|
2390 | IF (ALLOCATED(orog_min_glo)) DEALLOCATE(orog_min_glo) |
---|
2391 | ! |
---|
2392 | IF (ALLOCATED(floodcri_loc)) DEALLOCATE(floodcri_loc) |
---|
2393 | IF (ALLOCATED(floodcri_glo)) DEALLOCATE(floodcri_glo) |
---|
2394 | IF (ALLOCATED(fp_beta_loc)) DEALLOCATE(fp_beta_loc) |
---|
2395 | IF (ALLOCATED(fp_beta_glo)) DEALLOCATE(fp_beta_glo) |
---|
2396 | |
---|
2397 | END SUBROUTINE routing_highres_clear |
---|
2398 | ! |
---|
2399 | |
---|
2400 | !! ================================================================================================================================ |
---|
2401 | !! SUBROUTINE : routing_hr_flow |
---|
2402 | !! |
---|
2403 | !>\BRIEF This subroutine computes the transport of water in the various reservoirs |
---|
2404 | !! (including ponds and floodplains) and the water withdrawals from the reservoirs for irrigation. |
---|
2405 | !! |
---|
2406 | !! DESCRIPTION (definitions, functional, design, flags) : |
---|
2407 | !! This will first compute the amount of water which flows out of each of the 3 reservoirs using the assumption of an |
---|
2408 | !! exponential decrease of water in the reservoir (see Hagemann S and Dumenil L. (1998)). Then we compute the fluxes |
---|
2409 | !! for floodplains and ponds. All this will then be used in order to update each of the basins : taking water out of |
---|
2410 | !! the up-stream basin and adding it to the down-stream one. |
---|
2411 | !! As this step happens globaly we have to stop the parallel processing in order to exchange the information. Once |
---|
2412 | !! all reservoirs are updated we deal with irrigation. The final step is to compute diagnostic fluxes. Among them |
---|
2413 | !! the hydrographs of the largest rivers we have chosen to monitor. |
---|
2414 | !! |
---|
2415 | !! RECENT CHANGE(S): None |
---|
2416 | !! |
---|
2417 | !! MAIN OUTPUT VARIABLE(S): lakeinflow, returnflow, reinfiltration, irrigation, riverflow, coastalflow, hydrographs, flood_frac, flood_res |
---|
2418 | !! |
---|
2419 | !! REFERENCES : |
---|
2420 | !! - Ngo-Duc, T., K. Laval, G. Ramillien, J. Polcher, and A. Cazenave (2007) |
---|
2421 | !! Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. |
---|
2422 | !! Water Resour. Res., 43, W04427, doi:10.1029/2006WR004941. |
---|
2423 | !! * Irrigation: |
---|
2424 | !! - de Rosnay, P., J. Polcher, K. Laval, and M. Sabre (2003) |
---|
2425 | !! Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. |
---|
2426 | !! Geophys. Res. Lett., 30(19), 1986, doi:10.1029/2003GL018024. |
---|
2427 | !! - A.C. Vivant (2003) |
---|
2428 | !! Les plaines d'inondations et l'irrigation dans ORCHIDEE, impacts de leur prise en compte. |
---|
2429 | !! , , 51pp. |
---|
2430 | !! - N. Culson (2004) |
---|
2431 | !! Impact de l'irrigation sur le cycle de l'eau |
---|
2432 | !! Master thesis, Paris VI University, 55pp. |
---|
2433 | !! - X.-T. Nguyen-Vinh (2005) |
---|
2434 | !! Analyse de l'impact de l'irrigation en Amerique du Nord - plaine du Mississippi - sur la climatologie regionale |
---|
2435 | !! Master thesis, Paris VI University, 33pp. |
---|
2436 | !! - M. Guimberteau (2006) |
---|
2437 | !! Analyse et modifications proposees de la modelisation de l'irrigation dans un modele de surface. |
---|
2438 | !! Master thesis, Paris VI University, 46pp. |
---|
2439 | !! - Guimberteau M. (2010) |
---|
2440 | !! Modelisation de l'hydrologie continentale et influences de l'irrigation sur le cycle de l'eau. |
---|
2441 | !! Ph.D. thesis, Paris VI University, 195pp. |
---|
2442 | !! - Guimberteau M., Laval K., Perrier A. and Polcher J. (2011). |
---|
2443 | !! Global effect of irrigation and its impact on the onset of the Indian summer monsoon. |
---|
2444 | !! In press, Climate Dynamics, doi: 10.1007/s00382-011-1252-5. |
---|
2445 | !! * Floodplains: |
---|
2446 | !! - A.C. Vivant (2002) |
---|
2447 | !! L'ecoulement lateral de l'eau sur les surfaces continentales. Prise en compte des plaines d'inondations dans ORCHIDEE. |
---|
2448 | !! Master thesis, Paris VI University, 46pp. |
---|
2449 | !! - A.C. Vivant (2003) |
---|
2450 | !! Les plaines d'inondations et l'irrigation dans ORCHIDEE, impacts de leur prise en compte. |
---|
2451 | !! , , 51pp. |
---|
2452 | !! - T. d'Orgeval (2006) |
---|
2453 | !! Impact du changement climatique sur le cycle de l'eau en Afrique de l'Ouest: modelisation et incertitudes. |
---|
2454 | !! Ph.D. thesis, Paris VI University, 188pp. |
---|
2455 | !! - T. d'Orgeval, J. Polcher, and P. de Rosnay (2008) |
---|
2456 | !! Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. |
---|
2457 | !! Hydrol. Earth Syst. Sci., 12, 1387-1401 |
---|
2458 | !! - M. Guimberteau, G. Drapeau, J. Ronchail, B. Sultan, J. Polcher, J.-M. Martinez, C. Prigent, J.-L. Guyot, G. Cochonneau, |
---|
2459 | !! J. C. Espinoza, N. Filizola, P. Fraizy, W. Lavado, E. De Oliveira, R. Pombosa, L. Noriega, and P. Vauchel (2011) |
---|
2460 | !! Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. |
---|
2461 | !! Hydrol. Earth Syst. Sci. Discuss., 8, 11171-11232, doi:10.5194/hessd-8-11171-2011 |
---|
2462 | !! |
---|
2463 | !! FLOWCHART :None |
---|
2464 | !! \n |
---|
2465 | !_ ================================================================================================================================ |
---|
2466 | |
---|
2467 | SUBROUTINE routing_hr_flow(nbpt, dt_routing, lalo, floodout, runoff, drainage, & |
---|
2468 | & vegtot, totnobio, transpot_mean, precip, humrel, k_litt, floodtemp, stempdiag, & |
---|
2469 | & reinf_slope, lakeinflow, returnflow, reinfiltration, irrigation, riverflow, & |
---|
2470 | & coastalflow, hydrographs, slowflow_diag, flood_frac, flood_res, & |
---|
2471 | & netflow_stream_diag, netflow_fast_diag, netflow_slow_diag, & |
---|
2472 | & stemp_total_tend, stemp_advec_tend, stemp_relax_tend) |
---|
2473 | ! |
---|
2474 | IMPLICIT NONE |
---|
2475 | ! |
---|
2476 | !! INPUT VARIABLES |
---|
2477 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
2478 | REAL(r_std), INTENT (in) :: dt_routing !! Routing time step (s) |
---|
2479 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes |
---|
2480 | REAL(r_std), INTENT(in) :: runoff(nbpt) !! Grid-point runoff (kg/m^2/dt) |
---|
2481 | REAL(r_std), INTENT(in) :: floodout(nbpt) !! Grid-point flow out of floodplains (kg/m^2/dt) |
---|
2482 | REAL(r_std), INTENT(in) :: drainage(nbpt) !! Grid-point drainage (kg/m^2/dt) |
---|
2483 | REAL(r_std), INTENT(in) :: vegtot(nbpt) !! Potentially vegetated fraction (unitless;0-1) |
---|
2484 | REAL(r_std), INTENT(in) :: totnobio(nbpt) !! Other areas which can not have vegetation |
---|
2485 | REAL(r_std), INTENT(in) :: transpot_mean(nbpt) !! Mean potential transpiration of the vegetation (kg/m^2/dt) |
---|
2486 | REAL(r_std), INTENT(in) :: precip(nbpt) !! Rainfall (kg/m^2/dt) |
---|
2487 | REAL(r_std), INTENT(in) :: humrel(nbpt) !! Soil moisture stress, root extraction potential (unitless) |
---|
2488 | REAL(r_std), INTENT(in) :: k_litt(nbpt) !! Averaged conductivity for saturated infiltration in the 'litter' layer (kg/m^2/dt) |
---|
2489 | REAL(r_std), INTENT(in) :: floodtemp(nbpt) !! Temperature to decide if floodplains work (K) |
---|
2490 | REAL(r_std), INTENT(in) :: stempdiag(nbpt,nslm) !! Soil temperature profiles (K) |
---|
2491 | REAL(r_std), INTENT(in) :: reinf_slope(nbpt) !! Coefficient which determines the reinfiltration ratio in the grid box due to flat areas (unitless;0-1) |
---|
2492 | REAL(r_std), INTENT(out) :: lakeinflow(nbpt) !! Water inflow to the lakes (kg/dt) |
---|
2493 | ! |
---|
2494 | !! OUTPUT VARIABLES |
---|
2495 | REAL(r_std), INTENT(out) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns into the grid box. |
---|
2496 | !! This water will go back into the hydrol module to allow re-evaporation (kg/m^2/dt_routing) |
---|
2497 | REAL(r_std), INTENT(out) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
2498 | REAL(r_std), INTENT(out) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt_routing) |
---|
2499 | REAL(r_std), INTENT(out) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt_routing) |
---|
2500 | REAL(r_std), INTENT(out) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt_routing) |
---|
2501 | REAL(r_std), INTENT(out) :: hydrographs(nbpt) !! Hydrographs at the outflow of the grid box for major basins (kg/dt) |
---|
2502 | REAL(r_std), INTENT(out) :: slowflow_diag(nbpt) !! Hydrographs of slow_flow = routed slow_flow for major basins (kg/dt) |
---|
2503 | REAL(r_std), INTENT(out) :: flood_frac(nbpt) !! Flooded fraction of the grid box (unitless;0-1) |
---|
2504 | REAL(r_std), INTENT(out) :: flood_res(nbpt) !! Diagnostic of water amount in the floodplains reservoir (kg) |
---|
2505 | |
---|
2506 | REAL(r_std), INTENT(out) :: netflow_stream_diag(nbpt) !! Input - Output flow to stream reservoir |
---|
2507 | REAL(r_std), INTENT(out) :: netflow_fast_diag(nbpt) !! Input - Output flow to fast reservoir |
---|
2508 | REAL(r_std), INTENT(out) :: netflow_slow_diag(nbpt) !! Input - Output flow to slow reservoir |
---|
2509 | REAL(r_std), INTENT(out) :: stemp_total_tend(nbpt, nbasmax) !! Total tendency in GJ/s computed for the stream reservoir. |
---|
2510 | REAL(r_std), INTENT(out) :: stemp_advec_tend(nbpt, nbasmax) !! Tendency (GJ/s) produced by advection |
---|
2511 | REAL(r_std), INTENT(out) :: stemp_relax_tend(nbpt, nbasmax) !! Tendency (GJ/s) produced by relaxation |
---|
2512 | ! |
---|
2513 | !! LOCAL VARIABLES |
---|
2514 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: fast_flow !! Outflow from the fast reservoir (kg/dt) |
---|
2515 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: slow_flow !! Outflow from the slow reservoir (kg/dt) |
---|
2516 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: stream_flow !! Outflow from the stream reservoir (kg/dt) |
---|
2517 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: flood_flow !! Outflow from the floodplain reservoir (kg/dt) |
---|
2518 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: pond_inflow !! Inflow to the pond reservoir (kg/dt) |
---|
2519 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: pond_drainage !! Drainage from pond (kg/m^2/dt) |
---|
2520 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: flood_drainage !! Drainage from floodplains (kg/m^2/dt) |
---|
2521 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: return_swamp !! Inflow to the swamp (kg/dt) |
---|
2522 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: source |
---|
2523 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: ewh, wrr |
---|
2524 | ! |
---|
2525 | ! Irrigation per basin |
---|
2526 | ! |
---|
2527 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_needs !! Total irrigation requirement (water requirements by the crop for its optimal growth) (kg) |
---|
2528 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_actual !! Possible irrigation according to the water availability in the reservoirs (kg) |
---|
2529 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_deficit !! Amount of water missing for irrigation (kg) |
---|
2530 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: irrig_adduct !! Amount of water carried over from other basins for irrigation (kg) |
---|
2531 | ! |
---|
2532 | ! The transport terms are over a larger indexing space so that outlfows to ocean and lakes do not generate out of bounds issues. |
---|
2533 | ! Non existing HTU have their index set to zero and their memory will end-up in index 0 of transport. |
---|
2534 | ! |
---|
2535 | REAL(r_std), DIMENSION(nbpt, 0:nbasmax+3) :: transport !! Water transport between basins (kg/dt) |
---|
2536 | REAL(r_std), DIMENSION(nbp_glo, 0:nbasmax+3) :: transport_glo !! Water transport between basins (kg/dt) |
---|
2537 | REAL(r_std), DIMENSION(nbpt, 0:nbasmax+3) :: transport_temp !! Temperature transport between grids |
---|
2538 | REAL(r_std), DIMENSION(nbp_glo, 0:nbasmax+3) :: transport_temp_glo !! Temperature transport global for transfers |
---|
2539 | ! |
---|
2540 | REAL(r_std) :: oldtemp |
---|
2541 | REAL(r_std) :: oldstream |
---|
2542 | INTEGER(i_std), SAVE :: nbunpy=0 |
---|
2543 | ! |
---|
2544 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: floods !! Water flow in to the floodplains (kg/dt) |
---|
2545 | REAL(r_std), DIMENSION(nbpt, nbasmax) :: potflood !! Potential inflow to the swamps (kg/dt) |
---|
2546 | REAL(r_std), DIMENSION(nbpt) :: tobeflooded !! Maximal surface which can be inundated in each grid box (m^2) |
---|
2547 | REAL(r_std), DIMENSION(nbpt) :: totarea !! Total area of basin (m^2) |
---|
2548 | REAL(r_std), DIMENSION(nbpt) :: totflood !! Total amount of water in the floodplains reservoir (kg) |
---|
2549 | REAL(r_std), DIMENSION(nbasmax) :: pond_excessflow !! |
---|
2550 | REAL(r_std) :: flow !! Outflow computation for the reservoirs (kg/dt) |
---|
2551 | REAL(r_std) :: floodindex !! Fraction of grid box area inundated (unitless;0-1) |
---|
2552 | REAL(r_std) :: pondex !! |
---|
2553 | REAL(r_std) :: stream_tot !! Total water amount in the stream reservoirs (kg) |
---|
2554 | REAL(r_std) :: adduction !! Importation of water from a stream reservoir of a neighboring grid box (kg) |
---|
2555 | REAL(r_std), DIMENSION(nbp_glo) :: lake_overflow_g !! Removed water from lake reservoir on global grid (kg/gridcell/dt_routing) |
---|
2556 | REAL(r_std), DIMENSION(nbpt) :: lake_overflow !! Removed water from lake reservoir on local grid (kg/gridcell/dt_routing) |
---|
2557 | REAL(r_std), DIMENSION(nbpt) :: lake_overflow_coast !! lake_overflow distributed on coast gridcells, only diag(kg/gridcell/dt_routing) |
---|
2558 | REAL(r_std) :: total_lake_overflow !! Sum of lake_overflow over full grid (kg) |
---|
2559 | REAL(r_std), DIMENSION(8,nbasmax) :: streams_around !! Stream reservoirs of the neighboring grid boxes (kg) |
---|
2560 | INTEGER(i_std), DIMENSION(8) :: igrd !! |
---|
2561 | INTEGER(i_std), DIMENSION(2) :: ff !! |
---|
2562 | INTEGER(i_std), DIMENSION(1) :: fi !! |
---|
2563 | INTEGER(i_std) :: ig, ib, ib2, ig2, im !! Indices (unitless) |
---|
2564 | INTEGER(i_std) :: rtg, rtb, in, ing, inb,inf!! Indices (unitless) |
---|
2565 | !INTEGER(i_std) :: numflood !! |
---|
2566 | INTEGER(i_std) :: ier, negslow !! Error handling |
---|
2567 | INTEGER(i_std), DIMENSION(20) :: negig, negib |
---|
2568 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: fast_flow_g !! Outflow from the fast reservoir (kg/dt) |
---|
2569 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: slow_flow_g !! Outflow from the slow reservoir (kg/dt) |
---|
2570 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: stream_flow_g !! Outflow from the stream reservoir (kg/dt) |
---|
2571 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: fast_temp_g !! Temperature of the fast reservoir (K) |
---|
2572 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: slow_temp_g !! Temperature of the slow reservoir (K) |
---|
2573 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: stream_temp_g !! Temperature of the stream reservoir (K) |
---|
2574 | !REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: flood_height_g !! Floodplains height (m) |
---|
2575 | !REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: flood_frac_bas_g !! Fraction of the HTU flooded |
---|
2576 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrig_deficit_glo !! Amount of water missing for irrigation (kg) |
---|
2577 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: stream_reservoir_glo !! Water amount in the stream reservoir (kg) |
---|
2578 | !REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: flood_reservoir_glo !! Water amount in the stream reservoir (kg) |
---|
2579 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrig_adduct_glo !! Amount of water carried over from other basins for irrigation (kg) |
---|
2580 | |
---|
2581 | REAL(r_std) :: reduced !! Discharge reduction due to floodplains |
---|
2582 | REAL(r_std) :: restime, minrestime, maxrestime!! Scaling for residence times in the relaxation of temperature. |
---|
2583 | REAL(r_std) :: htmp, hscale !! Water height scalingfor temperature relaxation |
---|
2584 | REAL(r_std) :: krelax, den |
---|
2585 | !! PARAMETERS |
---|
2586 | LOGICAL, PARAMETER :: check_reservoir = .FALSE. !! Logical to choose if we write informations when a negative amount of water is occurring in a reservoir (true/false) |
---|
