source: branches/ORCHIDEE_2_2/ORCHIDEE/src_parameters/constantes_var.f90 @ 7199

Last change on this file since 7199 was 7199, checked in by agnes.ducharne, 3 years ago

Inclusion of r6499, r6505, r6508 of the trunk, for consistent soil parameters in hydrola and thermosoil, as detailed in ticket #604. Checked step by step by 5d simulations on jean-zay: the only changes are weak and due to replacing poros=0.41 by variable mcs.

  • Property svn:keywords set to Date Revision
File size: 57.5 KB
RevLine 
[720]1! =================================================================================================================================
[1475]2! MODULE       : constantes_var
[720]3!
[4470]4! CONTACT      : orchidee-help _at_ listes.ipsl.fr
[720]5!
6! LICENCE      : IPSL (2006)
7! This software is governed by the CeCILL licence see ORCHIDEE/ORCHIDEE_CeCILL.LIC
8!
[1475]9!>\BRIEF        constantes_var module contains most constantes like pi, Earth radius, etc...
10!!              and all externalized parameters except pft-dependent constants.
[628]11!!
[1475]12!!\n DESCRIPTION: This module contains most constantes and the externalized parameters of ORCHIDEE which
13!!                are not pft-dependent.\n
14!!                In this module, you can set the flag diag_qsat in order to detect the pixel where the
[733]15!!                temperature is out of range (look qsatcalc and dev_qsatcalc in qsat_moisture.f90).\n
[720]16!!                The Earth radius is approximated by the Equatorial radius.The Earth's equatorial radius a,
17!!                or semi-major axis, is the distance from its center to the equator and equals 6,378.1370 km.
18!!                The equatorial radius is often used to compare Earth with other planets.\n
19!!                The meridional mean is well approximated by the semicubic mean of the two axe yielding
20!!                6367.4491 km or less accurately by the quadratic mean of the two axes about 6,367.454 km
21!!                or even just the mean of the two axes about 6,367.445 km.\n
[1475]22!!                This module is already USE in module constantes. Therefor no need to USE it seperatly except
23!!                if the subroutines in module constantes are not needed.\n
24!!               
25!! RECENT CHANGE(S):
[628]26!!
[720]27!! REFERENCE(S) :
28!! - Louis, Jean-Francois (1979), A parametric model of vertical eddy fluxes in the atmosphere.
[1882]29!! Boundary Layer Meteorology, 187-202.\n
[628]30!!
[720]31!! SVN          :
32!! $HeadURL: $
33!! $Date$
34!! $Revision$
35!! \n
36!_ ================================================================================================================================
37
[1475]38MODULE constantes_var
[534]39
[8]40  USE defprec
[1475]41
[8]42  IMPLICIT NONE
43!-
[511]44
[531]45                         !-----------------------!
46                         !  ORCHIDEE CONSTANTS   !
47                         !-----------------------!
[511]48
[531]49  !
50  ! FLAGS
51  !
[2903]52  LOGICAL :: river_routing      !! activate river routing
53!$OMP THREADPRIVATE(river_routing)
[4565]54  LOGICAL, SAVE :: ok_nudge_mc  !! Activate nudging of soil moisture
55!$OMP THREADPRIVATE(ok_nudge_mc)
56  LOGICAL, SAVE :: ok_nudge_snow!! Activate nudging of snow variables
57!$OMP THREADPRIVATE(ok_nudge_snow)
[4636]58  LOGICAL, SAVE :: nudge_interpol_with_xios  !! Activate reading and interpolation with XIOS for nudging fields
59!$OMP THREADPRIVATE(nudge_interpol_with_xios)
[2903]60  LOGICAL :: do_floodplains     !! activate flood plains
61!$OMP THREADPRIVATE(do_floodplains)
62  LOGICAL :: do_irrigation      !! activate computation of irrigation flux
63!$OMP THREADPRIVATE(do_irrigation)
64  LOGICAL :: ok_sechiba         !! activate physic of the model
65!$OMP THREADPRIVATE(ok_sechiba)
66  LOGICAL :: ok_stomate         !! activate carbon cycle
67!$OMP THREADPRIVATE(ok_stomate)
68  LOGICAL :: ok_dgvm            !! activate dynamic vegetation
69!$OMP THREADPRIVATE(ok_dgvm)