2587 | LOGICAL, SAVE :: origformula = .FALSE. |
---|
2588 | !_ ================================================================================================================================ |
---|
2589 | ! |
---|
2590 | minrestime = 86400/2.0 |
---|
2591 | maxrestime = stream_maxresid * stream_tcst |
---|
2592 | ! |
---|
2593 | origformula = .FALSE. |
---|
2594 | CALL getin_p('ELIOTTFORMULA',origformula) |
---|
2595 | hscale = 1. |
---|
2596 | CALL getin_p('HSCALEKH',hscale) |
---|
2597 | ! |
---|
2598 | transport(:,:) = zero |
---|
2599 | transport_glo(:,:) = zero |
---|
2600 | IF ( do_rivertemp ) THEN |
---|
2601 | transport_temp(:,:) = zero !tp_00 its a transport, not a temperature !! |
---|
2602 | transport_temp_glo(:,:) = zero !tp_00 |
---|
2603 | ENDIF |
---|
2604 | irrig_netereq(:) = zero |
---|
2605 | irrig_needs(:,:) = zero |
---|
2606 | irrig_actual(:,:) = zero |
---|
2607 | irrig_deficit(:,:) = zero |
---|
2608 | irrig_adduct(:,:) = zero |
---|
2609 | totarea(:) = zero |
---|
2610 | totflood(:) = zero |
---|
2611 | ! |
---|
2612 | ! Compute all the fluxes |
---|
2613 | ! |
---|
2614 | DO ib=1,nbasmax |
---|
2615 | DO ig=1,nbpt |
---|
2616 | ! |
---|
2617 | totarea(ig) = totarea(ig) + routing_area(ig,ib) |
---|
2618 | totflood(ig) = totflood(ig) + flood_reservoir(ig,ib) |
---|
2619 | ENDDO |
---|
2620 | ENDDO |
---|
2621 | ! |
---|
2622 | !> The outflow fluxes from the three reservoirs are computed. |
---|
2623 | !> The outflow of volume of water Vi into the reservoir i is assumed to be linearly related to its volume. |
---|
2624 | !> The water travel simulated by the routing scheme is dependent on the water retention index topo_resid |
---|
2625 | !> given by a 0.5 degree resolution map for each pixel performed from a simplification of Manning's formula |
---|
2626 | !> (Dingman, 1994; Ducharne et al., 2003). |
---|
2627 | !> The resulting product of tcst (in s/km) and topo_resid (in km) represents the time constant (s) |
---|
2628 | !> which is an e-folding time, the time necessary for the water amount |
---|
2629 | !> in the stream reservoir to decrease by a factor e. Hence, it gives an order of |
---|
2630 | !> magnitude of the travel time through this reservoir between |
---|
2631 | !> the sub-basin considered and its downstream neighbor. |
---|
2632 | ! |
---|
2633 | IF ( do_rivertemp ) THEN |
---|
2634 | CALL groudwatertemp(nbpt, nbasmax, nslm, stempdiag, diaglev, fast_temp, slow_temp) |
---|
2635 | ENDIF |
---|
2636 | ! |
---|
2637 | streamlimit(:) = zero |
---|
2638 | ! |
---|
2639 | DO ib=1,nbasmax |
---|
2640 | DO ig=1,nbpt |
---|
2641 | IF ( route_tobasin(ig,ib) .GT. 0 ) THEN |
---|
2642 | ! |
---|
2643 | ! Each of the fluxes is limited by the water in the reservoir and a small margin |
---|
2644 | ! (min_reservoir) to avoid rounding errors. |
---|
2645 | ! |
---|
2646 | flow = MIN(fast_reservoir(ig,ib)/(topo_resid(ig,ib)*fast_tcst/dt_routing),& |
---|
2647 | & fast_reservoir(ig,ib)-min_sechiba) |
---|
2648 | fast_flow(ig,ib) = MAX(flow, zero) |
---|
2649 | |
---|
2650 | flow = MIN(slow_reservoir(ig,ib)/(topo_resid(ig,ib)*slow_tcst/dt_routing),& |
---|
2651 | & slow_reservoir(ig,ib)-min_sechiba) |
---|
2652 | slow_flow(ig,ib) = MAX(flow, zero) |
---|
2653 | |
---|
2654 | ! Need to adjust the reduction of the flow |
---|
2655 | reduced = MAX(1-SQRT(MIN(flood_frac_bas(ig,ib),rfloodmax)), min_sechiba) ! Add the reduction flow parameter |
---|
2656 | flow = stream_reservoir(ig,ib)/(stream_resid(ig,ib)*stream_tcst/dt_routing)*reduced |
---|
2657 | flow = MIN(flow, stream_reservoir(ig,ib)-min_sechiba) |
---|
2658 | stream_flow(ig,ib) = MAX(flow, zero) |
---|
2659 | IF ( stream_flow(ig,ib) .GE. stream_reservoir(ig,ib)-min_sechiba .AND. stream_flow(ig,ib) > zero .AND. & |
---|
2660 | & routing_area(ig,ib) > zero ) THEN |
---|
2661 | streamlimit(ig) = streamlimit(ig)+1.0 |
---|
2662 | ENDIF |
---|
2663 | ! |
---|
2664 | ELSE |
---|
2665 | fast_flow(ig,ib) = zero |
---|
2666 | slow_flow(ig,ib) = zero |
---|
2667 | stream_flow(ig,ib) = zero |
---|
2668 | ENDIF |
---|
2669 | ENDDO |
---|
2670 | ENDDO |
---|
2671 | !- |
---|
2672 | !- Compute the fluxes out of the floodplains and ponds if they exist. |
---|
2673 | !- |
---|
2674 | IF (do_floodplains .OR. doponds) THEN |
---|
2675 | DO ig=1,nbpt |
---|
2676 | IF (flood_frac(ig) .GT. min_sechiba) THEN |
---|
2677 | !!!! |
---|
2678 | ! PONDS : not actualized |
---|
2679 | ! |
---|
2680 | !flow = MIN(floodout(ig)*totarea(ig)*pond_frac(ig)/flood_frac(ig), pond_reservoir(ig)+totflood(ig)) |
---|
2681 | !pondex = MAX(flow - pond_reservoir(ig), zero) |
---|
2682 | !pond_reservoir(ig) = pond_reservoir(ig) - (flow - pondex) |
---|
2683 | ! |
---|
2684 | ! If demand was over reservoir size, we will take it out from floodplains |
---|
2685 | ! |
---|
2686 | !pond_excessflow(:) = zero |
---|
2687 | !DO ib=1,nbasmax |
---|
2688 | ! pond_excessflow(ib) = MIN(pondex*flood_frac_bas(ig,ib)/(flood_frac(ig)-pond_frac(ig)),& |
---|
2689 | ! & flood_reservoir(ig,ib)) |
---|
2690 | ! pondex = pondex - pond_excessflow(ib) |
---|
2691 | !ENDDO |
---|
2692 | ! |
---|
2693 | !IF ( pondex .GT. min_sechiba) THEN |
---|
2694 | ! WRITE(numout,*) "Unable to redistribute the excess pond outflow over the water available in the floodplain." |
---|
2695 | ! WRITE(numout,*) "Pondex = ", pondex |
---|
2696 | ! WRITE(numout,*) "pond_excessflow(:) = ", pond_excessflow(:) |
---|
2697 | !ENDIF |
---|
2698 | ! |
---|
2699 | DO ib=1,nbasmax |
---|
2700 | ! |
---|
2701 | ! when ponds actualized : add pond_excessflow to flow |
---|
2702 | ! This is the flow out of the reservoir due to ET (+ pond excessflow(ig), suppressed here) |
---|
2703 | !flow = floodout(ig)*routing_area(ig,ib)*flood_frac_bas(ig,ib)/flood_frac(ig) |
---|
2704 | flow = floodout(ig)*routing_area(ig,ib)*flood_frac_bas(ig,ib) |
---|
2705 | ! |
---|
2706 | flood_reservoir(ig,ib) = flood_reservoir(ig,ib) - flow |
---|
2707 | ! |
---|
2708 | ! |
---|
2709 | IF (flood_reservoir(ig,ib) .LT. min_sechiba) THEN |
---|
2710 | flood_reservoir(ig,ib) = zero |
---|
2711 | ENDIF |
---|
2712 | IF (pond_reservoir(ig) .LT. min_sechiba) THEN |
---|
2713 | pond_reservoir(ig) = zero |
---|
2714 | ENDIF |
---|
2715 | ENDDO |
---|
2716 | ENDIF |
---|
2717 | ENDDO |
---|
2718 | ENDIF |
---|
2719 | |
---|
2720 | !- |
---|
2721 | !- Computing the drainage and outflow from floodplains |
---|
2722 | !> Drainage from floodplains is depending on a averaged conductivity (k_litt) |
---|
2723 | !> for saturated infiltration in the 'litter' layer. Flood_drainage will be |
---|
2724 | !> a component of the total reinfiltration that leaves the routing scheme. |
---|
2725 | !- |
---|
2726 | IF (do_floodplains) THEN |
---|
2727 | IF (dofloodinfilt) THEN |
---|
2728 | DO ib=1,nbasmax |
---|
2729 | DO ig=1,nbpt |
---|
2730 | flood_drainage(ig,ib) = MAX(zero, MIN(flood_reservoir(ig,ib), & |
---|
2731 | & flood_frac_bas(ig,ib)* routing_area(ig,ib) * k_litt(ig) * & |
---|
2732 | & conduct_factor * dt_routing/one_day)) |
---|
2733 | flood_reservoir(ig,ib) = flood_reservoir(ig,ib) - flood_drainage(ig,ib) |
---|
2734 | ENDDO |
---|
2735 | ENDDO |
---|
2736 | ELSE |
---|
2737 | DO ib=1,nbasmax |
---|
2738 | DO ig=1,nbpt |
---|
2739 | flood_drainage(ig,ib) = zero |
---|
2740 | ENDDO |
---|
2741 | ENDDO |
---|
2742 | ENDIF |
---|
2743 | !> Outflow from floodplains is computed depending a delay. This delay is characterized by a time constant |
---|
2744 | !> function of the surface of the floodplains and the product of topo_resid and flood_tcst. flood_tcst |
---|
2745 | !> has been calibrated through observations in the Niger Inner Delta (D'Orgeval, 2006). |
---|
2746 | ! |
---|
2747 | DO ib=1,nbasmax |
---|
2748 | DO ig=1,nbpt |
---|
2749 | IF ( route_tobasin(ig,ib) .GT. 0 ) THEN |
---|
2750 | IF (flood_reservoir(ig,ib) .GT. min_sechiba) THEN |
---|
2751 | flow = MIN(flood_reservoir(ig,ib)/(stream_resid(ig,ib)*flood_tcst/dt_routing),& |
---|
2752 | & flood_reservoir(ig,ib)-min_sechiba) |
---|
2753 | flow = MAX(flow, zero) |
---|
2754 | ELSE |
---|
2755 | flow = zero |
---|
2756 | ENDIF |
---|
2757 | flood_flow(ig,ib) = flow |
---|
2758 | ELSE |
---|
2759 | flood_flow(ig,ib) = zero |
---|
2760 | ENDIF |
---|
2761 | ENDDO |
---|
2762 | ENDDO |
---|
2763 | ELSE |
---|
2764 | DO ib=1,nbasmax |
---|
2765 | DO ig=1,nbpt |
---|
2766 | flood_drainage(ig,ib) = zero |
---|
2767 | flood_flow(ig,ib) = zero |
---|
2768 | flood_reservoir(ig,ib) = zero |
---|
2769 | ENDDO |
---|
2770 | ENDDO |
---|
2771 | ENDIF |
---|
2772 | |
---|
2773 | !- |
---|
2774 | !- Computing drainage and inflow for ponds |
---|
2775 | !> Drainage from ponds is computed in the same way than for floodplains. |
---|
2776 | !> Reinfiltrated fraction from the runoff (i.e. the outflow from the fast reservoir) |
---|
2777 | !> is the inflow of the pond reservoir. |
---|
2778 | !- |
---|
2779 | IF (doponds) THEN |
---|
2780 | ! If used, the slope coef is not used in hydrol for water2infilt |
---|
2781 | DO ib=1,nbasmax |
---|
2782 | DO ig=1,nbpt |
---|
2783 | pond_inflow(ig,ib) = fast_flow(ig,ib) * reinf_slope(ig) |
---|
2784 | pond_drainage(ig,ib) = MIN(pond_reservoir(ig)*routing_area(ig,ib)/totarea(ig), & |
---|
2785 | & pond_frac(ig)*routing_area(ig,ib)*k_litt(ig)*dt_routing/one_day) |
---|
2786 | fast_flow(ig,ib) = fast_flow(ig,ib) - pond_inflow(ig,ib) |
---|
2787 | ENDDO |
---|
2788 | ENDDO |
---|
2789 | ELSE |
---|
2790 | DO ib=1,nbasmax |
---|
2791 | DO ig=1,nbpt |
---|
2792 | pond_inflow(ig,ib) = zero |
---|
2793 | pond_drainage(ig,ib) = zero |
---|
2794 | pond_reservoir(ig) = zero |
---|
2795 | ENDDO |
---|
2796 | ENDDO |
---|
2797 | ENDIF |
---|
2798 | |
---|
2799 | source(:,:) = fast_flow(:,:) + slow_flow(:,:) + stream_flow(:,:) |
---|
2800 | CALL downstreamsum(nbpt, nbasmax, source, transport) |
---|
2801 | IF ( do_rivertemp ) THEN |
---|
2802 | source(:,:) = fast_flow(:,:)*fast_temp(:,:) + slow_flow(:,:)*slow_temp(:,:) + & |
---|
2803 | & stream_flow(:,:)*stream_temp(:,:) |
---|
2804 | CALL downstreamsum(nbpt, nbasmax, source, transport_temp) |
---|
2805 | ENDIF |
---|
2806 | !- |
---|
2807 | !- Do the floodings - First initialize |
---|
2808 | !- |
---|
2809 | return_swamp(:,:)=zero |
---|
2810 | floods(:,:)=zero |
---|
2811 | !- |
---|
2812 | !> Over swamp areas, a fraction of water (return_swamp) is withdrawn from the river depending on the |
---|
2813 | !> parameter swamp_cst. |
---|
2814 | !> It will be transferred into soil moisture and thus does not return directly to the river. |
---|
2815 | ! |
---|
2816 | !- 1. Swamps: Take out water from the river to put it to the swamps |
---|
2817 | !- |
---|
2818 | ! |
---|
2819 | IF ( doswamps ) THEN |
---|
2820 | tobeflooded(:) = swamp(:) |
---|
2821 | DO ib=1,nbasmax |
---|
2822 | DO ig=1,nbpt |
---|
2823 | potflood(ig,ib) = transport(ig,ib) |
---|
2824 | ! |
---|
2825 | IF ( tobeflooded(ig) > 0. .AND. potflood(ig,ib) > 0. .AND. floodtemp(ig) > tp_00 ) THEN |
---|
2826 | ! |
---|
2827 | IF (routing_area(ig,ib) > tobeflooded(ig)) THEN |
---|
2828 | floodindex = tobeflooded(ig) / routing_area(ig,ib) |
---|
2829 | ELSE |
---|
2830 | floodindex = 1.0 |
---|
2831 | ENDIF |
---|
2832 | return_swamp(ig,ib) = swamp_cst * potflood(ig,ib) * floodindex |
---|
2833 | ! |
---|
2834 | tobeflooded(ig) = tobeflooded(ig) - routing_area(ig,ib) |
---|
2835 | ! |
---|
2836 | ENDIF |
---|
2837 | ENDDO |
---|
2838 | ENDDO |
---|
2839 | ENDIF |
---|
2840 | !- |
---|
2841 | !- 2. Floodplains: Update the reservoir with the flux computed above. |
---|
2842 | !- |
---|
2843 | IF ( do_floodplains ) THEN |
---|
2844 | DO ig=1,nbpt |
---|
2845 | DO ib=1,nbasmax |
---|
2846 | IF (floodplains(ig, ib) .GT. min_sechiba .AND. floodtemp(ig) .GT. tp_00) THEN |
---|
2847 | floods(ig,ib) = transport(ig,ib) - return_swamp(ig,ib) |
---|
2848 | ENDIF |
---|
2849 | ENDDO |
---|
2850 | ENDDO |
---|
2851 | ENDIF |
---|
2852 | ! |
---|
2853 | ! Update all reservoirs |
---|
2854 | !> The slow and deep reservoir (slow_reservoir) collect the deep drainage whereas the |
---|
2855 | !> fast_reservoir collects the computed surface runoff. Both discharge into a third reservoir |
---|
2856 | !> (stream_reservoir) of the next sub-basin downstream. |
---|
2857 | !> Water from the floodplains reservoir (flood_reservoir) flows also into the stream_reservoir of the next sub-basin downstream. |
---|
2858 | !> Water that flows into the pond_reservoir is withdrawn from the fast_reservoir. |
---|
2859 | ! |
---|
2860 | negslow = 0 |
---|
2861 | DO ig=1,nbpt |
---|
2862 | DO ib=1,nbasmax |
---|
2863 | ! |
---|
2864 | fast_reservoir(ig,ib) = fast_reservoir(ig,ib) + runoff(ig)*routing_area(ig,ib) - & |
---|
2865 | & fast_flow(ig,ib) - pond_inflow(ig,ib) |
---|
2866 | ! |
---|
2867 | slow_reservoir(ig,ib) = slow_reservoir(ig,ib) + drainage(ig)*routing_area(ig,ib) - & |
---|
2868 | & slow_flow(ig,ib) |
---|
2869 | ! |
---|
2870 | IF ( do_rivertemp ) THEN |
---|
2871 | oldstream = stream_reservoir(ig, ib) * stream_temp(ig,ib) |
---|
2872 | ENDIF |
---|
2873 | ! |
---|
2874 | stream_reservoir(ig,ib) = stream_reservoir(ig,ib) + flood_flow(ig,ib) + transport(ig,ib) - & |
---|
2875 | & stream_flow(ig,ib) - return_swamp(ig,ib) - floods(ig,ib) |
---|
2876 | ! |
---|
2877 | ! Code d'Eliott |
---|
2878 | ! |
---|
2879 | IF ( do_rivertemp ) THEN |
---|
2880 | ! |
---|
2881 | ! Diagnostics of the stream reservoir |
---|
2882 | ! |
---|
2883 | IF ( routing_area(ig,ib) > zero ) THEN |
---|
2884 | ! 1000 to transform kg into m^3 |
---|
2885 | htmp = stream_reservoir(ig,ib)*1000/routing_area(ig,ib) |
---|
2886 | ewh(ig,ib) = 1.0/(1.0+htmp*hscale) |
---|
2887 | ELSE |
---|
2888 | ewh(ig,ib) = 1.0 |
---|
2889 | ENDIF |
---|
2890 | ! |
---|
2891 | IF (stream_reservoir(ig,ib) > zero ) THEN |
---|
2892 | ! Residence time in seconds |
---|
2893 | restime = stream_resid(ig,ib)*stream_tcst |
---|
2894 | wrr(ig,ib) =ABS((restime-minrestime)/(maxrestime-minrestime)) |
---|
2895 | ELSE |
---|
2896 | wrr(ig,ib) = 1.0 |
---|
2897 | ENDIF |
---|
2898 | ! |
---|
2899 | !reste du calcul |
---|
2900 | ! |
---|
2901 | IF ( origformula ) THEN |
---|
2902 | IF (stream_reservoir(ig,ib) .LT. 1.) THEN |
---|
2903 | ! |
---|
2904 | stream_temp(ig,ib) = max(stempdiag(ig,1), ZeroCelsius) |
---|
2905 | ! |
---|
2906 | ELSE |
---|
2907 | ! |
---|
2908 | stream_temp(ig,ib) = oldstream/stream_reservoir(ig,ib) + & |
---|
2909 | & transport_temp(ig, ib)/stream_reservoir(ig,ib) - & |
---|
2910 | & stream_temp(ig,ib)*stream_flow(ig,ib)/stream_reservoir(ig,ib) |
---|
2911 | ENDIF |
---|
2912 | ELSE |
---|
2913 | krelax = ewh(ig,ib) |
---|
2914 | ! |
---|
2915 | den = 1.0/(1.0+dt_routing*krelax) |
---|
2916 | IF ( stream_reservoir(ig,ib) > 1.e-6 ) THEN |
---|
2917 | oldtemp = stream_temp(ig,ib) |
---|
2918 | stream_temp(ig,ib) = den * dt_routing * krelax * fast_temp(ig,ib) + & |
---|
2919 | & den * oldstream/stream_reservoir(ig,ib) + & |
---|
2920 | & den * transport_temp(ig, ib)/stream_reservoir(ig,ib) - & |
---|
2921 | & den * oldtemp*stream_flow(ig,ib)/stream_reservoir(ig,ib) |
---|
2922 | ! |
---|
2923 | !Stream_temp [K], stream_reservoir [kg], WaterCp [J/g/K] yields tendencies in GJ/s |
---|
2924 | ! |
---|
2925 | stemp_total_tend(ig,ib) = WaterCp*1.e-6*(stream_temp(ig,ib)*stream_reservoir(ig,ib) - oldstream)/dt_routing |
---|
2926 | stemp_advec_tend(ig,ib) = WaterCp*1.e-6*(transport_temp(ig, ib) - oldtemp*stream_flow(ig,ib))/dt_routing |
---|
2927 | stemp_relax_tend(ig,ib) = WaterCp*1.e-6*stream_reservoir(ig,ib)*krelax*(fast_temp(ig,ib)-stream_temp(ig,ib)) |
---|
2928 | ELSE |
---|
2929 | stream_temp(ig,ib) = MAX(fast_temp(ig,ib), ZeroCelsius) |
---|
2930 | stemp_total_tend(ig,ib) = zero |
---|
2931 | stemp_advec_tend(ig,ib) = zero |
---|
2932 | stemp_relax_tend(ig,ib) = zero |
---|
2933 | ENDIF |
---|
2934 | ENDIF |
---|
2935 | ENDIF |
---|
2936 | ! |
---|
2937 | flood_reservoir(ig,ib) = flood_reservoir(ig,ib) + floods(ig,ib) - & |
---|
2938 | & flood_flow(ig,ib) |
---|
2939 | ! |
---|
2940 | pond_reservoir(ig) = pond_reservoir(ig) + pond_inflow(ig,ib) - pond_drainage(ig,ib) |
---|
2941 | ! |
---|
2942 | IF ( flood_reservoir(ig,ib) .LT. zero ) THEN |
---|
2943 | IF ( check_reservoir ) THEN |
---|
2944 | WRITE(numout,*) "WARNING : negative flood reservoir at :", ig, ib, ". Problem is being corrected." |
---|
2945 | WRITE(numout,*) "flood_reservoir, floods, flood_flow : ", flood_reservoir(ig,ib), floods(ig,ib), & |
---|
2946 | & flood_flow(ig,ib) |
---|
2947 | ENDIF |
---|
2948 | stream_reservoir(ig,ib) = stream_reservoir(ig,ib) + flood_reservoir(ig,ib) |
---|
2949 | flood_reservoir(ig,ib) = zero |
---|
2950 | ENDIF |
---|
2951 | ! |
---|
2952 | IF ( stream_reservoir(ig,ib) .LT. zero ) THEN |
---|
2953 | IF ( check_reservoir ) THEN |
---|
2954 | WRITE(numout,*) "WARNING : negative stream reservoir at :", ig, ib, ". Problem is being corrected." |
---|
2955 | WRITE(numout,*) "stream_reservoir, flood_flow, transport : ", stream_reservoir(ig,ib), flood_flow(ig,ib), & |
---|
2956 | & transport(ig,ib) |
---|
2957 | WRITE(numout,*) "stream_flow, return_swamp, floods :", stream_flow(ig,ib), return_swamp(ig,ib), floods(ig,ib) |
---|
2958 | ENDIF |
---|
2959 | fast_reservoir(ig,ib) = fast_reservoir(ig,ib) + stream_reservoir(ig,ib) |
---|
2960 | stream_reservoir(ig,ib) = zero |
---|
2961 | ENDIF |
---|
2962 | ! |
---|
2963 | IF ( fast_reservoir(ig,ib) .LT. zero ) THEN |
---|
2964 | IF ( check_reservoir ) THEN |
---|
2965 | WRITE(numout,*) "WARNING : negative fast reservoir at :", ig, ib, ". Problem is being corrected." |
---|
2966 | WRITE(numout,*) "fast_reservoir, runoff, fast_flow, ponf_inflow : ", fast_reservoir(ig,ib), & |
---|
2967 | &runoff(ig), fast_flow(ig,ib), pond_inflow(ig,ib) |
---|
2968 | ENDIF |
---|
2969 | slow_reservoir(ig,ib) = slow_reservoir(ig,ib) + fast_reservoir(ig,ib) |
---|
2970 | fast_reservoir(ig,ib) = zero |
---|
2971 | ENDIF |
---|
2972 | |
---|
2973 | IF ( slow_reservoir(ig,ib) .LT. - min_sechiba ) THEN |
---|
2974 | IF ( negslow < 20 ) THEN |
---|
2975 | negslow = negslow + 1 |
---|
2976 | negig(negslow) = ig |
---|
2977 | negib(negslow) = ib |
---|
2978 | ENDIF |
---|
2979 | ENDIF |
---|
2980 | |
---|
2981 | ENDDO |
---|
2982 | ENDDO |
---|
2983 | |
---|
2984 | IF ( negslow > 0 ) THEN |
---|
2985 | DO ier = 1,negslow |
---|
2986 | ig = negig(ier) |
---|
2987 | ib = negib(ier) |
---|
2988 | WRITE(numout,*) 'WARNING : There is a negative reservoir at :', ig, ib,lalo(ig,:) |
---|
2989 | WRITE(numout,*) 'WARNING : slowr, slow_flow, drainage', & |
---|
2990 | & slow_reservoir(ig,ib), slow_flow(ig,ib), drainage(ig) |
---|
2991 | WRITE(numout,*) 'WARNING : pondr, pond_inflow, pond_drainage', & |
---|
2992 | & pond_reservoir(ig), pond_inflow(ig,ib), pond_drainage(ig,ib) |
---|
2993 | CALL ipslerr_p(2, 'routing_hr_flow', 'WARNING negative slow_reservoir.','','') |
---|
2994 | ENDDO |
---|
2995 | ENDIF |
---|
2996 | |
---|
2997 | totflood(:) = zero |
---|
2998 | DO ig=1,nbpt |
---|
2999 | DO ib=1,nbasmax |
---|
3000 | totflood(ig) = totflood(ig) + flood_reservoir(ig,ib) |
---|
3001 | ENDDO |
---|
3002 | ENDDO |
---|
3003 | ! |
---|
3004 | ! ESTIMATE the flooded fraction |
---|
3005 | ! |
---|
3006 | IF (do_floodplains .OR. doponds) THEN |
---|
3007 | CALL routing_hr_flood(nbpt, flood_frac, totarea, totflood) |
---|
3008 | ELSE |
---|
3009 | flood_frac(:) = zero |
---|
3010 | flood_height(:,:) = zero |
---|
3011 | flood_frac_bas(:,:) = zero |
---|
3012 | ENDIF |
---|
3013 | |
---|
3014 | |
---|
3015 | !! ANTHONY : OVERFLOW |
---|
3016 | !! CALCULATE TRANSFER BETWEEN FLOODPLAINS RESERVOIR |
---|
3017 | IF (do_floodplains .AND. dofloodoverflow) Then |
---|
3018 | ! The overflow is repeated "overflow_repetition" times |
---|
3019 | ! This is in order to have more stability and |
---|
3020 | ! be able to use lower "overflow_tcst". |
---|
3021 | DO ier = 1,overflow_repetition |
---|
3022 | CALL routing_hr_overflow(nbpt, nbasmax) |
---|
3023 | END DO |
---|
3024 | ! Once done we update the floodplains fraction and the floodplains height |
---|
3025 | CALL routing_hr_flood(nbpt, flood_frac, totarea, totflood) |
---|
3026 | END IF |
---|
3027 | |
---|
3028 | |
---|
3029 | !- |
---|
3030 | !- Compute the total reinfiltration and returnflow to the grid box |
---|
3031 | !> A term of returnflow is computed including the water from the swamps that does not return directly to the river |
---|
3032 | !> but will be put into soil moisture (see hydrol module). |
---|
3033 | !> A term of reinfiltration is computed including the water that reinfiltrated from the ponds and floodplains areas. |
---|
3034 | !> It will be put into soil moisture (see hydrol module). |
---|
3035 | !- |
---|
3036 | IF (do_floodplains .OR. doswamps .OR. doponds) THEN |
---|
3037 | returnflow(:) = zero |
---|
3038 | reinfiltration(:) = zero |
---|
3039 | ! |
---|
3040 | DO ib=1,nbasmax |
---|
3041 | DO ig=1,nbpt |
---|
3042 | returnflow(ig) = returnflow(ig) + return_swamp(ig,ib) |
---|
3043 | reinfiltration(ig) = reinfiltration(ig) + pond_drainage(ig,ib) + flood_drainage(ig,ib) |
---|
3044 | ENDDO |
---|
3045 | ENDDO |
---|
3046 | ! |
---|
3047 | DO ig=1,nbpt |
---|
3048 | returnflow(ig) = returnflow(ig)/totarea(ig) |
---|
3049 | reinfiltration(ig) = reinfiltration(ig)/totarea(ig) |
---|
3050 | ENDDO |
---|
3051 | ELSE |
---|
3052 | returnflow(:) = zero |
---|
3053 | reinfiltration(:) = zero |
---|
3054 | ENDIF |
---|
3055 | |
---|
3056 | ! |
---|
3057 | ! Compute the net irrigation requirement from Univ of Kassel |
---|
3058 | ! |
---|
3059 | ! This is a very low priority process and thus only applies if |
---|
3060 | ! there is some water left in the reservoirs after all other things. |
---|
3061 | ! |
---|
3062 | !> The computation of the irrigation is performed here. |
---|
3063 | !> * First step |
---|
3064 | !> In a first time, the water requirements (irrig_netereq) by the crops for their optimal growth are calculated |
---|
3065 | !> over each irrigated fraction (irrigated(ig)/totarea(ig)). It is the difference |
---|
3066 | !> between the maximal water loss by the crops (transpot_mean) and the net water amount kept by the soil |
---|
3067 | !> (precipitation and reinfiltration). Transpot_mean is computed in the routines enerbil and diffuco. It |
---|
3068 | !> is derived from the effective transpiration parametrization under stress-free conditions, called potential transpiration. |
---|
3069 | !> Crop_coef was used by a previous parametrization of irrigation in the code. Here, its value is equal to one. |
---|
3070 | !> The crop coefficient was constant in space and time to represent a mean resistance of the vegetation to the potential evaporation. |
---|
3071 | !> Now, the term crop_coef*Epot is substituted by transpot_mean (see Guimberteau et al., 2011). |
---|
3072 | !> * Second step |
---|
3073 | !> We compute irrigation needs in order to supply Irrig_netereq. Water for irrigation (irrig_actual) is withdrawn |
---|
3074 | !> from the reservoirs. The amount of water is withdrawn in priority from the stream reservoir. |
---|
3075 | !> If the irrigation requirement is higher than the water availability of the reservoir, water is withdrawn |
---|
3076 | !> from the fast reservoir or, in the extreme case, from the slow reservoir. |
---|
3077 | !> * Third step |
---|
3078 | !> We compute a deficit in water for irrigation. If it is positive, irrigation (depending on water availibility in the reservoirs) |
---|
3079 | !> has not supplied the crops requirements. |
---|
3080 | ! |
---|
3081 | IF ( do_irrigation ) THEN |
---|
3082 | DO ig=1,nbpt |
---|
3083 | ! |
---|
3084 | IF ((vegtot(ig) .GT. min_sechiba) .AND. (humrel(ig) .LT. un-min_sechiba) .AND. & |
---|
3085 | & (runoff(ig) .LT. min_sechiba) ) THEN |
---|
3086 | |
---|
3087 | irrig_netereq(ig) = (irrigated(ig) / totarea(ig) ) * MAX(zero, transpot_mean(ig) - & |
---|
3088 | & (precip(ig)+reinfiltration(ig)) ) |
---|
3089 | |
---|
3090 | ENDIF |
---|
3091 | ! |
---|
3092 | DO ib=1,nbasmax |
---|
3093 | IF ( routing_area(ig,ib) .GT. 0 ) THEN |
---|
3094 | |
---|
3095 | irrig_needs(ig,ib) = irrig_netereq(ig) * routing_area(ig,ib) |
---|
3096 | |
---|
3097 | irrig_actual(ig,ib) = MIN(irrig_needs(ig,ib),& |
---|
3098 | & stream_reservoir(ig,ib) + fast_reservoir(ig,ib) + slow_reservoir(ig,ib) ) |
---|
3099 | |
---|
3100 | slow_reservoir(ig,ib) = MAX(zero, slow_reservoir(ig,ib) + & |
---|
3101 | & MIN(zero, fast_reservoir(ig,ib) + MIN(zero, stream_reservoir(ig,ib)-irrig_actual(ig,ib)))) |
---|
3102 | |
---|
3103 | fast_reservoir(ig,ib) = MAX( zero, & |
---|
3104 | & fast_reservoir(ig,ib) + MIN(zero, stream_reservoir(ig,ib)-irrig_actual(ig,ib))) |
---|
3105 | |
---|
3106 | stream_reservoir(ig,ib) = MAX(zero, stream_reservoir(ig,ib)-irrig_actual(ig,ib) ) |
---|
3107 | |
---|
3108 | irrig_deficit(ig,ib) = irrig_needs(ig,ib)-irrig_actual(ig,ib) |
---|
3109 | |
---|
3110 | ENDIF |
---|
3111 | ENDDO |
---|
3112 | ! |
---|
3113 | ! Check if we cannot find the missing water in another basin of the same grid (stream reservoir only). |
---|
3114 | ! If we find that then we create some adduction from that subbasin to the one where we need it for |
---|
3115 | ! irrigation. |
---|
3116 | ! |
---|
3117 | !> If crops water requirements have not been supplied (irrig_deficit>0), we check if we cannot find the missing water |
---|
3118 | !> in another basin of the same grid. If there is water in the stream reservoir of this subbasin, we create some adduction |
---|
3119 | !> from that subbasin to the one where we need it for irrigation. |
---|
3120 | !> |
---|
3121 | DO ib=1,nbasmax |
---|
3122 | |
---|
3123 | stream_tot = SUM(stream_reservoir(ig,:)) |
---|
3124 | |
---|
3125 | DO WHILE ( irrig_deficit(ig,ib) > min_sechiba .AND. stream_tot > min_sechiba) |
---|
3126 | |
---|
3127 | fi = MAXLOC(stream_reservoir(ig,:)) |
---|
3128 | ib2 = fi(1) |
---|
3129 | |
---|
3130 | irrig_adduct(ig,ib) = MIN(irrig_deficit(ig,ib), stream_reservoir(ig,ib2)) |
---|
3131 | stream_reservoir(ig,ib2) = stream_reservoir(ig,ib2)-irrig_adduct(ig,ib) |
---|
3132 | irrig_deficit(ig,ib) = irrig_deficit(ig,ib)-irrig_adduct(ig,ib) |
---|
3133 | |
---|
3134 | stream_tot = SUM(stream_reservoir(ig,:)) |
---|
3135 | |
---|
3136 | ENDDO |
---|
3137 | |
---|
3138 | ENDDO |
---|
3139 | ! |
---|
3140 | ENDDO |
---|
3141 | ! |
---|
3142 | ! If we are at higher resolution we might need to look at neighboring grid boxes to find the streams |
---|
3143 | ! which can feed irrigation |
---|
3144 | ! |
---|
3145 | !> At higher resolution (grid box smaller than 100x100km), we can import water from neighboring grid boxes |
---|
3146 | !> to the one where we need it for irrigation. |
---|
3147 | ! |
---|
3148 | IF (is_root_prc) THEN |
---|
3149 | ALLOCATE(irrig_deficit_glo(nbp_glo, nbasmax), stream_reservoir_glo(nbp_glo, nbasmax), & |
---|
3150 | & irrig_adduct_glo(nbp_glo, nbasmax), stat=ier) |
---|
3151 | ELSE |
---|
3152 | ALLOCATE(irrig_deficit_glo(0, 0), stream_reservoir_glo(0, 0), & |
---|
3153 | & irrig_adduct_glo(0, 0), stat=ier) |
---|
3154 | ENDIF |
---|
3155 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_flow','Pb in allocate for irrig_deficit_glo, stream_reservoir_glo,...','','') |
---|
3156 | |
---|
3157 | CALL gather(irrig_deficit, irrig_deficit_glo) |
---|
3158 | CALL gather(stream_reservoir, stream_reservoir_glo) |
---|
3159 | CALL gather(irrig_adduct, irrig_adduct_glo) |
---|
3160 | |
---|
3161 | IF (is_root_prc) THEN |
---|
3162 | ! |
---|
3163 | DO ig=1,nbp_glo |
---|
3164 | ! Only work if the grid box is smaller than 100x100km. Else the piplines we build |
---|
3165 | ! here would be too long to be reasonable. |
---|
3166 | IF ( resolution_g(ig,1) < 100000. .AND. resolution_g(ig,2) < 100000. ) THEN |
---|
3167 | DO ib=1,nbasmax |
---|
3168 | ! |
---|
3169 | IF ( irrig_deficit_glo(ig,ib) > min_sechiba ) THEN |
---|
3170 | ! |
---|
3171 | streams_around(:,:) = zero |
---|
3172 | ! |
---|
3173 | DO in=1,NbNeighb |
---|
3174 | ig2 = neighbours_g(ig,in) |
---|
3175 | IF (ig2 .GT. 0 ) THEN |
---|
3176 | streams_around(in,:) = stream_reservoir_glo(ig2,:) |
---|
3177 | igrd(in) = ig2 |
---|
3178 | ENDIF |
---|
3179 | ENDDO |
---|
3180 | ! |
---|
3181 | IF ( MAXVAL(streams_around) .GT. zero ) THEN |
---|
3182 | ! |
---|
3183 | ff=MAXLOC(streams_around) |
---|
3184 | ig2=igrd(ff(1)) |
---|
3185 | ib2=ff(2) |
---|
3186 | ! |
---|
3187 | IF ( routing_area_glo(ig2,ib2) .GT. 0 .AND. stream_reservoir_glo(ig2,ib2) > zero ) THEN |
---|
3188 | adduction = MIN(irrig_deficit_glo(ig,ib), stream_reservoir_glo(ig2,ib2)) |
---|
3189 | stream_reservoir_glo(ig2,ib2) = stream_reservoir_glo(ig2,ib2) - adduction |
---|
3190 | irrig_deficit_glo(ig,ib) = irrig_deficit_glo(ig,ib) - adduction |
---|
3191 | irrig_adduct_glo(ig,ib) = irrig_adduct_glo(ig,ib) + adduction |
---|
3192 | ENDIF |
---|
3193 | ! |
---|
3194 | ENDIF |
---|
3195 | ! |
---|
3196 | ENDIF |
---|
3197 | ! |
---|
3198 | ENDDO |
---|
3199 | ENDIF |
---|
3200 | ENDDO |
---|
3201 | ! |
---|
3202 | ENDIF |
---|
3203 | ! |
---|
3204 | |
---|
3205 | CALL scatter(irrig_deficit_glo, irrig_deficit) |
---|
3206 | CALL scatter(stream_reservoir_glo, stream_reservoir) |
---|
3207 | CALL scatter(irrig_adduct_glo, irrig_adduct) |
---|
3208 | |
---|
3209 | DEALLOCATE(irrig_deficit_glo, stream_reservoir_glo, irrig_adduct_glo) |
---|
3210 | |
---|
3211 | ENDIF |
---|
3212 | |
---|
3213 | !! Calculate the net water flow to each routing reservoir (in kg/dt) |
---|
3214 | !! to further diagnose the corresponding water budget residu |
---|
3215 | !! in routing_highres_main |
---|
3216 | |
---|
3217 | netflow_fast_diag(:) = zero |
---|
3218 | netflow_slow_diag(:) = zero |
---|
3219 | netflow_stream_diag(:) = zero |
---|
3220 | |
---|
3221 | DO ib=1,nbasmax |
---|
3222 | DO ig=1,nbpt |
---|
3223 | netflow_fast_diag(ig) = netflow_fast_diag(ig) + runoff(ig)*routing_area(ig,ib) & |
---|
3224 | - fast_flow(ig,ib) - pond_inflow(ig,ib) |
---|
3225 | netflow_slow_diag(ig) = netflow_slow_diag(ig) + drainage(ig)*routing_area(ig,ib) & |
---|
3226 | - slow_flow(ig,ib) |
---|
3227 | netflow_stream_diag(ig) = netflow_stream_diag(ig) + flood_flow(ig,ib) + transport(ig,ib) & |
---|
3228 | - stream_flow(ig,ib) - return_swamp(ig,ib) - floods(ig,ib) |
---|
3229 | ENDDO |
---|
3230 | ENDDO |
---|
3231 | |
---|
3232 | !! Grid cell averaging |
---|
3233 | DO ig=1,nbpt |
---|
3234 | netflow_fast_diag(ig) = netflow_fast_diag(ig)/totarea(ig) |
---|
3235 | netflow_slow_diag(ig) = netflow_slow_diag(ig)/totarea(ig) |
---|
3236 | netflow_stream_diag(ig) = netflow_stream_diag(ig)/totarea(ig) |
---|
3237 | ENDDO |
---|
3238 | |
---|
3239 | ! |
---|
3240 | ! |
---|
3241 | ! Compute the fluxes which leave the routing scheme |
---|
3242 | ! |
---|
3243 | ! Lakeinflow is in Kg/dt |
---|
3244 | ! returnflow is in Kg/m^2/dt |
---|
3245 | ! |
---|
3246 | hydrographs(:) = zero |
---|
3247 | hydrotemp(:) = zero |
---|
3248 | HTUhgmon(:,:) = zero |
---|
3249 | HTUtempmon(:,:) = zero |
---|
3250 | slowflow_diag(:) = zero |
---|
3251 | fast_diag(:) = zero |
---|
3252 | slow_diag(:) = zero |
---|
3253 | stream_diag(:) = zero |
---|
3254 | flood_diag(:) = zero |
---|
3255 | pond_diag(:) = zero |
---|
3256 | irrigation(:) = zero |
---|
3257 | ! |
---|
3258 | ! |
---|
3259 | DO ib=1,nbasmax |
---|
3260 | ! |
---|
3261 | DO ig=1,nbpt |
---|
3262 | ! |
---|
3263 | DO im=1,nbasmon |
---|
3264 | IF (HTUdiag_loc(ig,im) > 0 .AND. HTUdiag_loc(ig,im) .EQ. ib ) THEN |
---|
3265 | HTUhgmon(ig,im) = fast_flow(ig,ib) + slow_flow(ig,ib) + stream_flow(ig,ib) |
---|
3266 | IF ( do_rivertemp ) THEN |
---|
3267 | HTUtempmon(ig,im) = stream_temp(ig,ib) |
---|
3268 | ENDIF |
---|
3269 | ENDIF |
---|
3270 | ENDDO |
---|
3271 | ! |
---|
3272 | IF (hydrodiag(ig) == ib) THEN |
---|
3273 | hydrographs(ig) = fast_flow(ig,ib) + slow_flow(ig,ib) + stream_flow(ig,ib) |
---|
3274 | IF ( do_rivertemp ) THEN |
---|
3275 | hydrotemp(ig) = stream_temp(ig,ib) |
---|
3276 | ENDIF |
---|
3277 | slowflow_diag(ig) = slowflow_diag(ig) + slow_flow(ig,ib) |
---|
3278 | ENDIF |
---|
3279 | fast_diag(ig) = fast_diag(ig) + fast_reservoir(ig,ib) |
---|
3280 | slow_diag(ig) = slow_diag(ig) + slow_reservoir(ig,ib) |
---|
3281 | stream_diag(ig) = stream_diag(ig) + stream_reservoir(ig,ib) |
---|
3282 | flood_diag(ig) = flood_diag(ig) + flood_reservoir(ig,ib) |
---|
3283 | irrigation (ig) = irrigation (ig) + irrig_actual(ig,ib) + irrig_adduct(ig,ib) |
---|
3284 | ENDDO |
---|
3285 | ENDDO |
---|
3286 | ! |
---|
3287 | DO ig=1,nbpt |
---|
3288 | fast_diag(ig) = fast_diag(ig)/totarea(ig) |
---|
3289 | slow_diag(ig) = slow_diag(ig)/totarea(ig) |
---|
3290 | stream_diag(ig) = stream_diag(ig)/totarea(ig) |
---|
3291 | flood_diag(ig) = flood_diag(ig)/totarea(ig) |
---|
3292 | pond_diag(ig) = pond_reservoir(ig)/totarea(ig) |
---|
3293 | ! |
---|
3294 | irrigation(ig) = irrigation(ig)/totarea(ig) |
---|