[4677]70  LOGICAL :: do_wood_harvest    !! activate wood harvest
71!$OMP THREADPRIVATE(do_wood_harvest)
[2903]72  LOGICAL :: ok_pheno           !! activate the calculation of lai using stomate rather than a prescription
73!$OMP THREADPRIVATE(ok_pheno)
[2996]74  LOGICAL :: ok_bvoc            !! activate biogenic volatile organic coumpounds
75!$OMP THREADPRIVATE(ok_bvoc)
[2903]76  LOGICAL :: ok_leafage         !! activate leafage
77!$OMP THREADPRIVATE(ok_leafage)
78  LOGICAL :: ok_radcanopy       !! use canopy radiative transfer model
79!$OMP THREADPRIVATE(ok_radcanopy)
80  LOGICAL :: ok_multilayer      !! use canopy radiative transfer model with multi-layers
81!$OMP THREADPRIVATE(ok_multilayer)
82  LOGICAL :: ok_pulse_NOx       !! calculate NOx emissions with pulse
83!$OMP THREADPRIVATE(ok_pulse_NOx)
84  LOGICAL :: ok_bbgfertil_NOx   !! calculate NOx emissions with bbg fertilizing effect
85!$OMP THREADPRIVATE(ok_bbgfertil_NOx)
86  LOGICAL :: ok_cropsfertil_NOx !! calculate NOx emissions with fertilizers use
87!$OMP THREADPRIVATE(ok_cropsfertil_NOx)
[3221]88
89  LOGICAL :: ok_co2bvoc_poss    !! CO2 inhibition on isoprene activated following Possell et al. (2005) model
90!$OMP THREADPRIVATE(ok_co2bvoc_poss)
91  LOGICAL :: ok_co2bvoc_wilk    !! CO2 inhibition on isoprene activated following Wilkinson et al. (2006) model
92!$OMP THREADPRIVATE(ok_co2bvoc_wilk)
[2548]93 
[947]94  LOGICAL, SAVE :: OFF_LINE_MODE = .FALSE.  !! ORCHIDEE detects if it is coupled with a GCM or
[2903]95                                            !! just use with one driver in OFF-LINE. (true/false)
96!$OMP THREADPRIVATE(OFF_LINE_MODE) 
[2547]97  LOGICAL, SAVE :: impose_param = .TRUE.    !! Flag impos_param : read all the parameters in the run.def file
98!$OMP THREADPRIVATE(impose_param)
[1078]99  CHARACTER(LEN=80), SAVE     :: restname_in       = 'NONE'                 !! Input Restart files name for Sechiba component 
100!$OMP THREADPRIVATE(restname_in)
[1055]101  CHARACTER(LEN=80), SAVE     :: restname_out      = 'sechiba_rest_out.nc'  !! Output Restart files name for Sechiba component
[1078]102!$OMP THREADPRIVATE(restname_out)
[1055]103  CHARACTER(LEN=80), SAVE     :: stom_restname_in  = 'NONE'                 !! Input Restart files name for Stomate component
[1078]104!$OMP THREADPRIVATE(stom_restname_in)
[1055]105  CHARACTER(LEN=80), SAVE     :: stom_restname_out = 'stomate_rest_out.nc'  !! Output Restart files name for Stomate component
[1078]106!$OMP THREADPRIVATE(stom_restname_out)
[4200]107  INTEGER, SAVE :: printlev=2       !! Standard level for text output [0, 1, 2, 3]
[2348]108!$OMP THREADPRIVATE(printlev)
[1055]109
[531]110  !
111  ! TIME
112  !
[2944]113  INTEGER(i_std), PARAMETER  :: spring_days_max = 40  !! Maximum number of days during which we watch for possible spring frost damage
[531]114  !
115  ! SPECIAL VALUES
116  !
[720]117  INTEGER(i_std), PARAMETER :: undef_int = 999999999     !! undef integer for integer arrays (unitless)
[511]118  !-
[720]119  REAL(r_std), SAVE :: val_exp = 999999.                 !! Specific value if no restart value  (unitless)
[1078]120!$OMP THREADPRIVATE(val_exp)
[720]121  REAL(r_std), PARAMETER :: undef = -9999.               !! Special value for stomate (unitless)
[2903]122 
[720]123  REAL(r_std), PARAMETER :: min_sechiba = 1.E-8_r_std    !! Epsilon to detect a near zero floating point (unitless)
124  REAL(r_std), PARAMETER :: undef_sechiba = 1.E+20_r_std !! The undef value used in SECHIBA (unitless)
[2903]125 
[720]126  REAL(r_std), PARAMETER :: min_stomate = 1.E-8_r_std    !! Epsilon to detect a near zero floating point (unitless)
127  REAL(r_std), PARAMETER :: large_value = 1.E33_r_std    !! some large value (for stomate) (unitless)
[511]128
[4565]129  REAL(r_std), SAVE :: alpha_nudge_mc                    !! Nudging constant for soil moisture
130!$OMP THREADPRIVATE(alpha_nudge_mc)
131  REAL(r_std), SAVE :: alpha_nudge_snow                  !! Nudging constant for snow variables
132!$OMP THREADPRIVATE(alpha_nudge_snow)
[531]133
134  !