3295 | ! |
---|
3296 | ! The three output types for the routing : endoheric basins,, rivers and |
---|
3297 | ! diffuse coastal flow. |
---|
3298 | ! |
---|
3299 | lakeinflow(ig) = transport(ig,nbasmax+1) |
---|
3300 | coastalflow(ig) = transport(ig,nbasmax+2) |
---|
3301 | riverflow(ig) = transport(ig,nbasmax+3) |
---|
3302 | ! |
---|
3303 | ENDDO |
---|
3304 | ! |
---|
3305 | flood_res = flood_diag + pond_diag |
---|
3306 | |
---|
3307 | |
---|
3308 | !! Remove water from lake reservoir if it exceeds the maximum limit and distribute it |
---|
3309 | !! uniformly over all possible the coastflow gridcells |
---|
3310 | |
---|
3311 | ! Calculate lake_overflow and remove it from lake_reservoir |
---|
3312 | DO ig=1,nbpt |
---|
3313 | lake_overflow(ig) = MAX(0., lake_reservoir(ig) - max_lake_reservoir*totarea(ig)) |
---|
3314 | lake_reservoir(ig) = lake_reservoir(ig) - lake_overflow(ig) |
---|
3315 | END DO |
---|
3316 | ! Transform lake_overflow from kg/grid-cell/dt_routing into kg/m^2/s |
---|
3317 | CALL xios_orchidee_send_field("lake_overflow",lake_overflow(:)/totarea(:)/dt_routing) |
---|
3318 | |
---|
3319 | ! Calculate the sum of the lake_overflow and distribute it uniformly over all gridboxes |
---|
3320 | CALL gather(lake_overflow,lake_overflow_g) |
---|
3321 | IF (is_root_prc) THEN |
---|
3322 | total_lake_overflow=SUM(lake_overflow_g) |
---|
3323 | END IF |
---|
3324 | CALL bcast(total_lake_overflow) |
---|
3325 | |
---|
3326 | ! Distribute the lake_overflow uniformly over all coastal gridcells |
---|
3327 | ! lake_overflow_coast is only calculated to be used as diagnostics if needed |
---|
3328 | DO ig=1,nbpt |
---|
3329 | coastalflow(ig) = coastalflow(ig) + total_lake_overflow/nb_coast_gridcells * mask_coast(ig) |
---|
3330 | lake_overflow_coast(ig) = total_lake_overflow/nb_coast_gridcells * mask_coast(ig) |
---|
3331 | END DO |
---|
3332 | ! Transform from kg/grid-cell/dt_routing into m^3/grid-cell/s to match output unit of coastalflow |
---|
3333 | CALL xios_orchidee_send_field("lake_overflow_coast",lake_overflow_coast/mille/dt_routing) |
---|
3334 | |
---|
3335 | |
---|
3336 | END SUBROUTINE routing_hr_flow |
---|
3337 | ! |
---|
3338 | !! ================================================================================================================================ |
---|
3339 | !! SUBROUTINE : groundwater_temp |
---|
3340 | !! |
---|
3341 | !>\BRIEF : This subroutine computes the temperature of the groundwater leaving the HTU |
---|
3342 | !! |
---|
3343 | !! DESCRIPTION (definitions, functional, design, flags): The return flow to the soil moisture reservoir |
---|
3344 | !! is based on a maximum lake evaporation rate (maxevap_lake). \n |
---|
3345 | !! |
---|
3346 | !! RECENT CHANGE(S): None |
---|
3347 | !! |
---|
3348 | !! MAIN OUTPUT VARIABLE(S): |
---|
3349 | !! |
---|
3350 | !! REFERENCES : None |
---|
3351 | !! |
---|
3352 | !! FLOWCHART :None |
---|
3353 | !! \n |
---|
3354 | !_ ================================================================================================================================ |
---|
3355 | !- |
---|
3356 | SUBROUTINE groudwatertemp(nbpt, nbasmax, nslm, stempdiag, diaglev, fast_temp, slow_temp) |
---|
3357 | ! INPUT |
---|
3358 | INTEGER(i_std), INTENT(in) :: nbpt, nbasmax, nslm |
---|
3359 | REAL(r_std), INTENT(in) :: stempdiag(nbpt,nslm) |
---|
3360 | REAL(r_std), INTENT(in) :: diaglev(nslm) |
---|
3361 | REAL(r_std), INTENT(inout) :: slow_temp(nbpt,nbasmax), fast_temp(nbpt,nbasmax) |
---|
3362 | ! OUTPUT |
---|
3363 | ! LOCAL |
---|
3364 | INTEGER(i_std) :: ig, ib, im |
---|
3365 | REAL(r_std) :: ft, st, fw, sw, ubnd, lbnd, dz |
---|
3366 | LOGICAL, SAVE :: lowestt = .FALSE., alltop=.FALSE. |
---|
3367 | ! |
---|
3368 | lowestt=.FALSE. |
---|
3369 | CALL getin_p('LOWESTT', lowestt) |
---|
3370 | alltop=.FALSE. |
---|
3371 | CALL getin_p('ALLTOPTT', alltop) |
---|
3372 | ! |
---|
3373 | DO ib=1,nbasmax |
---|
3374 | DO ig=1,nbpt |
---|
3375 | ft=zero |
---|
3376 | st=zero |
---|
3377 | fw=zero |
---|
3378 | sw=zero |
---|
3379 | ubnd=zero |
---|
3380 | lbnd=diaglev(nslm)+(diaglev(nslm)+diaglev(nslm-1))*0.5 |
---|
3381 | ! The sums are weighted by the thickness of the soil layers ! |
---|
3382 | DO im=1,ntemp_layer |
---|
3383 | dz = ((diaglev(im)+diaglev(im+1))*0.5-ubnd) |
---|
3384 | ft = ft + stempdiag(ig,im)*dz |
---|
3385 | fw = fw + dz |
---|
3386 | ubnd=(diaglev(im)+diaglev(im+1))*0.5 |
---|
3387 | ! |
---|
3388 | dz = (lbnd-(diaglev(nslm-(im))+diaglev(nslm-(im)+1))*0.5) |
---|
3389 | st = st + stempdiag(ig,nslm-(im-1))*dz |
---|
3390 | sw = sw + dz |
---|
3391 | lbnd = (diaglev(nslm-(im))+diaglev(nslm-(im)+1))*0.5 |
---|
3392 | ENDDO |
---|
3393 | ! |
---|
3394 | IF ( lowestt ) THEN |
---|
3395 | slow_temp(ig,ib) = stempdiag(ig,nslm) |
---|
3396 | ELSE |
---|
3397 | slow_temp(ig,ib) = st/sw |
---|
3398 | ENDIF |
---|
3399 | fast_temp(ig,ib) = ft/fw |
---|
3400 | IF ( alltop ) THEN |
---|
3401 | slow_temp(ig,ib) = fast_temp(ig,ib) |
---|
3402 | ENDIF |
---|
3403 | ENDDO |
---|
3404 | ENDDO |
---|
3405 | END SUBROUTINE groudwatertemp |
---|
3406 | !! ================================================================================================================================ |
---|
3407 | !! SUBROUTINE : downstreamsum |
---|
3408 | !! |
---|
3409 | !>\BRIEF : This subroutine sums the input variables onto the downstream HTU in the river graph. |
---|
3410 | !! |
---|
3411 | !! DESCRIPTION : We assume that the downstream HTU is defined by route_togrid and route_tobas. As these |
---|
3412 | !! donwstream HTU can be on another processor we do this job on the root processor. So before we need to |
---|
3413 | !! transfer all the data onto that processor and then redistribute the result. |
---|
3414 | !! Keep in mind that if an HTU does not exit then route_tobas = 0. So the result array needs |
---|
3415 | !! to have this index. The end of the rivers are between nbmax+1 and nbmax+3 so this indexing space is also |
---|
3416 | !! needed in the result array. |
---|
3417 | !! |
---|
3418 | !! RECENT CHANGE(S): None |
---|
3419 | !! |
---|
3420 | !! MAIN OUTPUT VARIABLE(S): |
---|
3421 | !! |
---|
3422 | !! REFERENCES : None |
---|
3423 | !! |
---|
3424 | !! FLOWCHART :None |
---|
3425 | !! \n |
---|
3426 | !_ ================================================================================================================================ |
---|
3427 | !- |
---|
3428 | SUBROUTINE downstreamsum(nbpt, nbmax, v, t) |
---|
3429 | ! Input |
---|
3430 | INTEGER(i_std), INTENT(in) :: nbpt, nbmax |
---|
3431 | REAL(r_std), INTENT(in), DIMENSION(nbpt, nbmax) :: v |
---|
3432 | ! Output |
---|
3433 | REAL(r_std), INTENT(out), DIMENSION(nbpt, 0:nbmax+3) :: t |
---|
3434 | ! |
---|
3435 | ! Local |
---|
3436 | ! |
---|
3437 | INTEGER(i_std) :: ig, ib, rtg, rtb |
---|
3438 | INTEGER(i_std) :: ier |
---|
3439 | REAL(r_std), SAVE, ALLOCATABLE, DIMENSION(:,:) :: v_g, t_g |
---|
3440 | ! |
---|
3441 | ! Allocate memory if needed. Should only happen only once in order to reduce computing time. |
---|
3442 | ! |
---|
3443 | IF ( .NOT. ALLOCATED(v_g) ) THEN |
---|
3444 | IF (is_root_prc) THEN |
---|
3445 | ALLOCATE(v_g(nbp_glo,nbmax), stat=ier) |
---|
3446 | IF (ier /= 0) CALL ipslerr_p(3,'downstreamsum','Pb in allocate for v_g','','') |
---|
3447 | ELSE |
---|
3448 | ALLOCATE(v_g(1,1)) |
---|
3449 | ENDIF |
---|
3450 | ENDIF |
---|
3451 | IF ( .NOT. ALLOCATED(t_g) ) THEN |
---|
3452 | IF (is_root_prc) THEN |
---|
3453 | ALLOCATE(t_g(nbp_glo,0:nbmax+3), stat=ier) |
---|
3454 | IF (ier /= 0) CALL ipslerr_p(3,'downstreamsum','Pb in allocate for t_g','','') |
---|
3455 | ELSE |
---|
3456 | ALLOCATE(t_g(1,1)) |
---|
3457 | ENDIF |
---|
3458 | ENDIF |
---|
3459 | ! |
---|
3460 | ! Gather the source variable on the root processor. |
---|
3461 | ! |
---|
3462 | CALL gather(v, v_g) |
---|
3463 | ! |
---|
3464 | ! The downstream sum is performed only on the root processor. |
---|
3465 | ! |
---|
3466 | IF (is_root_prc) THEN |
---|
3467 | t_g(:,:) = zero |
---|
3468 | DO ib=1,nbmax |
---|
3469 | DO ig=1,nbp_glo |
---|
3470 | rtg = route_togrid_glo(ig,ib) |
---|
3471 | rtb = route_tobasin_glo(ig,ib) |
---|
3472 | t_g(rtg,rtb) = t_g(rtg,rtb) + v_g(ig,ib) |
---|
3473 | ENDDO |
---|
3474 | ENDDO |
---|
3475 | ENDIF |
---|
3476 | ! |
---|
3477 | ! Redistribute the downstream field to the all processors. |
---|
3478 | ! |
---|
3479 | CALL scatter(t_g, t) |
---|
3480 | ! |
---|
3481 | END SUBROUTINE downstreamsum |
---|
3482 | !! ================================================================================================================================ |
---|
3483 | !! SUBROUTINE : routing_hr_flood |
---|
3484 | !! |
---|
3485 | !>\BRIEF : This subroutine estimate the flood fraction and the flood height for each HTU |
---|
3486 | !! |
---|
3487 | !! DESCRIPTION (definitions, functional, design, flags): The return flow to the soil moisture reservoir |
---|
3488 | !! is based on a maximum lake evaporation rate (maxevap_lake). \n |
---|
3489 | !! |
---|
3490 | !! RECENT CHANGE(S): None |
---|
3491 | !! |
---|
3492 | !! MAIN OUTPUT VARIABLE(S): |
---|
3493 | !! |
---|
3494 | !! REFERENCES : None |
---|
3495 | !! |
---|
3496 | !! FLOWCHART :None |
---|
3497 | !! \n |
---|
3498 | !_ ================================================================================================================================ |
---|
3499 | !- |
---|
3500 | SUBROUTINE routing_hr_flood(nbpt, flood_frac, totarea, totflood) |
---|
3501 | ! |
---|
3502 | IMPLICIT NONE |
---|
3503 | ! |
---|
3504 | !! INPUT VARIABLES |
---|
3505 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
3506 | REAL(r_std), INTENT(in), DIMENSION(nbpt) :: totflood !! Total amount of water in the floodplains reservoir (kg) |
---|
3507 | REAL(r_std), INTENT(in), DIMENSION(nbpt) :: totarea !! Total area of basin (m^2) |
---|
3508 | !! Flooded fraction of the grid box (unitless;0-1) |
---|
3509 | ! |
---|
3510 | !! OUTPUT VARIABLES |
---|
3511 | REAL(r_std), INTENT(inout) :: flood_frac(nbpt) |
---|
3512 | |
---|
3513 | ! |
---|
3514 | !! LOCAL VARIABLES |
---|
3515 | INTEGER(i_std) :: ig, ib !! Indices (unitless) |
---|
3516 | REAL(r_std) :: diff, voltemp !! Discharge reduction due to floodplains |
---|
3517 | !_ ================================================================================================================================ |
---|
3518 | ! |
---|
3519 | ! |
---|
3520 | ! Initialize the variables |
---|
3521 | flood_frac(:) = zero |
---|
3522 | flood_height(:,:) = zero |
---|
3523 | flood_frac_bas(:,:) = zero |
---|
3524 | DO ig=1, nbpt |
---|
3525 | IF (totflood(ig) .GT. min_sechiba) THEN |
---|
3526 | DO ib=1,nbasmax |
---|
3527 | IF (floodplains(ig,ib) .GT. min_sechiba) THEN |
---|
3528 | ! We have to convert h0 to m and the flood_reservoir in m^3 |
---|
3529 | flood_frac_bas(ig,ib) = ((fp_beta(ig,ib)+un) * flood_reservoir(ig,ib) / 1000) / ( floodcri(ig,ib) / 1000 * floodplains(ig,ib)) |
---|
3530 | flood_frac_bas(ig,ib) = (flood_frac_bas(ig,ib)) ** (fp_beta(ig,ib)/(fp_beta(ig,ib)+1)) |
---|
3531 | flood_frac_bas(ig,ib) = MIN(flood_frac_bas(ig,ib), floodplains(ig,ib)/ routing_area(ig,ib) ) |
---|
3532 | |
---|
3533 | ! flood_height is in mm |
---|
3534 | ! there is two cases: flood_height < h0, flood_height >= h0 (this corresponds to flood_frac_bas = 1 ) |
---|
3535 | IF ( flood_frac_bas(ig,ib) .EQ. floodplains(ig,ib) / routing_area(ig,ib) ) THEN |
---|
3536 | ! voltemp is on m^3 |
---|
3537 | ! Calculation of volume corresponding to h0 |
---|
3538 | voltemp = floodplains(ig,ib)/(fp_beta(ig,ib)+un) * ( floodcri(ig,ib) / 1000 ) |
---|
3539 | voltemp = flood_reservoir(ig,ib) / 1000 - voltemp |
---|
3540 | ! flood height is in mm |
---|
3541 | flood_height(ig, ib) = voltemp / floodplains(ig,ib) * 1000 + floodcri(ig,ib) |
---|
3542 | ELSE |
---|
3543 | ! flood height is in mm |
---|
3544 | flood_height(ig, ib) = (flood_frac_bas(ig,ib)) ** (1/fp_beta(ig,ib)) * floodcri(ig,ib) |
---|
3545 | END IF |
---|
3546 | ENDIF |
---|
3547 | ENDDO |
---|
3548 | ENDIF |
---|
3549 | |
---|
3550 | DO ib=1,nbasmax |
---|
3551 | flood_frac(ig) = flood_frac(ig) + flood_frac_bas(ig,ib) * routing_area(ig,ib) / totarea(ig) |
---|
3552 | END DO |
---|
3553 | flood_frac(ig) = flood_frac(ig) + pond_frac(ig) |
---|
3554 | ! |
---|
3555 | ENDDO |
---|
3556 | |
---|
3557 | END SUBROUTINE routing_hr_flood |
---|
3558 | ! |
---|
3559 | !! ================================================================================================================================ |
---|
3560 | !! SUBROUTINE : routing_hr_overflow |
---|
3561 | !! |
---|
3562 | !>\BRIEF : This subroutine performs the overflow fluxes |
---|
3563 | !! |
---|
3564 | !! DESCRIPTION (definitions, functional, design, flags): \n |
---|
3565 | !! |
---|
3566 | !! RECENT CHANGE(S): None |
---|
3567 | !! |
---|
3568 | !! MAIN OUTPUT VARIABLE(S): |
---|
3569 | !! |
---|
3570 | !! REFERENCES : None |
---|
3571 | !! |
---|
3572 | !! FLOWCHART :None |
---|
3573 | !! \n |
---|
3574 | !_ ================================================================================================================================ |
---|
3575 | !- |
---|
3576 | SUBROUTINE routing_hr_overflow(nbpt, nbasmax) |
---|
3577 | ! |
---|
3578 | IMPLICIT NONE |
---|
3579 | ! |
---|
3580 | !! INPUT VARIABLES |
---|
3581 | INTEGER(i_std), INTENT(in) :: nbpt,nbasmax !! Domain size (unitless) |
---|
3582 | ! |
---|
3583 | !! LOCAL VARIABLES |
---|
3584 | REAL(r_std), DIMENSION(nbpt,nbasmax) :: transport_overflow !! Water transport between floodplains - flood overflow (kg/dt) |
---|
3585 | REAL(r_std), DIMENSION(nbp_glo,nbasmax) :: transport_overflow_glo !! Water transport between floodplains - flood overflow (kg/dt) |
---|
3586 | REAL(r_std), DIMENSION(nbpt,nbasmax) :: overflow_loss !! Water loss from flood overflow (kg/dt) |
---|
3587 | REAL(r_std), DIMENSION(nbp_glo,nbasmax) :: overflow_loss_glo !! Water loss from flood overflow (kg/dt) |
---|
3588 | ! |
---|
3589 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: flood_height_g !! Floodplains height (m) |
---|
3590 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: flood_frac_bas_g !! Fraction of the HTU flooded |
---|
3591 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: flood_reservoir_glo !! Water amount in the stream reservoir (kg) |
---|
3592 | ! |
---|
3593 | REAL(r_std), ALLOCATABLE, DIMENSION(:) :: DH,DH_temp !! Difference of height - flood overflow (kg/dt) |
---|
3594 | ! |
---|
3595 | INTEGER(i_std) :: numflood !! |
---|
3596 | ! |
---|
3597 | INTEGER(i_std) :: ig, ib, inf,inb,ing !! Indices (unitless) |
---|
3598 | REAL(r_std) :: diff !! Discharge reduction due to floodplains |
---|
3599 | REAL(r_std) :: flow !! Outflow computation for the reservoirs (kg/dt) |
---|
3600 | REAL(r_std) :: dorog !! Discharge reduction due to floodplains |
---|
3601 | INTEGER(i_std) :: ier !! Error handling |
---|
3602 | |
---|
3603 | |
---|
3604 | !_ ================================================================================================================================ |
---|
3605 | ! |
---|
3606 | !! ANTHONY : OVERFLOW |
---|
3607 | !! CALCULATE TRANSFER BETWEEN FLOODPLAINS RESERVOIR |
---|
3608 | IF (is_root_prc) THEN |
---|
3609 | ALLOCATE( flood_height_g(nbp_glo, nbasmax), flood_frac_bas_g(nbp_glo, nbasmax), stat=ier) |
---|
3610 | ALLOCATE( flood_reservoir_glo(nbp_glo, nbasmax), stat=ier) |
---|
3611 | ELSE |
---|
3612 | ALLOCATE( flood_height_g(1,1), flood_frac_bas_g(1,1), stat=ier) |
---|
3613 | ALLOCATE( flood_reservoir_glo(1, 1), stat=ier) |
---|
3614 | ENDIF |
---|
3615 | ! |
---|
3616 | IF (ier /= 0) CALL ipslerr_p(3,'routing_hr_flow','Pb in allocate for flood_height_glo/floog_frac_glo','','') |
---|
3617 | ! |
---|
3618 | CALL gather(flood_height,flood_height_g) |
---|
3619 | CALL gather(flood_frac_bas,flood_frac_bas_g) |
---|
3620 | CALL gather(flood_reservoir,flood_reservoir_glo) |
---|
3621 | ! |
---|
3622 | IF (is_root_prc) THEN |
---|
3623 | transport_overflow_glo(:,:) = 0 |
---|
3624 | overflow_loss_glo(:,:) = 0 |
---|
3625 | DO ib=1,nbasmax |
---|
3626 | DO ig=1,nbp_glo |
---|
3627 | IF ( floodplains_glo(ig,ib)/routing_area_glo(ig,ib) .GT. 0.5) THEN |
---|
3628 | numflood = 0 ! Number of inflows for overflow |
---|
3629 | ALLOCATE(DH(route_innum_glo(ig,ib))) |
---|
3630 | DH(:) = 0 |
---|
3631 | DH_temp(:) = -1 |
---|
3632 | DO inf=1,route_innum_glo(ig,ib) |
---|
3633 | ing = route_ingrid_glo(ig,ib,inf) |
---|
3634 | inb = route_inbasin_glo(ig,ib,inf) |
---|
3635 | IF ( floodplains_glo(ing,inb)/routing_area_glo(ing,inb) .GT. 0 ) THEN |
---|
3636 | ! Minimum of deltaorog is defined at lim_floodcri (0.3 m |
---|
3637 | ! can be used). |
---|
3638 | dorog = MAX(orog_min_glo(ing,inb)- orog_min_glo(ig,ib), lim_floodcri) |
---|
3639 | ! flood_height is in mm and orog min in m |
---|
3640 | diff = (flood_height_g(ig,ib)- flood_height_g(ing,inb))/1000 - dorog |
---|
3641 | DH(inf) = max(diff, 0.) |
---|
3642 | ! |
---|
3643 | ! Flux is estimated via floodplains_glo |
---|
3644 | ! Then factor 1000 is to convert m^3 to kg |
---|
3645 | ! OVERFLOW_TCST is in seconds |
---|
3646 | flow = DH(inf) * (floodplains_glo(ig,ib)* floodplains_glo(ing,inb))/(floodplains_glo(ig,ib)+floodplains_glo(ing,inb))*1000 / overflow_tcst * dt_routing / one_day |
---|
3647 | transport_overflow_glo(ing,inb) = transport_overflow_glo(ing,inb) + flow |
---|
3648 | overflow_loss_glo(ig,ib) = overflow_loss_glo(ig,ib) + flow |
---|
3649 | END IF |
---|
3650 | END DO |
---|
3651 | DEALLOCATE(DH) |
---|
3652 | END IF |
---|
3653 | ENDDO |
---|
3654 | ENDDO |
---|
3655 | END IF |
---|
3656 | ! Send to local variables |
---|
3657 | CALL scatter(transport_overflow_glo, transport_overflow) |
---|
3658 | CALL scatter(overflow_loss_glo, overflow_loss) |
---|
3659 | ! Apply the volume changes |
---|
3660 | DO ig=1,nbpt |
---|
3661 | DO ib=1,nbasmax |
---|
3662 | IF ( floodplains(ig,ib) .GT. 0 ) THEN |
---|
3663 | flood_reservoir(ig,ib) = flood_reservoir(ig,ib) + transport_overflow(ig,ib) - overflow_loss(ig,ib) |
---|
3664 | ! NEED to check if flood reservoir is less than 0, this may be a critical issue |
---|
3665 | ! Solved by an adequate use of an higher overflow time constant |
---|
3666 | ! To obtain the same result as with a lower overflow parameter |
---|
3667 | ! -> repeat a few time the operation with and higher overflow parameter |
---|
3668 | IF ( flood_reservoir(ig,ib) .LT. 0 ) THEN |
---|
3669 | |
---|
3670 | WRITE(*,*) "Issue of flood reservoir < 0 due to overflow at ", ig, ib |
---|
3671 | stream_reservoir(ig,ib) = stream_reservoir(ig,ib) + stream_reservoir(ig,ib) ! + because negative ! |
---|
3672 | flood_reservoir(ig,ib) = 0 |
---|
3673 | END IF |
---|
3674 | END IF |
---|
3675 | END DO |
---|
3676 | END DO |
---|
3677 | DEALLOCATE( flood_height_g, flood_frac_bas_g) |
---|
3678 | |
---|
3679 | END SUBROUTINE routing_hr_overflow |
---|
3680 | ! |
---|
3681 | !! ================================================================================================================================ |
---|
3682 | !! SUBROUTINE : routing_hr_lake |
---|
3683 | !! |
---|
3684 | !>\BRIEF : This subroutine stores water in lakes so that it does not cycle through the runoff. |
---|
3685 | !! For the moment it only works for endoheric lakes but I can be extended in the future. |
---|
3686 | !! |
---|
3687 | !! DESCRIPTION (definitions, functional, design, flags): The return flow to the soil moisture reservoir |
---|
3688 | !! is based on a maximum lake evaporation rate (maxevap_lake). \n |
---|
3689 | !! |
---|
3690 | !! RECENT CHANGE(S): None |
---|
3691 | !! |
---|
3692 | !! MAIN OUTPUT VARIABLE(S): |
---|
3693 | !! |
---|
3694 | !! REFERENCES : None |
---|
3695 | !! |
---|
3696 | !! FLOWCHART :None |
---|
3697 | !! \n |
---|
3698 | !_ ================================================================================================================================ |
---|
3699 | |
---|
3700 | SUBROUTINE routing_hr_lake(nbpt, dt_routing, lakeinflow, humrel, return_lakes) |
---|
3701 | ! |
---|
3702 | IMPLICIT NONE |
---|
3703 | ! |
---|
3704 | !! INPUT VARIABLES |
---|
3705 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
3706 | REAL(r_std), INTENT (in) :: dt_routing !! Routing time step (s) |
---|
3707 | REAL(r_std), INTENT(out) :: lakeinflow(nbpt) !! Water inflow to the lakes (kg/dt) |
---|
3708 | REAL(r_std), INTENT(in) :: humrel(nbpt) !! Soil moisture stress, root extraction potential (unitless) |
---|
3709 | ! |
---|
3710 | !! OUTPUT VARIABLES |
---|
3711 | REAL(r_std), INTENT(out) :: return_lakes(nbpt) !! Water from lakes flowing back into soil moisture (kg/m^2/dt) |
---|
3712 | ! |
---|
3713 | !! LOCAL VARIABLES |
---|
3714 | INTEGER(i_std) :: ig !! Indices (unitless) |
---|
3715 | REAL(r_std) :: refill !! |
---|
3716 | REAL(r_std) :: total_area !! Sum of all the surfaces of the basins (m^2) |
---|
3717 | |
---|
3718 | !_ ================================================================================================================================ |
---|
3719 | ! |
---|
3720 | ! |
---|
3721 | DO ig=1,nbpt |
---|
3722 | ! |
---|
3723 | total_area = SUM(routing_area(ig,:)) |
---|
3724 | ! |
---|
3725 | lake_reservoir(ig) = lake_reservoir(ig) + lakeinflow(ig) |
---|
3726 | |
---|
3727 | IF ( doswamps ) THEN |
---|
3728 | ! Calculate a return flow that will be extracted from the lake reservoir and reinserted in the soil in hydrol |
---|
3729 | ! Uptake in Kg/dt |
---|
3730 | refill = MAX(zero, maxevap_lake * (un - humrel(ig)) * dt_routing * total_area) |
---|
3731 | return_lakes(ig) = MIN(refill, lake_reservoir(ig)) |
---|
3732 | lake_reservoir(ig) = lake_reservoir(ig) - return_lakes(ig) |
---|
3733 | ! Return in Kg/m^2/dt |
---|
3734 | return_lakes(ig) = return_lakes(ig)/total_area |
---|
3735 | ELSE |
---|
3736 | return_lakes(ig) = zero |
---|
3737 | ENDIF |
---|
3738 | |
---|
3739 | ! This is the volume of the lake scaled to the entire grid. |
---|
3740 | ! It would be better to scale it to the size of the lake |
---|
3741 | ! but this information is not yet available. |
---|
3742 | lake_diag(ig) = lake_reservoir(ig)/total_area |
---|
3743 | |
---|
3744 | lakeinflow(ig) = lakeinflow(ig)/total_area |
---|
3745 | |
---|
3746 | ENDDO |
---|
3747 | ! |
---|
3748 | END SUBROUTINE routing_hr_lake |
---|
3749 | ! |
---|
3750 | !! ================================================================================================================================ |
---|
3751 | !! SUBROUTINE : routing_hr_basins_p |
---|
3752 | !! |
---|
3753 | !>\BRIEF This routing read the file created by RoutingPreProc : https://gitlab.in2p3.fr/ipsl/lmd/intro/routingpp |
---|
3754 | !! |
---|
3755 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
3756 | !! Once the atmospheric grid is defined and the land/sea mask set, RoutingPreProc has to used to generate the |
---|
3757 | !! HTU graphs for the domain. This can be done either on the basis of the HydroSHEDS, MERIT or the old Vörösmarty map |
---|
3758 | !! of catchments. During this step all the information will be created to allow ORCHIDEE to route the water and |
---|
3759 | !! and monitor the flows at given stations. |
---|
3760 | !! For the moment the ROUTING_FILE (Perhaps to renamed RoutingGraph) is read using IOIPSL but that should evolve toward XIOS. |
---|
3761 | !! |
---|
3762 | !! RECENT CHANGE(S): None |
---|
3763 | !! |
---|
3764 | !! MAIN OUTPUT VARIABLE(S): |
---|
3765 | !! |
---|
3766 | !! REFERENCES : None |
---|
3767 | !! |
---|
3768 | !! FLOWCHART : None |
---|
3769 | !! \n |
---|
3770 | !_ ================================================================================================================================ |
---|
3771 | |
---|
3772 | SUBROUTINE routing_hr_basins_p(nbpt, lalo, neighbours, resolution, contfrac) |
---|
3773 | ! |
---|
3774 | IMPLICIT NONE |
---|
3775 | ! |
---|
3776 | !! INPUT VARIABLES |
---|
3777 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
3778 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
3779 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb) !! Vector of neighbours for each grid point (1=North and then clockwise) (unitless) |
---|
3780 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
3781 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
3782 | ! |
---|
3783 | ! LOCAL |
---|
3784 | ! |
---|
3785 | INTEGER(i_std) :: iml, jml, lml, tml |
---|
3786 | INTEGER(i_std) :: i, j, ni, fid, ib, ig, ic, ign, ibn, og, ob, ier, im |
---|
3787 | REAL(r_std) :: corr |
---|
3788 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:,:) :: tmpvar_glo |
---|
3789 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: tmpvar |
---|
3790 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lon, lat, landindex |
---|
3791 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: indextab |
---|
3792 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: landfileindex |
---|
3793 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:) :: land2land |
---|
3794 | INTEGER(i_std) :: nbhtumon |
---|
3795 | ! |
---|
3796 | !_ ================================================================================================================================ |
---|
3797 | ! |
---|
3798 | ! |
---|
3799 | ! |
---|
3800 | IF (is_root_prc) THEN |
---|
3801 | ! |
---|
3802 | CALL flininfo(graphfilename, iml, jml, lml, tml, fid) |
---|
3803 | ! |
---|
3804 | IF (iml .NE. iim_g .AND. jml .NE. jjm_g ) THEN |
---|
3805 | CALL ipslerr(3,'routing_hr_basins_p',& |
---|
3806 | 'The routing graph file does not have the right dimensions for the model.', & |
---|
3807 | 'Are you sure you are using the right routing graph file ?', ' ') |
---|
3808 | ENDIF |
---|
3809 | ! |
---|
3810 | ! |
---|
3811 | ALLOCATE(tmpvar_glo(iml,jml,nbasmax)) |
---|
3812 | ALLOCATE(tmpvar(iml,jml)) |
---|
3813 | ALLOCATE(lon(iml,jml)) |
---|
3814 | ALLOCATE(lat(iml,jml)) |
---|
3815 | ALLOCATE(landindex(iml,jml)) |
---|
3816 | ALLOCATE(indextab(iml,jml)) |
---|
3817 | ALLOCATE(landfileindex(iml,jml)) |
---|
3818 | ALLOCATE(land2land(iml*jml)) |
---|
3819 | ! |
---|
3820 | CALL flinget(fid, 'lon', iml, jml, 1, tml, 1, 0, lon) |
---|
3821 | CALL flinget(fid, 'lat', iml, jml, 1, tml, 1, 0, lat) |
---|
3822 | CALL flinget(fid, 'nbpt_glo', iml, jml, 1, tml, 1, 0, landindex) |
---|
3823 | ! |
---|
3824 | ! Replace NaN and other undef values |
---|
3825 | ! |
---|
3826 | DO i=1,iml |
---|
3827 | DO j=1,jml |
---|
3828 | IF ( landindex(i,j) /= landindex(i,j) .OR. landindex(i,j) >= undef_graphfile) THEN |
---|
3829 | landindex(i,j) = -1 |
---|
3830 | ENDIF |
---|
3831 | ENDDO |
---|
3832 | ENDDO |
---|
3833 | ! |
---|
3834 | ! Compute land index for file data. Information could be in file ! |
---|
3835 | ! |
---|
3836 | ni=NINT(MAXVAL(landindex)) |
---|
3837 | IF ( ni .NE. nbp_glo) THEN |
---|
3838 | WRITE(numout,*) "Error routing_hr_basins_p : ni, nbp_glo : ", ni, nbp_glo, undef_graphfile |
---|
3839 | CALL ipslerr(3,'routing_hr_basins_p',& |
---|
3840 | 'The routing graph file does not have the same number', & |
---|
3841 | 'of land points as the model.',& |
---|
3842 | ' ') |
---|
3843 | ENDIF |
---|
3844 | ! |
---|
3845 | CALL routing_hr_indexfilegrid(iml, jml, nbp_glo, lon, lat, landindex, indextab, land2land) |
---|
3846 | ! |
---|
3847 | CALL flinget(fid, 'basin_area', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3848 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, routing_area_glo, & |
---|
3849 | & zero) |
---|
3850 | |
---|
3851 | IF ( do_floodplains ) THEN |
---|
3852 | CALL flinget(fid, 'basin_floodp', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3853 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, floodplains_glo, & |
---|
3854 | & zero) |
---|
3855 | ! |
---|
3856 | CALL flinget(fid, 'floodcri', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3857 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, floodcri_glo, & |
---|
3858 | & un) |
---|
3859 | ! |
---|
3860 | CALL flinget(fid, 'basin_beta_fp', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3861 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, fp_beta_glo, & |
---|
3862 | & un) |
---|
3863 | END IF |
---|
3864 | |
---|
3865 | CALL flinget(fid, 'topoindex', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3866 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, topo_resid_glo, & |
---|
3867 | & undef_graphfile) |
---|
3868 | |
---|
3869 | IF ( graphfile_version >= 2.0) THEN |
---|
3870 | CALL flinget(fid, 'topoindex_stream', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3871 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, stream_resid_glo, & |
---|
3872 | & undef_graphfile) |
---|
3873 | CALL ipslerr(1,'routing_hr_basins_p',& |
---|
3874 | 'The topoindex_stream variable was found in routing_graph.nc', & |
---|
3875 | 'It will be used the topographic index of the stream store.',& |
---|
3876 | ' ') |
---|
3877 | ELSE |
---|
3878 | stream_resid_glo(:,:) = topo_resid_glo(:,:) |
---|
3879 | ENDIF |
---|
3880 | stream_maxresid=MAXVAL(stream_resid_glo, MASK=stream_resid_glo .LT. undef_graphfile) |
---|
3881 | |
---|
3882 | CALL flinget(fid, 'basinid', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3883 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, global_basinid_glo, & |
---|
3884 | & undef_int) |
---|
3885 | |
---|
3886 | CALL flinget(fid, 'routetogrid', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3887 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, route_togrid_glo, & |
---|
3888 | & undef_int) |
---|
3889 | CALL routing_hr_convertlandpts(nbp_glo, nbasmax, land2land, route_togrid_glo) |
---|
3890 | |
---|
3891 | CALL flinget(fid, 'routetobasin', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3892 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, route_tobasin_glo, 0) |
---|
3893 | |
---|
3894 | CALL flinget(fid, 'routenbintobas', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3895 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, route_nbintobas_glo, 0) |
---|
3896 | |
---|
3897 | !! |
---|
3898 | IF ( dofloodoverflow ) THEN |
---|
3899 | CALL flinget(fid, 'basin_orog_min', iml, jml, nbasmax, tml, 1, 0, tmpvar_glo) |
---|
3900 | CALL routing_hr_landgather(iml, jml, nbasmax, nbp_glo, indextab, tmpvar_glo, orog_min_glo, un) |
---|
3901 | END IF |
---|
3902 | !! |
---|
3903 | IF ( graphfile_version >= 2.6) THEN |
---|
3904 | CALL flinget(fid, 'gridrephtu', iml, jml, 1, tml, 1, 0, tmpvar) |
---|
3905 | CALL routing_hr_landgather(iml, jml, nbp_glo, indextab, tmpvar, hydrodiag_glo, -1) |
---|
3906 | ELSE |
---|
3907 | hydrodiag_glo(:) = 1 |
---|
3908 | ENDIF |
---|
3909 | !! |
---|
3910 | IF ( MonitoringinGraph ) THEN |
---|
3911 | CALL flinget(fid, 'HTUmonitor', iml, jml, nbasmon, tml, 1, 0, tmpvar_glo) |
---|
3912 | CALL routing_hr_landgather(iml, jml, nbasmon, nbp_glo, indextab, tmpvar_glo, HTUdiag_glo, -1) |
---|
3913 | ELSE |
---|
3914 | HTUdiag_glo(:,:) = -1 |
---|
3915 | ENDIF |
---|
3916 | ! |
---|
3917 | CALL flinclo(fid) |
---|
3918 | DEALLOCATE(indextab) |
---|
3919 | DEALLOCATE(lon) |
---|
3920 | DEALLOCATE(lat) |
---|
3921 | DEALLOCATE(tmpvar_glo) |
---|
3922 | DEALLOCATE(tmpvar) |
---|
3923 | ! |
---|
3924 | ! Convert floodplains fraction into floodplains surface |
---|
3925 | IF ( do_floodplains ) THEN |
---|
3926 | !floodplains_glo(:, :) = 0 |
---|
3927 | DO ig = 1,nbp_glo |
---|
3928 | DO ib = 1,nbasmax |
---|
3929 | floodplains_glo(ig, ib) = routing_area_glo(ig,ib) * floodplains_glo(ig, ib) |
---|
3930 | END DO |
---|
3931 | END DO |
---|
3932 | END IF |
---|
3933 | ! |
---|
3934 | ! Verifications of the routing graph. |
---|
3935 | ! |
---|
3936 | nbhtumon = 0 |
---|
3937 | DO ig = 1,nbp_glo |
---|
3938 | ! Noramlize the areas so that differences in precision of area compution by RoutingPP do not affect the model |
---|
3939 | ! |
---|
3940 | corr = contfrac_g(ig)*area_g(ig)/SUM(routing_area_glo(ig,:)) |
---|
3941 | IF (ABS(1 - corr) > 0.0002 ) THEN |
---|
3942 | WRITE(*,*) "Correcting the HTU area to take into account contfrac", corr |
---|
3943 | IF ( ABS(1 - corr) > 0.1) THEN |
---|
3944 | WRITE(*,*) "Coordinates : ", lalo_g(ig,1), lalo_g(ig,2) |
---|
3945 | WRITE(*,*) "Contfrac and area in model : ", contfrac_g(ig), area_g(ig) |
---|
3946 | WRITE(*,*) "Total grid area in graph file : ", SUM(routing_area_glo(ig,:)) |
---|
3947 | WRITE(*,*) "The new areas are : ", SUM(routing_area_glo(ig,:)), contfrac_g(ig)*area_g(ig) |
---|
3948 | WRITE(*,*) "Correction factor : ", corr |
---|
3949 | CALL ipslerr(3,'routing_hr_basins_p',& |
---|
3950 | 'There is a mismatch in the area of the grid', & |
---|
3951 | 'Either there are issues with the projection of the grid ',' or contfrac mismatches.') |
---|
3952 | ELSE |