135  !  DIMENSIONING AND INDICES PARAMETERS 
136  !
[1091]137  INTEGER(i_std), PARAMETER :: ibare_sechiba = 1 !! Index for bare soil in Sechiba (unitless)
[947]138  INTEGER(i_std), PARAMETER :: ivis = 1          !! index for albedo in visible range (unitless)
139  INTEGER(i_std), PARAMETER :: inir = 2          !! index for albeod i near-infrared range (unitless)
[720]140  INTEGER(i_std), PARAMETER :: nnobio = 1        !! Number of other surface types: land ice (lakes,cities, ...) (unitless)
141  INTEGER(i_std), PARAMETER :: iice = 1          !! Index for land ice (see nnobio) (unitless)
[511]142  !-
[620]143  !! Soil
[947]144  INTEGER(i_std), PARAMETER :: classnb = 9       !! Levels of soil colour classification (unitless)
[511]145  !-
[720]146  INTEGER(i_std), PARAMETER :: nleafages = 4     !! leaf age discretisation ( 1 = no discretisation )(unitless)
[511]147  !-
[628]148  !! litter fractions: indices (unitless)
[720]149  INTEGER(i_std), PARAMETER :: ileaf = 1         !! Index for leaf compartment (unitless)
150  INTEGER(i_std), PARAMETER :: isapabove = 2     !! Index for sapwood above compartment (unitless)
151  INTEGER(i_std), PARAMETER :: isapbelow = 3     !! Index for sapwood below compartment (unitless)
152  INTEGER(i_std), PARAMETER :: iheartabove = 4   !! Index for heartwood above compartment (unitless)
153  INTEGER(i_std), PARAMETER :: iheartbelow = 5   !! Index for heartwood below compartment (unitless)
154  INTEGER(i_std), PARAMETER :: iroot = 6         !! Index for roots compartment (unitless)
155  INTEGER(i_std), PARAMETER :: ifruit = 7        !! Index for fruits compartment (unitless)
156  INTEGER(i_std), PARAMETER :: icarbres = 8      !! Index for reserve compartment (unitless)
157  INTEGER(i_std), PARAMETER :: nparts = 8        !! Number of biomass compartments (unitless)
[511]158  !-
[720]159  !! indices for assimilation parameters
[2031]160  INTEGER(i_std), PARAMETER :: ivcmax = 1        !! Index for vcmax (assimilation parameters) (unitless)
161  INTEGER(i_std), PARAMETER :: npco2 = 1         !! Number of assimilation parameters (unitless)
[511]162  !-
[620]163  !! trees and litter: indices for the parts of heart-
[720]164  !! and sapwood above and below the ground
165  INTEGER(i_std), PARAMETER :: iabove = 1       !! Index for above part (unitless)
166  INTEGER(i_std), PARAMETER :: ibelow = 2       !! Index for below part (unitless)
167  INTEGER(i_std), PARAMETER :: nlevs = 2        !! Number of levels for trees and litter (unitless)
[511]168  !-
[720]169  !! litter: indices for metabolic and structural part
170  INTEGER(i_std), PARAMETER :: imetabolic = 1   !! Index for metabolic litter (unitless)
171  INTEGER(i_std), PARAMETER :: istructural = 2  !! Index for structural litter (unitless)
172  INTEGER(i_std), PARAMETER :: nlitt = 2        !! Number of levels for litter compartments (unitless)
[511]173  !-
[720]174  !! carbon pools: indices
175  INTEGER(i_std), PARAMETER :: iactive = 1      !! Index for active carbon pool (unitless)
176  INTEGER(i_std), PARAMETER :: islow = 2        !! Index for slow carbon pool (unitless)
177  INTEGER(i_std), PARAMETER :: ipassive = 3     !! Index for passive carbon pool (unitless)
178  INTEGER(i_std), PARAMETER :: ncarb = 3        !! Number of soil carbon pools (unitless)
[1170]179  !-
180  !! For isotopes and nitrogen
181  INTEGER(i_std), PARAMETER :: nelements = 1    !! Number of isotopes considered
182  INTEGER(i_std), PARAMETER :: icarbon = 1      !! Index for carbon
[1100]183  !