---|
3953 | CALL ipslerr(2,'routing_hr_basins_p',& |
---|
3954 | 'The area of the grid had to be adjusted by less than 10% :', & |
---|
3955 | ' ',' ') |
---|
3956 | ENDIF |
---|
3957 | ENDIF |
---|
3958 | DO ib = 1,nbasmax |
---|
3959 | routing_area_glo(ig,ib) = corr*routing_area_glo(ig,ib) |
---|
3960 | ENDDO |
---|
3961 | ! |
---|
3962 | ! |
---|
3963 | DO ib = 1,nbasmax |
---|
3964 | ! |
---|
3965 | IF (topo_resid_glo(ig,ib) <= zero .AND. route_tobasin_glo(ig, ib) .LE. nbasmax+3) THEN |
---|
3966 | ! If the basin has no surface we change silently as it does not matter. |
---|
3967 | IF ( routing_area_glo(ig,ib) > zero ) THEN |
---|
3968 | CALL ipslerr(2,'routing_hr_basins_p',& |
---|
3969 | 'Some zero topo_resid (topoindex) values were encoutered and replaced here :', & |
---|
3970 | ' ',' ') |
---|
3971 | WRITE(*,*) "routing_hr_basins_p : topo_resid_glo : ", topo_resid_glo(ig,ib), routing_area_glo(ig,ib) |
---|
3972 | WRITE(*,*) "routing_hr_basins_p : Coordinates : ", lalo_g(ig,1), lalo_g(ig,2) |
---|
3973 | topo_resid_glo(ig,ib) = 10 |
---|
3974 | stream_resid_glo(ig,ib) = 10 |
---|
3975 | WRITE(*,*) "routing_hr_basins_p : New topo_resid_glo : ", topo_resid_glo(ig,ib) |
---|
3976 | ELSE |
---|
3977 | topo_resid_glo(ig,ib) = 10 |
---|
3978 | stream_resid_glo(ig,ib) = 10 |
---|
3979 | ENDIF |
---|
3980 | ENDIF |
---|
3981 | ! |
---|
3982 | ! |
---|
3983 | IF ( route_togrid_glo(ig, ib) > nbp_glo ) THEN |
---|
3984 | IF ( route_tobasin_glo(ig,ib) <= nbasmax+3 ) THEN |
---|
3985 | WRITE(*,*) "Issues with the global grid : ", ig, ib, route_togrid_glo(ig, ib), route_tobasin_glo(ig,ib) |
---|
3986 | CALL ipslerr(3,'routing_hr_basins_p','route_togrid is not compatible with the model configuration', & |
---|
3987 | ' ',' ') |
---|
3988 | ENDIF |
---|
3989 | ELSE |
---|
3990 | ic = 0 |
---|
3991 | ign = ig |
---|
3992 | ibn = ib |
---|
3993 | ! Locate outflow point |
---|
3994 | DO WHILE (ibn .GT. 0 .AND. ibn .LE. nbasmax .AND. ic .LT. nbasmax*nbp_glo) |
---|
3995 | ic = ic + 1 |
---|
3996 | og = ign |
---|
3997 | ob = ibn |
---|
3998 | ign = route_togrid_glo(og, ob) |
---|
3999 | ibn = route_tobasin_glo(og, ob) |
---|
4000 | ! |
---|
4001 | IF (ibn .GT. nbasmax+3 .OR. ign .GT. nbp_glo) THEN |
---|
4002 | WRITE(*,*) "Reached point ", ign, ibn, " on condition ", nbasmax+3, nbp_glo |
---|
4003 | WRITE(*,*) "Why do we flow into basin :", route_tobasin_glo(og, ob), " at ", og,ob |
---|
4004 | WRITE(*,*) "Coordinates : ", lalo_g(ob,1), lalo_g(ob,2) |
---|
4005 | WRITE(*,*) "neighbours_g : ", MINVAL(neighbours_g(ob,:)) |
---|
4006 | CALL ipslerr(3,'routing_hr_basins_p','The river flows into a place outside of the grid.', & |
---|
4007 | ' ',' ') |
---|
4008 | ENDIF |
---|
4009 | ENDDO |
---|
4010 | IF ( ic .GE. nbasmax*nbp_glo) THEN |
---|
4011 | WRITE(*,*) "Some river did not converge on point ", ig, ib, ic |
---|
4012 | WRITE(*,*) "The start point in the graph was : ", lalo_g(ig,2), lalo_g(ig,1), ib |
---|
4013 | WRITE(*,*) "The last point we passed through was : ", lalo_g(og,2), lalo_g(og,1), ob |
---|
4014 | WRITE(*,*) "The next one would be : ", lalo_g(ign,2), lalo_g(ign,1), ibn |
---|
4015 | og = route_togrid_glo(ign, ibn) |
---|
4016 | ob = route_tobasin_glo(ign, ibn) |
---|
4017 | WRITE(*,*) "The after next HTU would be : ", lalo_g(og,2), lalo_g(og,1), ob |
---|
4018 | WRITE(*,*) "Last information : ", ign, ibn |
---|
4019 | CALL ipslerr(3,'routing_hr_basins_p','The river never flows into an outflow point.', & |
---|
4020 | ' ',' ') |
---|
4021 | ENDIF |
---|
4022 | ENDIF |
---|
4023 | ENDDO |
---|
4024 | ! |
---|
4025 | ! Count stations to be monitored |
---|
4026 | ! |
---|
4027 | DO im=1,nbasmon |
---|
4028 | IF ( HTUdiag_glo(ig,im) > 0 ) THEN |
---|
4029 | nbhtumon = nbhtumon + 1 |
---|
4030 | ENDIF |
---|
4031 | ENDDO |
---|
4032 | ENDDO |
---|
4033 | WRITE(numout,*) "Found a total of ", nbhtumon, " HTUs to be monitored and written into HTUhgmon" |
---|
4034 | ! |
---|
4035 | ! Compute num_largest |
---|
4036 | ! |
---|
4037 | num_largest = COUNT(route_tobasin_glo .EQ. nbasmax+3) |
---|
4038 | WRITE(numout,*) "After _basins_p : Number of largest rivers : ", COUNT(route_tobasin_glo .EQ. nbasmax+3) |
---|
4039 | ENDIF |
---|
4040 | ! |
---|
4041 | CALL bcast(num_largest) |
---|
4042 | CALL bcast(nbasmax) |
---|
4043 | CALL bcast(nbasmon) |
---|
4044 | CALL bcast(inflows) |
---|
4045 | ! |
---|
4046 | CALL scatter(routing_area_glo,routing_area_loc) |
---|
4047 | IF ( do_floodplains ) THEN |
---|
4048 | CALL scatter(floodplains_glo,floodplains_loc) |
---|
4049 | CALL scatter(floodcri_glo, floodcri_loc) |
---|
4050 | CALL scatter(fp_beta_glo, fp_beta_loc) |
---|
4051 | END IF |
---|
4052 | CALL scatter(global_basinid_glo, global_basinid_loc) |
---|
4053 | CALL scatter(topo_resid_glo, topo_resid_loc) |
---|
4054 | CALL scatter(stream_resid_glo, stream_resid_loc) |
---|
4055 | CALL scatter(route_togrid_glo, route_togrid_loc) |
---|
4056 | CALL scatter(route_tobasin_glo, route_tobasin_loc) |
---|
4057 | CALL scatter(route_nbintobas_glo, route_nbintobas_loc) |
---|
4058 | CALL scatter(hydrodiag_glo, hydrodiag_loc) |
---|
4059 | CALL scatter(HTUdiag_glo, HTUdiag_loc) |
---|
4060 | IF ( do_floodplains .AND. dofloodoverflow ) THEN |
---|
4061 | CALL scatter(orog_min_glo, orog_min_loc) |
---|
4062 | END IF |
---|
4063 | ! |
---|
4064 | CALL bcast(stream_tcst) |
---|
4065 | CALL bcast(fast_tcst) |
---|
4066 | CALL bcast(slow_tcst) |
---|
4067 | CALL bcast(flood_tcst) |
---|
4068 | CALL bcast(swamp_cst) |
---|
4069 | CALL bcast(lim_floodcri) |
---|
4070 | CALL bcast(stream_maxresid) |
---|
4071 | ! |
---|
4072 | END SUBROUTINE routing_hr_basins_p |
---|
4073 | ! |
---|
4074 | !! ================================================================================================================================ |
---|
4075 | !! SUBROUTINE : routing_hr_graphinfo |
---|
4076 | !! |
---|
4077 | !>\BRIEF Extract some basic information from the routing graph file which cannot be obtained through IOIPSL. |
---|
4078 | !! |
---|
4079 | !! ================================================================================================================================ |
---|
4080 | SUBROUTINE routing_hr_graphinfo(filename, basmax, infmax, basmon, undef, tstream, tfast, tslow, tflood, cswamp, lfpcri) |
---|
4081 | ! |
---|
4082 | USE netcdf |
---|
4083 | ! |
---|
4084 | IMPLICIT NONE |
---|
4085 | ! |
---|
4086 | !! 0. Variables and parameter declaration |
---|
4087 | !! 0.1 Input variables |
---|
4088 | CHARACTER(LEN=*), INTENT(in) :: filename !! filename: name of the file to open |
---|
4089 | INTEGER(i_std), INTENT(inout) :: basmax !! maximum number of HTUs |
---|
4090 | INTEGER(i_std), INTENT(inout) :: basmon !! Number of HTUs to be monitored by grid box. |
---|
4091 | INTEGER(i_std), INTENT(inout) :: infmax !! Maximum number of inflows. |
---|
4092 | REAL(r_std), INTENT(out) :: undef |
---|
4093 | REAL(r_std), INTENT(out) :: tstream, tfast, tslow, tflood, cswamp !! Time constants to be extracted |
---|
4094 | REAL(r_std), INTENT(out) :: lfpcri !! Constant lim_floodcri to be taken from graph file. |
---|
4095 | ! |
---|
4096 | INTEGER(i_std) :: rcode, nid, dimid, ndims, nvars |
---|
4097 | INTEGER(i_std), DIMENSION(4) :: dimids |
---|
4098 | INTEGER(i_std) :: iv, ndimsvar |
---|
4099 | CHARACTER(LEN=20) :: dname, varname |
---|
4100 | ! |
---|
4101 | ! |
---|
4102 | IF (is_root_prc) THEN |
---|
4103 | ! |
---|
4104 | rcode = nf90_open(TRIM(filename), NF90_NOWRITE, nid) |
---|
4105 | IF (rcode == NF90_NOERR) THEN |
---|
4106 | ! |
---|
4107 | ! Get graph file version |
---|
4108 | ! |
---|
4109 | rcode = nf90_get_att(nid, NF90_GLOBAL, "RoutingPPVersion", graphfile_version) |
---|
4110 | IF (rcode /= NF90_NOERR) THEN |
---|
4111 | graphfile_version = 0.0 |
---|
4112 | ENDIF |
---|
4113 | ! |
---|
4114 | ! Assumes that the number of HTUs is in the dimension z |
---|
4115 | ! |
---|
4116 | rcode = nf90_inq_dimid(nid, "z", dimid) |
---|
4117 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_inq_dimid for z', & |
---|
4118 | TRIM(nf90_strerror(rcode)),'') |
---|
4119 | rcode = nf90_inquire_dimension(nid, dimid, dname, basmax) |
---|
4120 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_inquire_dimension basmax', & |
---|
4121 | TRIM(nf90_strerror(rcode)),'') |
---|
4122 | ! |
---|
4123 | rcode = nf90_inq_dimid(nid, "inflow", dimid) |
---|
4124 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_inq_dimid for inflow', & |
---|
4125 | TRIM(nf90_strerror(rcode)),'') |
---|
4126 | rcode = nf90_inquire_dimension(nid, dimid, dname, infmax) |
---|
4127 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_inquire_dimension inflows', & |
---|
4128 | TRIM(nf90_strerror(rcode)),'') |
---|
4129 | ! |
---|
4130 | rcode = nf90_inq_dimid(nid, "htumon", dimid) |
---|
4131 | IF (rcode /= NF90_NOERR) THEN |
---|
4132 | MonitoringinGraph = .FALSE. |
---|
4133 | basmon = 1 |
---|
4134 | ELSE |
---|
4135 | rcode = nf90_inquire_dimension(nid, dimid, dname, basmon) |
---|
4136 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_inquire_dimension for basmon', & |
---|
4137 | TRIM(nf90_strerror(rcode)),'') |
---|
4138 | MonitoringinGraph = .TRUE. |
---|
4139 | ENDIF |
---|
4140 | ! |
---|
4141 | ! |
---|
4142 | rcode = NF90_INQUIRE (nid, nDimensions=ndims, nVariables=nvars) |
---|
4143 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_inquire', & |
---|
4144 | TRIM(nf90_strerror(rcode)),'') |
---|
4145 | ! |
---|
4146 | DO iv=1,nvars |
---|
4147 | ! |
---|
4148 | rcode = NF90_INQUIRE_VARIABLE(nid, iv, name=varname, ndims=ndimsvar, dimids=dimids) |
---|
4149 | ! |
---|
4150 | SELECT CASE (varname) |
---|
4151 | CASE ("basin_area") |
---|
4152 | rcode = NF90_GET_ATT(nid, iv, "missing_value", undef) |
---|
4153 | IF (rcode /= NF90_NOERR) THEN |
---|
4154 | IF ( rcode == NF90_ENOTATT ) THEN |
---|
4155 | rcode = NF90_GET_ATT(nid, iv, "_FillValue", undef) |
---|
4156 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Did not get FillValue with nf90_get_att', & |
---|
4157 | TRIM(nf90_strerror(rcode)),'') |
---|
4158 | ELSE |
---|
4159 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_att', & |
---|
4160 | TRIM(nf90_strerror(rcode)),'') |
---|
4161 | ENDIF |
---|
4162 | ENDIF |
---|
4163 | CASE("StreamTimeCst") |
---|
4164 | rcode = NF90_GET_VAR(nid,iv,tstream) |
---|
4165 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_var for variable StreamTimeCst', '','') |
---|
4166 | ! If in an old version convert 10^3d/km into s/km |
---|
4167 | IF (graphfile_version < 1.0) THEN |
---|
4168 | tstream = tstream/1000*one_day |
---|
4169 | ENDIF |
---|
4170 | CASE("FastTimeCst") |
---|
4171 | rcode = NF90_GET_VAR(nid,iv,tfast) |
---|
4172 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_var for variable FastTimeCst', '','') |
---|
4173 | ! If in an old version convert 10^3d/km into s/km |
---|
4174 | IF (graphfile_version < 1.0) THEN |
---|
4175 | tfast = tfast/1000*one_day |
---|
4176 | ENDIF |
---|
4177 | CASE("SlowTimeCst") |
---|
4178 | rcode = NF90_GET_VAR(nid,iv,tslow) |
---|
4179 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_var for variable SlowTimeCst', '','') |
---|
4180 | ! If in an old version convert 10^3d/km into s/km |
---|
4181 | IF (graphfile_version < 1.0) THEN |
---|
4182 | tslow = tslow/1000*one_day |
---|
4183 | ENDIF |
---|
4184 | CASE("FloodTimeCst") |
---|
4185 | rcode = NF90_GET_VAR(nid,iv,tflood) |
---|
4186 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_var for variable FloodTimeCst', '','') |
---|
4187 | ! If in an old version convert 10^3d/km into s/km |
---|
4188 | IF (graphfile_version < 1.0) THEN |
---|
4189 | tflood = tflood/1000*one_day |
---|
4190 | ENDIF |
---|
4191 | CASE("SwampCst") |
---|
4192 | rcode = NF90_GET_VAR (nid,iv,cswamp) |
---|
4193 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_var for variable SwampCst', '','') |
---|
4194 | CASE("MaxTimeStep") |
---|
4195 | rcode = NF90_GET_VAR (nid,iv,maxtimestep) |
---|
4196 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_var for variable MaxTimeStep', '','') |
---|
4197 | CASE("LimFloodcri") |
---|
4198 | rcode = NF90_GET_VAR(nid,iv,lfpcri) |
---|
4199 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_get_var for variable LimFloodcri', '','') |
---|
4200 | END SELECT |
---|
4201 | ENDDO |
---|
4202 | rcode = NF90_CLOSE(nid) |
---|
4203 | IF (rcode /= NF90_NOERR) CALL ipslerr_p(3, 'routing_hr_graphinfo', 'Error in nf90_close', & |
---|
4204 | TRIM(nf90_strerror(rcode)),'') |
---|
4205 | ! |
---|
4206 | ! Before RoutingGraph version 2.5 the lfpcri parameter was hardcoded in routing.f90 and set to 2m. |
---|
4207 | ! This information is preserved here. |
---|
4208 | IF ( graphfile_version < 2.5 ) THEN |
---|
4209 | lfpcri = 2.0 |
---|
4210 | ENDIF |
---|
4211 | ! |
---|
4212 | ELSE |
---|
4213 | ! Case without Graphfile. So we consider that the information will be found in the restart. |
---|
4214 | CALL ipslerr_p(2, 'routing_hr_graphinfo', 'Could not open the rotung_graph.nc file', & |
---|
4215 | "Expect to find all the information needed in the restart file.",'') |
---|
4216 | ! |
---|
4217 | MonitoringinGraph = .FALSE. |
---|
4218 | basmax = -1 |
---|
4219 | basmon = -1 |
---|
4220 | infmax = -1 |
---|
4221 | undef = undef_sechiba |
---|
4222 | tstream = -1 |
---|
4223 | tfast = -1 |
---|
4224 | tslow = -1 |
---|
4225 | tflood = -1 |
---|
4226 | cswamp = -1 |
---|
4227 | lfpcri = -1 |
---|
4228 | ENDIF |
---|
4229 | ENDIF |
---|
4230 | !! |
---|
4231 | CALL bcast(MonitoringinGraph) |
---|
4232 | CALL bcast(basmax) |
---|
4233 | CALL bcast(basmon) |
---|
4234 | CALL bcast(infmax) |
---|
4235 | CALL bcast(undef) |
---|
4236 | CALL bcast(tstream) |
---|
4237 | CALL bcast(tfast) |
---|
4238 | CALL bcast(tslow) |
---|
4239 | CALL bcast(tflood) |
---|
4240 | CALL bcast(cswamp) |
---|
4241 | CALL bcast(lfpcri) |
---|
4242 | !! |
---|
4243 | !! |
---|
4244 | END SUBROUTINE routing_hr_graphinfo |
---|
4245 | ! |
---|
4246 | !! ================================================================================================================================ |
---|
4247 | !! SUBROUTINE : routing_hr_indexfilegrid |
---|
4248 | !! |
---|
4249 | !>\BRIEF Locates all the points of the routing graph file on the model grid. This ensure that no assumption is made on the |
---|
4250 | !! orientation of the grid in the file. |
---|
4251 | !! |
---|
4252 | !! ================================================================================================================================ |
---|
4253 | SUBROUTINE routing_hr_indexfilegrid(im, jm, nbl, lon, lat, landindex, indextab, il2il) |
---|
4254 | INTEGER(i_std), INTENT(IN) :: im, jm, nbl |
---|
4255 | REAL(r_std), INTENT(IN) :: lon(im,jm), lat(im,jm) |
---|
4256 | REAL(r_std), INTENT(IN) :: landindex(im,jm) |
---|
4257 | INTEGER(i_std), INTENT(INOUT) :: indextab(im,jm) |
---|
4258 | INTEGER(i_std), INTENT(OUT) :: il2il(nbl) |
---|
4259 | ! |
---|
4260 | INTEGER(i_std) :: il,i,j |
---|
4261 | INTEGER(i_std) :: f(2) |
---|
4262 | INTEGER(i_std) :: ih, jh, ir, jr |
---|
4263 | REAL(r_std) :: nd |
---|
4264 | REAL(r_std), DIMENSION(im,jm) :: dist |
---|
4265 | REAL(r_std) :: mindist = 1000. !! Minimum distance in m between two points to be matched. |
---|
4266 | ! |
---|
4267 | indextab(:,:) = -1 |
---|
4268 | ih = INT(im/2.) |
---|
4269 | ir = NINT(im/2.)+1 |
---|
4270 | jh = INT(jm/2.) |
---|
4271 | jr = NINT(jm/2.)+1 |
---|
4272 | ! |
---|
4273 | DO il=1,nbl |
---|
4274 | dist(:,:) = undef_sechiba |
---|
4275 | DO i=MAX(1,ih-ir),MIN(im,ih+ir) |
---|
4276 | DO j=MAX(1,jh-jr),MIN(jm,jh+jr) |
---|
4277 | dist(i,j) = haversine_distance(lon(i,j), lat(i,j), lalo_g(il,2), lalo_g(il,1)) |
---|
4278 | ENDDO |
---|
4279 | ENDDO |
---|
4280 | f=MINLOC(dist) |
---|
4281 | IF ( dist(f(1),f(2)) < mindist ) THEN |
---|
4282 | indextab(f(1),f(2)) = il |
---|
4283 | il2il(NINT(landindex(f(1),f(2)))) = il |
---|
4284 | dist(f(1),f(2)) = undef_sechiba |
---|
4285 | ELSE |
---|
4286 | CALL ipslerr(3,'routing_hr_indexfilegrid',& |
---|
4287 | 'Distance of the closest point in the two grids is too large. ', & |
---|
4288 | 'Are you sure the routing graph file is on the correct grid ?',& |
---|
4289 | ' ') |
---|
4290 | ENDIF |
---|
4291 | ! |
---|
4292 | ! See if the next point is close by |
---|
4293 | ! |
---|
4294 | nd = haversine_distance(lalo_g(il,2), lalo_g(il,1), lalo_g(MIN(il+1,nbl),2), lalo_g(MIN(il+1,nbl),1)) |
---|
4295 | IF ( nd < MINVAL(dist)*3 ) THEN |
---|
4296 | ! The next point is close so zoom in |
---|
4297 | ih = f(1) |
---|
4298 | ir = 4 |
---|
4299 | jh = f(2) |
---|
4300 | jr = 4 |
---|
4301 | ELSE |
---|
4302 | ! Back to starting conditions as the next point is far away |
---|
4303 | ih = INT(im/2.) |
---|
4304 | ir = NINT(im/2.)+1 |
---|
4305 | jh = INT(jm/2.) |
---|
4306 | jr = NINT(jm/2.)+1 |
---|
4307 | ENDIF |
---|
4308 | ENDDO |
---|
4309 | END SUBROUTINE routing_hr_indexfilegrid |
---|
4310 | ! |
---|
4311 | !! ================================================================================================================================ |
---|
4312 | !! SUBROUTINE : routing_hr_convertlandpts |
---|
4313 | !! |
---|
4314 | !>\BRIEF In case the order of land points was different in RoutingPreProc and the model. The route_togrid is corrected. |
---|
4315 | !! |
---|
4316 | !! ================================================================================================================================ |
---|
4317 | ! |
---|
4318 | SUBROUTINE routing_hr_convertlandpts(nbl, nbas, land2land, route_togrid) |
---|
4319 | INTEGER(i_std), INTENT(IN) :: nbl, nbas |
---|
4320 | INTEGER(i_std), INTENT(IN), DIMENSION(nbl) :: land2land |
---|
4321 | INTEGER(i_std), INTENT(INOUT), DIMENSION(nbl,nbas) :: route_togrid |
---|
4322 | ! |
---|
4323 | INTEGER(i_std) :: ip, ib |
---|
4324 | ! |
---|
4325 | DO ip=1,nbl |
---|
4326 | DO ib=1,nbas |
---|
4327 | IF ( route_togrid(ip,ib) < undef_int .AND. route_togrid(ip,ib) > 0 ) THEN |
---|
4328 | route_togrid(ip,ib) = land2land(route_togrid(ip,ib)) |
---|
4329 | ELSE |
---|
4330 | route_togrid(ip,ib) = ip |
---|
4331 | ENDIF |
---|
4332 | ENDDO |
---|
4333 | ENDDO |
---|
4334 | ! |
---|
4335 | END SUBROUTINE routing_hr_convertlandpts |
---|
4336 | ! |
---|
4337 | !! ================================================================================================================================ |
---|
4338 | !! SUBROUTINE : routing_hr_inflows |
---|
4339 | !! |
---|
4340 | !>\BRIEF Calculate the inflows from the outflows information. |
---|
4341 | !! |
---|
4342 | !! ================================================================================================================================ |
---|
4343 | ! |
---|
4344 | SUBROUTINE routing_hr_inflows(nbl, nbas, inf, floodplains_glo,route_innum_glo,route_ingrid_glo,route_inbasin_glo) |
---|
4345 | |
---|
4346 | IMPLICIT None |
---|
4347 | |
---|
4348 | INTEGER(i_std), INTENT(IN) :: nbl, nbas, inf |
---|
4349 | REAL(r_std), INTENT(IN), DIMENSION(nbl,nbas) :: floodplains_glo |
---|
4350 | INTEGER(i_std), INTENT(INOUT), DIMENSION(nbl,nbas) :: route_innum_glo |
---|
4351 | INTEGER(i_std), INTENT(INOUT), DIMENSION(nbl,nbas, inf) :: route_ingrid_glo, route_inbasin_glo |
---|
4352 | ! |
---|
4353 | INTEGER(i_std) :: ig, ib, og, ob |
---|
4354 | ! |
---|
4355 | route_innum_glo(:,:) = 0 |
---|
4356 | route_ingrid_glo(:,:,:) = 0 |
---|
4357 | route_inbasin_glo(:,:,:) = 0 |
---|
4358 | DO ig=1,nbl |
---|
4359 | DO ib=1,nbas |
---|
4360 | IF (floodplains_glo(ig,ib) .GT. 0) THEN |
---|
4361 | og = route_togrid_glo(ig,ib) |
---|
4362 | ob = route_tobasin_glo(ig,ib) |
---|
4363 | IF (ob .LE. nbasmax) THEN |
---|
4364 | IF (floodplains_glo(og,ob) .GT. 0) THEN |
---|
4365 | route_innum_glo(og, ob) = route_innum_glo(og, ob) + 1 |
---|
4366 | route_ingrid_glo(og,ob,route_innum_glo(og, ob)) = ig |
---|
4367 | route_inbasin_glo(og,ob,route_innum_glo(og, ob)) = ib |
---|
4368 | END IF |
---|
4369 | END IF |
---|
4370 | END IF |
---|
4371 | ENDDO |
---|
4372 | ENDDO |
---|
4373 | END SUBROUTINE routing_hr_inflows |
---|
4374 | ! |
---|
4375 | !! |
---|
4376 | !! ================================================================================================================================ |
---|
4377 | !! SUBROUTINE : routing_hr_landgather |
---|
4378 | !! |
---|
4379 | !>\BRIEF Gathers the routing information onto landpoints, i.e. goes from an X/Y grid to a list of land points. |
---|
4380 | !! |
---|
4381 | !! ================================================================================================================================ |
---|
4382 | ! |
---|
4383 | SUBROUTINE routing_hr_landgather_r(im,jm,nbas,nbl,indextab,ijfield,landfield,def) |
---|
4384 | ! |
---|
4385 | INTEGER(i_std), INTENT(IN) :: im,jm,nbas,nbl |
---|
4386 | INTEGER(i_std), INTENT(IN) :: indextab(im,jm) |
---|
4387 | REAL(r_std), INTENT(IN), DIMENSION(im,jm,nbas) :: ijfield |
---|
4388 | REAL(r_std), INTENT(OUT), DIMENSION(nbl,nbas) :: landfield |
---|
4389 | REAL(r_std), INTENT(IN) :: def |
---|
4390 | ! |
---|
4391 | INTEGER(i_std) :: i,j,k |
---|
4392 | ! |
---|
4393 | DO i=1,im |
---|
4394 | DO j=1,jm |
---|
4395 | IF ( indextab(i,j) > 0 ) THEN |
---|
4396 | DO k=1,nbas |
---|
4397 | ! Catch undef or NaN values |
---|
4398 | IF (ijfield(i,j,k) >= undef_graphfile .OR. ijfield(i,j,k) /= ijfield(i,j,k)) THEN |
---|
4399 | landfield(indextab(i,j),k) = def |
---|
4400 | ELSE |
---|
4401 | landfield(indextab(i,j),k) = ijfield(i,j,k) |
---|
4402 | ENDIF |
---|
4403 | ENDDO |
---|
4404 | ENDIF |
---|
4405 | ENDDO |
---|
4406 | ENDDO |
---|
4407 | END SUBROUTINE routing_hr_landgather_r |
---|
4408 | SUBROUTINE routing_hr_landgather_i2(im,jm,nbas,nbl,indextab,ijfield,landfield,def) |
---|
4409 | ! |
---|
4410 | INTEGER(i_std), INTENT(IN) :: im,jm,nbas,nbl |
---|
4411 | INTEGER(i_std), INTENT(IN) :: indextab(im,jm) |
---|
4412 | REAL(r_std), INTENT(IN), DIMENSION(im,jm,nbas) :: ijfield |
---|
4413 | INTEGER(i_std), INTENT(OUT), DIMENSION(nbl,nbas) :: landfield |
---|
4414 | INTEGER(i_std), INTENT(IN) :: def |
---|
4415 | ! |
---|
4416 | INTEGER(i_std) :: i,j,in |
---|
4417 | ! |
---|
4418 | DO i=1,im |
---|
4419 | DO j=1,jm |
---|
4420 | IF ( indextab(i,j) > 0 ) THEN |
---|
4421 | DO in=1,nbas |
---|
4422 | IF (ijfield(i,j,in) .GE. undef_int ) THEN |
---|
4423 | landfield(indextab(i,j),in) = def |
---|
4424 | ELSE |
---|
4425 | landfield(indextab(i,j),in) = ijfield(i,j,in) |
---|
4426 | ENDIF |
---|
4427 | ENDDO |
---|
4428 | ENDIF |
---|
4429 | ENDDO |
---|
4430 | ENDDO |
---|
4431 | END SUBROUTINE routing_hr_landgather_i2 |
---|
4432 | SUBROUTINE routing_hr_landgather_i1(im,jm,nbl,indextab,ijfield,landfield,def) |
---|
4433 | ! |
---|
4434 | INTEGER(i_std), INTENT(IN) :: im,jm,nbl |
---|
4435 | INTEGER(i_std), INTENT(IN) :: indextab(im,jm) |
---|
4436 | REAL(r_std), INTENT(IN), DIMENSION(im,jm) :: ijfield |
---|
4437 | INTEGER(i_std), INTENT(OUT), DIMENSION(nbl) :: landfield |
---|
4438 | INTEGER(i_std), INTENT(IN) :: def |
---|
4439 | ! |
---|
4440 | INTEGER(i_std) :: i,j |
---|
4441 | ! |
---|
4442 | DO i=1,im |
---|
4443 | DO j=1,jm |
---|
4444 | IF ( indextab(i,j) > 0 ) THEN |
---|
4445 | IF (ijfield(i,j) .GE. undef_int ) THEN |
---|
4446 | landfield(indextab(i,j)) = def |
---|
4447 | ELSE |
---|
4448 | landfield(indextab(i,j)) = ijfield(i,j) |
---|
4449 | ENDIF |
---|
4450 | ENDIF |
---|
4451 | ENDDO |
---|
4452 | ENDDO |
---|
4453 | END SUBROUTINE routing_hr_landgather_i1 |
---|
4454 | ! |
---|
4455 | ! |
---|
4456 | !! ================================================================================================================================ |
---|
4457 | !! SUBROUTINE : routing_hr_irrigmap |
---|
4458 | !! |
---|
4459 | !>\BRIEF This subroutine interpolates the 0.5x0.5 degree based map of irrigated areas to the resolution of the model. |
---|
4460 | !! |
---|
4461 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
4462 | !! |
---|
4463 | !! RECENT CHANGE(S): None |
---|
4464 | !! |
---|
4465 | !! MAIN OUTPUT VARIABLE(S): |
---|
4466 | !! |
---|
4467 | !! REFERENCES : None |
---|
4468 | !! |
---|
4469 | !! FLOWCHART : None |
---|
4470 | !! \n |
---|
4471 | !_ ================================================================================================================================ |
---|
4472 | |
---|
4473 | SUBROUTINE routing_hr_irrigmap (nbpt, index, lalo, neighbours, resolution, contfrac, & |
---|
4474 | & init_irrig, irrigated, init_flood, init_swamp, swamp, hist_id, hist2_id) |
---|
4475 | ! |
---|
4476 | IMPLICIT NONE |
---|
4477 | ! |
---|
4478 | !! PARAMETERS |
---|
4479 | INTEGER(i_std), PARAMETER :: ilake = 1 !! Number of type of lakes area (unitless) |
---|
4480 | INTEGER(i_std), PARAMETER :: idam = 2 !! Number of type of dams area (unitless) |
---|
4481 | INTEGER(i_std), PARAMETER :: iflood = 3 !! Number of type of floodplains area (unitless) |
---|
4482 | INTEGER(i_std), PARAMETER :: iswamp = 4 !! Number of type of swamps area (unitless) |
---|
4483 | INTEGER(i_std), PARAMETER :: isal = 5 !! Number of type of salines area (unitless) |
---|
4484 | INTEGER(i_std), PARAMETER :: ipond = 6 !! Number of type of ponds area (unitless) |
---|
4485 | INTEGER(i_std), PARAMETER :: ntype = 6 !! Number of types of flooded surfaces (unitless) |
---|
4486 | |
---|
4487 | !! INPUT VARIABLES |
---|
4488 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
4489 | INTEGER(i_std), INTENT(in) :: index(nbpt) !! Index on the global map. |
---|
4490 | REAL(r_std), INTENT(in) :: lalo(nbpt,2) !! Vector of latitude and longitudes (beware of the order !) |
---|
4491 | INTEGER(i_std), INTENT(in) :: neighbours(nbpt,NbNeighb)!! Vector of neighbours for each grid point |
---|
4492 | REAL(r_std), INTENT(in) :: resolution(nbpt,2) !! The size of each grid box in X and Y (m) |
---|
4493 | REAL(r_std), INTENT(in) :: contfrac(nbpt) !! Fraction of land in each grid box (unitless;0-1) |
---|
4494 | INTEGER(i_std), INTENT(in) :: hist_id !! Access to history file (unitless) |
---|
4495 | INTEGER(i_std), INTENT(in) :: hist2_id !! Access to history file 2 (unitless) |
---|
4496 | LOGICAL, INTENT(in) :: init_irrig !! Logical to initialize the irrigation (true/false) |
---|
4497 | LOGICAL, INTENT(in) :: init_flood !! Logical to initialize the floodplains (true/false) |
---|
4498 | LOGICAL, INTENT(in) :: init_swamp !! Logical to initialize the swamps (true/false) |
---|
4499 | ! |
---|
4500 | !! OUTPUT VARIABLES |
---|
4501 | REAL(r_std), INTENT(out) :: irrigated(:) !! Irrigated surface in each grid box (m^2) |
---|
4502 | !! REAL(r_std), INTENT(out) :: floodplains(:) !! Surface which can be inundated in each grid box (m^2) |
---|
4503 | REAL(r_std), INTENT(out) :: swamp(:) !! Surface which can be swamp in each grid box (m^2) |
---|
4504 | ! |
---|
4505 | !! LOCAL VARIABLES |
---|
4506 | ! Interpolation variables |
---|
4507 | ! |
---|
4508 | INTEGER(i_std) :: nbpmax, nix, njx, fopt !! |
---|
4509 | CHARACTER(LEN=30) :: callsign !! |
---|
4510 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:,:) :: resol_lu !! Resolution read on the map |
---|
4511 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:) :: mask !! Mask to exclude some points (unitless) |
---|
4512 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrsub_area !! Area on the fine grid (m^2) |
---|
4513 | INTEGER(i_std), ALLOCATABLE, DIMENSION(:,:,:) :: irrsub_index !! Indices of the points we need on the fine grid (unitless) |
---|
4514 | INTEGER :: ALLOC_ERR !! |
---|
4515 | LOGICAL :: ok_interpol = .FALSE. !! Flag for interpolation (true/false) |
---|
4516 | ! |
---|
4517 | CHARACTER(LEN=80) :: filename !! Name of the netcdf file (unitless) |
---|
4518 | INTEGER(i_std) :: iml, jml, lml, tml, fid, ib, ip, jp, itype !! Indices (unitless) |
---|
4519 | REAL(r_std) :: lev(1), date, dt, coslat !! |
---|
4520 | INTEGER(i_std) :: itau(1) !! |
---|
4521 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: latrel !! Latitude |
---|
4522 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: lonrel !! Longitude |
---|
4523 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:) :: irrigated_frac !! Irrigated fraction of the grid box (unitless;0-1) |
---|
4524 | REAL(r_std), ALLOCATABLE, DIMENSION(:,:,:) :: flood_fracmax !! Maximal flooded fraction of the grid box (unitless;0-1) |
---|
4525 | REAL(r_std) :: area_irrig !! Irrigated surface in the grid box (m^2) |
---|
4526 | REAL(r_std) :: area_flood(ntype) !! Flooded surface in the grid box (m^2) |
---|
4527 | !!$ REAL(r_std) :: irrigmap(nbpt) |
---|
4528 | !!$ REAL(r_std) :: swampmap(nbpt) |
---|
4529 | |
---|
4530 | !_ ================================================================================================================================ |
---|
4531 | |
---|
4532 | ! |
---|
4533 | !Config Key = IRRIGATION_FILE |
---|
4534 | !Config Desc = Name of file which contains the map of irrigated areas |
---|
4535 | !Config Def = floodplains.nc |
---|
4536 | !Config If = DO_IRRIGATION OR DO_FLOODPLAINS |
---|
4537 | !Config Help = The name of the file to be opened to read the field |
---|
4538 | !Config with the area in m^2 of the area irrigated within each |
---|
4539 | !Config 0.5 0.5 deg grid box. The map currently used is the one |
---|
4540 | !Config developed by the Center for Environmental Systems Research |
---|
4541 | !Config in Kassel (1995). |
---|
4542 | !Config Units = [FILE] |
---|
4543 | ! |
---|
4544 | filename = 'floodplains.nc' |
---|
4545 | CALL getin_p('IRRIGATION_FILE',filename) |
---|
4546 | ! |
---|
4547 | IF (is_root_prc) THEN |
---|
4548 | CALL flininfo(filename,iml, jml, lml, tml, fid) |
---|
4549 | CALL flinclo(fid) |
---|
4550 | ELSE |
---|
4551 | iml = 0 |
---|
4552 | jml = 0 |
---|
4553 | lml = 0 |
---|
4554 | tml = 0 |
---|
4555 | ENDIF |
---|
4556 | ! |
---|
4557 | CALL bcast(iml) |
---|
4558 | CALL bcast(jml) |
---|
4559 | CALL bcast(lml) |
---|
4560 | CALL bcast(tml) |
---|
4561 | ! |
---|
4562 | ! |
---|
4563 | ! |
---|
4564 | ALLOCATE (latrel(iml,jml), STAT=ALLOC_ERR) |
---|
4565 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for latrel','','') |
---|
4566 | |
---|
4567 | ALLOCATE (lonrel(iml,jml), STAT=ALLOC_ERR) |
---|
4568 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for lonrel','','') |
---|
4569 | |
---|
4570 | ALLOCATE (irrigated_frac(iml,jml), STAT=ALLOC_ERR) |
---|
4571 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for irrigated_frac','','') |
---|
4572 | |
---|
4573 | ALLOCATE (flood_fracmax(iml,jml,ntype), STAT=ALLOC_ERR) |
---|
4574 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for flood_fracmax','','') |
---|
4575 | |
---|
4576 | IF (is_root_prc) CALL flinopen(filename, .FALSE., iml, jml, lml, lonrel, latrel, lev, tml, itau, date, dt, fid) |
---|
4577 | |
---|
4578 | CALL bcast(lonrel) |
---|
4579 | CALL bcast(latrel) |
---|
4580 | ! |
---|
4581 | IF (is_root_prc) CALL flinget(fid, 'irrig', iml, jml, lml, tml, 0, 0, irrigated_frac) |
---|
4582 | CALL bcast(irrigated_frac) |
---|
4583 | IF (is_root_prc) CALL flinget(fid, 'lake', iml, jml, lml, tml, 0, 0, flood_fracmax(:,:,ilake)) |
---|
4584 | IF (is_root_prc) CALL flinget(fid, 'dam', iml, jml, lml, tml, 0, 0, flood_fracmax(:,:,idam)) |
---|
4585 | IF (is_root_prc) CALL flinget(fid, 'flood', iml, jml, lml, tml, 0, 0, flood_fracmax(:,:,iflood)) |
---|
4586 | IF (is_root_prc) CALL flinget(fid, 'swamp', iml, jml, lml, tml, 0, 0, flood_fracmax(:,:,iswamp)) |
---|
4587 | IF (is_root_prc) CALL flinget(fid, 'saline', iml, jml, lml, tml, 0, 0, flood_fracmax(:,:,isal)) |
---|
4588 | IF (is_root_prc) CALL flinget(fid, 'pond', iml, jml, lml, tml, 0, 0, flood_fracmax(:,:,ipond)) |
---|
4589 | CALL bcast(flood_fracmax) |
---|
4590 | ! |
---|
4591 | IF (is_root_prc) CALL flinclo(fid) |
---|
4592 | ! |
---|
4593 | ! Set to zero all fraction which are less than 0.5% |
---|
4594 | ! |
---|
4595 | DO ip=1,iml |
---|
4596 | DO jp=1,jml |
---|
4597 | ! |
---|
4598 | IF ( irrigated_frac(ip,jp) .LT. undef_sechiba-un) THEN |
---|
4599 | irrigated_frac(ip,jp) = irrigated_frac(ip,jp)/100. |
---|
4600 | IF ( irrigated_frac(ip,jp) < 0.005 ) irrigated_frac(ip,jp) = zero |
---|
4601 | ENDIF |
---|
4602 | ! |
---|
4603 | DO itype=1,ntype |
---|
4604 | IF ( flood_fracmax(ip,jp,itype) .LT. undef_sechiba-1.) THEN |
---|
4605 | flood_fracmax(ip,jp,itype) = flood_fracmax(ip,jp,itype)/100 |
---|
4606 | IF ( flood_fracmax(ip,jp,itype) < 0.005 ) flood_fracmax(ip,jp,itype) = zero |
---|
4607 | ENDIF |
---|
4608 | ENDDO |
---|
4609 | ! |
---|
4610 | ENDDO |
---|
4611 | ENDDO |
---|
4612 | |
---|
4613 | IF (printlev>=2) THEN |
---|
4614 | WRITE(numout,*) 'lonrel : ', MAXVAL(lonrel), MINVAL(lonrel) |
---|
4615 | WRITE(numout,*) 'latrel : ', MAXVAL(latrel), MINVAL(latrel) |
---|
4616 | WRITE(numout,*) 'irrigated_frac : ', MINVAL(irrigated_frac, MASK=irrigated_frac .GT. 0), & |
---|
4617 | MAXVAL(irrigated_frac, MASK=irrigated_frac .LT. undef_sechiba) |
---|
4618 | WRITE(numout,*) 'flood_fracmax : ', MINVAL(flood_fracmax, MASK=flood_fracmax .GT. 0), & |
---|
4619 | MAXVAL(flood_fracmax, MASK=flood_fracmax .LT. undef_sechiba) |
---|
4620 | END IF |
---|
4621 | |
---|
4622 | ! Consider all points a priori |
---|
4623 | ! |
---|
4624 | ALLOCATE(resol_lu(iml,jml,2), STAT=ALLOC_ERR) |
---|
4625 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for resol_lu','','') |
---|
4626 | |
---|
4627 | ALLOCATE(mask(iml,jml), STAT=ALLOC_ERR) |
---|
4628 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for mask','','') |
---|
4629 | mask(:,:) = 0 |
---|
4630 | |
---|
4631 | DO ip=1,iml |
---|
4632 | DO jp=1,jml |
---|
4633 | ! |
---|
4634 | ! Exclude the points where we are close to the missing value. |
---|
4635 | ! |
---|
4636 | !MG This condition cannot be applied in floodplains/swamps configuration because |
---|
4637 | ! the same mask would be used for the interpolation of irrigation, floodplains and swamps maps. |
---|
4638 | ! IF ( irrigated_frac(ip,jp) < undef_sechiba ) THEN |
---|
4639 | mask(ip,jp) = 1 |
---|
4640 | ! ENDIF |
---|
4641 | ! |
---|
4642 | ! Resolution in longitude |
---|
4643 | ! |
---|
4644 | coslat = MAX( COS( latrel(ip,jp) * pi/180. ), mincos ) |
---|
4645 | IF ( ip .EQ. 1 ) THEN |
---|
4646 | resol_lu(ip,jp,1) = ABS( lonrel(ip+1,jp) - lonrel(ip,jp) ) * pi/180. * R_Earth * coslat |
---|
4647 | ELSEIF ( ip .EQ. iml ) THEN |
---|
4648 | resol_lu(ip,jp,1) = ABS( lonrel(ip,jp) - lonrel(ip-1,jp) ) * pi/180. * R_Earth * coslat |
---|
4649 | ELSE |
---|
4650 | resol_lu(ip,jp,1) = ABS( lonrel(ip+1,jp) - lonrel(ip-1,jp) )/2. * pi/180. * R_Earth * coslat |
---|
4651 | ENDIF |
---|
4652 | ! |
---|
4653 | ! Resolution in latitude |
---|
4654 | ! |
---|
4655 | IF ( jp .EQ. 1 ) THEN |
---|
4656 | resol_lu(ip,jp,2) = ABS( latrel(ip,jp) - latrel(ip,jp+1) ) * pi/180. * R_Earth |
---|
4657 | ELSEIF ( jp .EQ. jml ) THEN |
---|
4658 | resol_lu(ip,jp,2) = ABS( latrel(ip,jp-1) - latrel(ip,jp) ) * pi/180. * R_Earth |
---|
4659 | ELSE |
---|
4660 | resol_lu(ip,jp,2) = ABS( latrel(ip,jp-1) - latrel(ip,jp+1) )/2. * pi/180. * R_Earth |
---|
4661 | ENDIF |
---|
4662 | ! |
---|
4663 | ENDDO |
---|
4664 | ENDDO |
---|
4665 | ! |
---|
4666 | ! The number of maximum vegetation map points in the GCM grid is estimated. |
---|
4667 | ! Some lmargin is taken. |
---|
4668 | ! |
---|
4669 | callsign = 'Irrigation map' |
---|
4670 | ok_interpol = .FALSE. |
---|
4671 | IF (is_root_prc) THEN |
---|
4672 | nix=INT(MAXVAL(resolution_g(:,1))/MAXVAL(resol_lu(:,:,1)))+2 |
---|
4673 | njx=INT(MAXVAL(resolution_g(:,2))/MAXVAL(resol_lu(:,:,2)))+2 |
---|
4674 | nbpmax = nix*njx*2 |
---|
4675 | IF (printlev>=1) THEN |
---|
4676 | WRITE(numout,*) "Projection arrays for ",callsign," : " |
---|
4677 | WRITE(numout,*) "nbpmax = ",nbpmax, nix, njx |
---|
4678 | END IF |
---|
4679 | ENDIF |
---|
4680 | CALL bcast(nbpmax) |
---|
4681 | |
---|
4682 | ALLOCATE(irrsub_index(nbpt, nbpmax, 2), STAT=ALLOC_ERR) |
---|
4683 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for irrsub_index','','') |
---|
4684 | irrsub_index(:,:,:)=0 |
---|
4685 | |
---|
4686 | ALLOCATE(irrsub_area(nbpt, nbpmax), STAT=ALLOC_ERR) |
---|
4687 | IF (ALLOC_ERR /= 0) CALL ipslerr_p(3,'routing_hr_irrigmap','Pb in allocate for irrsub_area','','') |
---|
4688 | irrsub_area(:,:)=zero |
---|
4689 | |
---|
4690 | CALL aggregate_p(nbpt, lalo, neighbours, resolution, contfrac, & |
---|
4691 | & iml, jml, lonrel, latrel, mask, callsign, & |
---|
4692 | & nbpmax, irrsub_index, irrsub_area, ok_interpol) |
---|
4693 | ! |
---|
4694 | ! |
---|
4695 | WHERE (irrsub_area < 0) irrsub_area=zero |
---|
4696 | ! |
---|
4697 | ! Test here if not all sub_area are larger than 0 if so, then we need to increase nbpmax |
---|
4698 | ! |
---|
4699 | DO ib=1,nbpt |
---|
4700 | ! |
---|
4701 | area_irrig = 0.0 |
---|
4702 | area_flood = 0.0 |
---|
4703 | ! |
---|
4704 | DO fopt=1,COUNT(irrsub_area(ib,:) > zero) |
---|
4705 | ! |
---|
4706 | ip = irrsub_index(ib, fopt, 1) |
---|
4707 | jp = irrsub_index(ib, fopt, 2) |
---|
4708 | ! |
---|
4709 | IF (irrigated_frac(ip,jp) .LT. undef_sechiba-1.) THEN |
---|
4710 | area_irrig = area_irrig + irrsub_area(ib,fopt)*irrigated_frac(ip,jp) |
---|
4711 | ENDIF |
---|
4712 | ! |
---|
4713 | DO itype=1,ntype |
---|
4714 | IF (flood_fracmax(ip,jp,itype) .LT. undef_sechiba-1.) THEN |
---|
4715 | area_flood(itype) = area_flood(itype) + irrsub_area(ib,fopt)*flood_fracmax(ip,jp,itype) |
---|
4716 | ENDIF |
---|
4717 | ENDDO |
---|
4718 | ENDDO |
---|
4719 | ! |
---|
4720 | ! Put the total irrigated and flooded areas in the output variables |
---|
4721 | ! |
---|
4722 | IF ( init_irrig ) THEN |
---|
4723 | irrigated(ib) = MIN(area_irrig, resolution(ib,1)*resolution(ib,2)*contfrac(ib)) |
---|
4724 | IF ( irrigated(ib) < 0 ) THEN |
---|
4725 | WRITE(numout,*) 'We have a problem here : ', irrigated(ib) |
---|
4726 | WRITE(numout,*) 'resolution :', resolution(ib,1), resolution(ib,2) |
---|
4727 | WRITE(numout,*) area_irrig |
---|
4728 | CALL ipslerr_p(3,'routing_hr_irrigmap','Problem with irrigated...','','') |
---|
4729 | ENDIF |
---|
4730 | !!$ ! Compute a diagnostic of the map. |
---|
4731 | !!$ IF(contfrac(ib).GT.zero) THEN |
---|
4732 | !!$ irrigmap (ib) = irrigated(ib) / ( resolution(ib,1)*resolution(ib,2)*contfrac(ib) ) |
---|
4733 | !!$ ELSE |
---|
4734 | !!$ irrigmap (ib) = zero |
---|
4735 | !!$ ENDIF |
---|
4736 | ! |
---|
4737 | ENDIF |
---|
4738 | ! |
---|
4739 | ! |
---|
4740 | ! |
---|
4741 | IF ( init_swamp ) THEN |
---|
4742 | swamp(ib) = MIN(area_flood(iswamp), resolution(ib,1)*resolution(ib,2)*contfrac(ib)) |
---|
4743 | IF ( swamp(ib) < 0 ) THEN |
---|
4744 | WRITE(numout,*) 'We have a problem here : ', swamp(ib) |
---|
4745 | WRITE(numout,*) 'resolution :', resolution(ib,1), resolution(ib,2) |
---|
4746 | WRITE(numout,*) area_flood |
---|
4747 | CALL ipslerr_p(3,'routing_hr_irrigmap','Problem with swamp...','','') |
---|
4748 | ENDIF |
---|
4749 | !!$ ! Compute a diagnostic of the map. |
---|
4750 | !!$ IF(contfrac(ib).GT.zero) THEN |
---|
4751 | !!$ swampmap(ib) = swamp(ib) / ( resolution(ib,1)*resolution(ib,2)*contfrac(ib) ) |
---|
4752 | !!$ ELSE |
---|
4753 | !!$ swampmap(ib) = zero |
---|
4754 | !!$ ENDIF |
---|
4755 | ENDIF |
---|
4756 | ! |
---|
4757 | ! |
---|
4758 | ENDDO |
---|
4759 | ! |
---|
4760 | ! |
---|
4761 | |
---|
4762 | IF (printlev>=1) THEN |
---|
4763 | IF ( init_irrig ) WRITE(numout,*) "Diagnostics irrigated :", MINVAL(irrigated), MAXVAL(irrigated) |
---|
4764 | IF ( init_flood ) WRITE(numout,*) "Diagnostics floodplains :", MINVAL(floodplains), MAXVAL(floodplains) |
---|
4765 | IF ( init_swamp ) WRITE(numout,*) "Diagnostics swamp :", MINVAL(swamp), MAXVAL(swamp) |
---|
4766 | END IF |
---|
4767 | |
---|
4768 | ! No compensation is done for overlapping floodplains, swamp and irrig. At least overlapping will not |
---|
4769 | ! happen between floodplains and swamp alone |
---|
4770 | ! IF ( init_irrig .AND. init_flood ) THEN |
---|
4771 | ! DO ib = 1, nbpt |
---|
4772 | ! surp = (floodplains(ib)+swamp(ib)+irrigated(ib)) / (resolution(ib,1)*resolution(ib,2)*contfrac(ib)) |
---|
4773 | ! IF ( surp .GT. un ) THEN |
---|
4774 | ! floodplains(ib) = floodplains(ib) / surp |
---|
4775 | ! swamp(ib) = swamp(ib) / surp |
---|
4776 | ! irrigated(ib) = irrigated(ib) / surp |
---|
4777 | ! ENDIF |
---|
4778 | ! ENDDO |
---|
4779 | ! ENDIF |
---|
4780 | ! |
---|
4781 | DEALLOCATE (irrsub_area) |
---|
4782 | DEALLOCATE (irrsub_index) |
---|
4783 | ! |
---|
4784 | DEALLOCATE (mask) |
---|
4785 | DEALLOCATE (resol_lu) |
---|
4786 | ! |
---|
4787 | DEALLOCATE (lonrel) |
---|
4788 | DEALLOCATE (latrel) |
---|
4789 | ! |
---|
4790 | END SUBROUTINE routing_hr_irrigmap |
---|
4791 | ! |
---|
4792 | !! ================================================================================================================================ |
---|
4793 | !! SUBROUTINE : routing_hr_waterbal |
---|
4794 | !! |
---|
4795 | !>\BRIEF This subroutine checks the water balance in the routing module. |
---|
4796 | !! |
---|
4797 | !! DESCRIPTION (definitions, functional, design, flags) : None |
---|
4798 | !! |
---|
4799 | !! RECENT CHANGE(S): None |
---|
4800 | !! |
---|
4801 | !! MAIN OUTPUT VARIABLE(S): |
---|
4802 | !! |
---|
4803 | !! REFERENCES : None |
---|
4804 | !! |
---|
4805 | !! FLOWCHART : None |
---|
4806 | !! \n |
---|
4807 | !_ ================================================================================================================================ |
---|
4808 | |
---|
4809 | SUBROUTINE routing_hr_waterbal(nbpt, reinit, floodout, runoff, drainage, returnflow, & |
---|
4810 | & reinfiltration, irrigation, riverflow, coastalflow) |
---|
4811 | ! |
---|
4812 | IMPLICIT NONE |
---|
4813 | ! |
---|
4814 | !! INPUT VARIABLES |
---|
4815 | INTEGER(i_std), INTENT(in) :: nbpt !! Domain size (unitless) |
---|
4816 | LOGICAL, INTENT(in) :: reinit !! Controls behaviour (true/false) |
---|
4817 | REAL(r_std), INTENT(in) :: floodout(nbpt) !! Grid-point flow out of floodplains (kg/m^2/dt) |
---|
4818 | REAL(r_std), INTENT(in) :: runoff(nbpt) !! Grid-point runoff (kg/m^2/dt) |
---|
4819 | REAL(r_std), INTENT(in) :: drainage(nbpt) !! Grid-point drainage (kg/m^2/dt) |
---|
4820 | REAL(r_std), INTENT(in) :: returnflow(nbpt) !! The water flow from lakes and swamps which returns to the grid box. |
---|
4821 | !! This water will go back into the hydrol module to allow re-evaporation (kg/m^2/dt) |
---|
4822 | REAL(r_std), INTENT(in) :: reinfiltration(nbpt) !! Water flow from ponds and floodplains which returns to the grid box (kg/m^2/dt) |
---|
4823 | REAL(r_std), INTENT(in) :: irrigation(nbpt) !! Irrigation flux. This is the water taken from the reservoirs and beeing put into the upper layers of the soil (kg/m^2/dt) |
---|
4824 | REAL(r_std), INTENT(in) :: riverflow(nbpt) !! Outflow of the major rivers. The flux will be located on the continental grid but this should be a coastal point (kg/dt) |
---|
4825 | REAL(r_std), INTENT(in) :: coastalflow(nbpt) !! Outflow on coastal points by small basins. This is the water which flows in a disperse way into the ocean (kg/dt) |
---|
4826 | ! |
---|
4827 | ! We sum-up all the water we have in the warious reservoirs |
---|
4828 | ! |
---|
4829 | REAL(r_std), SAVE :: totw_flood !! Sum of all the water amount in the floodplains reservoirs (kg) |
---|
4830 | !$OMP THREADPRIVATE(totw_flood) |
---|
4831 | REAL(r_std), SAVE :: totw_stream !! Sum of all the water amount in the stream reservoirs (kg) |
---|
4832 | !$OMP THREADPRIVATE(totw_stream) |
---|
4833 | REAL(r_std), SAVE :: totw_fast !! Sum of all the water amount in the fast reservoirs (kg) |
---|
4834 | !$OMP THREADPRIVATE(totw_fast) |
---|
4835 | REAL(r_std), SAVE :: totw_slow !! Sum of all the water amount in the slow reservoirs (kg) |
---|
4836 | !$OMP THREADPRIVATE(totw_slow) |
---|
4837 | REAL(r_std), SAVE :: totw_lake !! Sum of all the water amount in the lake reservoirs (kg) |
---|
4838 | !$OMP THREADPRIVATE(totw_lake) |
---|
4839 | REAL(r_std), SAVE :: totw_pond !! Sum of all the water amount in the pond reservoirs (kg) |
---|
4840 | !$OMP THREADPRIVATE(totw_pond) |
---|
4841 | REAL(r_std), SAVE :: totw_in !! Sum of the water flow in to the routing scheme |
---|
4842 | !$OMP THREADPRIVATE(totw_in) |
---|
4843 | REAL(r_std), SAVE :: totw_out !! Sum of the water flow out to the routing scheme |
---|
4844 | !$OMP THREADPRIVATE(totw_out) |
---|
4845 | REAL(r_std), SAVE :: totw_return !! |
---|
4846 | !$OMP THREADPRIVATE(totw_return) |
---|
4847 | REAL(r_std), SAVE :: totw_irrig !! |
---|
4848 | !$OMP THREADPRIVATE(totw_irrig) |
---|
4849 | REAL(r_std), SAVE :: totw_river !! |
---|
4850 | !$OMP THREADPRIVATE(totw_river) |
---|
4851 | REAL(r_std), SAVE :: totw_coastal !! |
---|
4852 | !$OMP THREADPRIVATE(totw_coastal) |
---|
4853 | REAL(r_std) :: totarea !! Total area of basin (m^2) |
---|
4854 | REAL(r_std) :: area !! Total area of routing (m^2) |
---|
4855 | INTEGER(i_std) :: ig !! |
---|
4856 | ! |
---|
4857 | ! Just to make sure we do not get too large numbers ! |
---|
4858 | ! |
---|
4859 | !! PARAMETERS |
---|
4860 | REAL(r_std), PARAMETER :: scaling = 1.0E+6 !! |
---|
4861 | REAL(r_std), PARAMETER :: allowed_err = 50. !! |
---|
4862 | |
---|
4863 | !_ ================================================================================================================================ |
---|
4864 | ! |
---|
4865 | IF ( reinit ) THEN |
---|
4866 | ! |
---|
4867 | totw_flood = zero |
---|
4868 | totw_stream = zero |
---|
4869 | totw_fast = zero |
---|
4870 | totw_slow = zero |
---|
4871 | totw_lake = zero |
---|
4872 | totw_pond = zero |
---|
4873 | totw_in = zero |
---|
4874 | ! |
---|
4875 | DO ig=1,nbpt |
---|
4876 | ! |
---|
4877 | totarea = SUM(routing_area(ig,:)) |
---|
4878 | ! |
---|
4879 | totw_flood = totw_flood + SUM(flood_reservoir(ig,:)/scaling) |
---|
4880 | totw_stream = totw_stream + SUM(stream_reservoir(ig,:)/scaling) |
---|
4881 | totw_fast = totw_fast + SUM(fast_reservoir(ig,:)/scaling) |
---|
4882 | totw_slow = totw_slow + SUM(slow_reservoir(ig,:)/scaling) |
---|
4883 | totw_lake = totw_lake + lake_reservoir(ig)/scaling |
---|
4884 | totw_pond = totw_pond + pond_reservoir(ig)/scaling |
---|
4885 | ! |
---|
4886 | totw_in = totw_in + (runoff(ig)*totarea + drainage(ig)*totarea - floodout(ig)*totarea)/scaling |
---|
4887 | ! |
---|
4888 | ENDDO |
---|
4889 | ! |
---|
4890 | ELSE |
---|
4891 | ! |
---|
4892 | totw_out = zero |
---|
4893 | totw_return = zero |
---|
4894 | totw_irrig = zero |
---|
4895 | totw_river = zero |
---|
4896 | totw_coastal = zero |
---|
4897 | area = zero |
---|
4898 | ! |
---|
4899 | DO ig=1,nbpt |
---|
4900 | ! |
---|
4901 | totarea = SUM(routing_area(ig,:)) |
---|
4902 | ! |
---|
4903 | totw_flood = totw_flood - SUM(flood_reservoir(ig,:)/scaling) |
---|
4904 | totw_stream = totw_stream - SUM(stream_reservoir(ig,:)/scaling) |
---|
4905 | totw_fast = totw_fast - SUM(fast_reservoir(ig,:)/scaling) |
---|
4906 | totw_slow = totw_slow - SUM(slow_reservoir(ig,:)/scaling) |
---|
4907 | totw_lake = totw_lake - lake_reservoir(ig)/scaling |
---|
4908 | totw_pond = totw_pond - pond_reservoir(ig)/scaling |
---|
4909 | ! |
---|
4910 | totw_return = totw_return + (reinfiltration(ig)+returnflow(ig))*totarea/scaling |
---|
4911 | totw_irrig = totw_irrig + irrigation(ig)*totarea/scaling |
---|
4912 | totw_river = totw_river + riverflow(ig)/scaling |
---|
4913 | totw_coastal = totw_coastal + coastalflow(ig)/scaling |
---|
4914 | ! |
---|
4915 | area = area + totarea |
---|
4916 | ! |
---|
4917 | ENDDO |
---|
4918 | totw_out = totw_return + totw_irrig + totw_river + totw_coastal |
---|
4919 | ! |
---|
4920 | ! Now we have all the information to balance our water |
---|
4921 | ! |
---|
4922 | IF ( ABS((totw_flood + totw_stream + totw_fast + totw_slow + totw_lake + totw_pond) - & |
---|
4923 | & (totw_out - totw_in)) > allowed_err ) THEN |
---|
4924 | WRITE(numout,*) 'WARNING : Water not conserved in routing. Limit at ', allowed_err, ' 10^6 kg' |
---|
4925 | WRITE(numout,*) '--Water-- change : flood stream fast ', totw_flood, totw_stream, totw_fast |
---|
4926 | WRITE(numout,*) '--Water-- change : slow, lake ', totw_slow, totw_lake |
---|
4927 | WRITE(numout,*) '--Water>>> change in the routing res. : ', totw_flood + totw_stream + totw_fast + totw_slow + totw_lake |
---|
4928 | WRITE(numout,*) '--Water input : ', totw_in |
---|
4929 | WRITE(numout,*) '--Water output : ', totw_out |
---|
4930 | WRITE(numout,*) '--Water output : return, irrig ', totw_return, totw_irrig |
---|
4931 | WRITE(numout,*) '--Water output : river, coastal ',totw_river, totw_coastal |
---|
4932 | WRITE(numout,*) '--Water>>> change by fluxes : ', totw_out - totw_in, ' Diff [mm/dt]: ', & |
---|
4933 | & ((totw_flood + totw_stream + totw_fast + totw_slow + totw_lake) - (totw_out - totw_in))/area |
---|
4934 | |
---|
4935 | ! Stop the model |
---|
4936 | CALL ipslerr_p(3, 'routing_hr_waterbal', 'Water is not conserved in routing.','','') |
---|
4937 | ENDIF |
---|
4938 | ! |
---|
4939 | ENDIF |
---|
4940 | ! |
---|
4941 | END SUBROUTINE routing_hr_waterbal |
---|
4942 | ! |
---|
4943 | ! |
---|
4944 | END MODULE routing_highres |
---|