184  !! Indices used for analytical spin-up
185  INTEGER(i_std), PARAMETER :: nbpools = 7              !! Total number of carbon pools (unitless)
186  INTEGER(i_std), PARAMETER :: istructural_above = 1    !! Index for structural litter above (unitless)
187  INTEGER(i_std), PARAMETER :: istructural_below = 2    !! Index for structural litter below (unitless)
188  INTEGER(i_std), PARAMETER :: imetabolic_above = 3     !! Index for metabolic litter above (unitless)
189  INTEGER(i_std), PARAMETER :: imetabolic_below = 4     !! Index for metabolic litter below (unitless)
190  INTEGER(i_std), PARAMETER :: iactive_pool = 5         !! Index for active carbon pool (unitless)
191  INTEGER(i_std), PARAMETER :: islow_pool   = 6         !! Index for slow carbon pool (unitless)
192  INTEGER(i_std), PARAMETER :: ipassive_pool = 7        !! Index for passive carbon pool (unitless)
[4723]193  !
194  !! Indicies used for output variables on Landuse tiles defined according to LUMIP project
195  !! Note that ORCHIDEE do not represent pasture and urban land. Therefor the variables will have
196  !! val_exp as missing value for these tiles.
197  INTEGER(i_std), PARAMETER :: nlut=4                   !! Total number of landuse tiles according to LUMIP
198  INTEGER(i_std), PARAMETER :: id_psl=1                 !! Index for primary and secondary land
199  INTEGER(i_std), PARAMETER :: id_crp=2                 !! Index for crop land
200  INTEGER(i_std), PARAMETER :: id_pst=3                 !! Index for pasture land
201  INTEGER(i_std), PARAMETER :: id_urb=4                 !! Index for urban land
[511]202
203
204  !
[531]205  ! NUMERICAL AND PHYSICS CONSTANTS
[511]206  !
207  !
208
209  !-
[531]210  ! 1. Mathematical and numerical constants
[511]211  !-
[720]212  REAL(r_std), PARAMETER :: pi = 3.141592653589793238   !! pi souce : http://mathworld.wolfram.com/Pi.html (unitless)
213  REAL(r_std), PARAMETER :: euler = 2.71828182845904523 !! e source : http://mathworld.wolfram.com/e.html (unitless)
214  REAL(r_std), PARAMETER :: zero = 0._r_std             !! Numerical constant set to 0 (unitless)
215  REAL(r_std), PARAMETER :: undemi = 0.5_r_std          !! Numerical constant set to 1/2 (unitless)
216  REAL(r_std), PARAMETER :: un = 1._r_std               !! Numerical constant set to 1 (unitless)
217  REAL(r_std), PARAMETER :: moins_un = -1._r_std        !! Numerical constant set to -1 (unitless)
218  REAL(r_std), PARAMETER :: deux = 2._r_std             !! Numerical constant set to 2 (unitless)
219  REAL(r_std), PARAMETER :: trois = 3._r_std            !! Numerical constant set to 3 (unitless)
220  REAL(r_std), PARAMETER :: quatre = 4._r_std           !! Numerical constant set to 4 (unitless)
221  REAL(r_std), PARAMETER :: cinq = 5._r_std             !![DISPENSABLE] Numerical constant set to 5 (unitless)
222  REAL(r_std), PARAMETER :: six = 6._r_std              !![DISPENSABLE] Numerical constant set to 6 (unitless)
223  REAL(r_std), PARAMETER :: huit = 8._r_std             !! Numerical constant set to 8 (unitless)
224  REAL(r_std), PARAMETER :: mille = 1000._r_std         !! Numerical constant set to 1000 (unitless)
[511]225
[531]226  !-
[511]227  ! 2 . Physics
[531]228  !-
[720]229  REAL(r_std), PARAMETER :: R_Earth = 6378000.              !! radius of the Earth : Earth radius ~= Equatorial radius (m)
[836]230  REAL(r_std), PARAMETER :: mincos  = 0.0001                !! Minimum cosine value used for interpolation (unitless)
[720]231  REAL(r_std), PARAMETER :: pb_std = 1013.                  !! standard pressure (hPa)
[2222]232  REAL(r_std), PARAMETER :: ZeroCelsius = 273.15            !! 0 degre Celsius in degre Kelvin (K)
[720]233  REAL(r_std), PARAMETER :: tp_00 = 273.15                  !! 0 degre Celsius in degre Kelvin (K)
[737]234  REAL(r_std), PARAMETER :: chalsu0 = 2.8345E06             !! Latent heat of sublimation (J.kg^{-1})
235  REAL(r_std), PARAMETER :: chalev0 = 2.5008E06             !! Latent heat of evaporation (J.kg^{-1})
236  REAL(r_std), PARAMETER :: chalfu0 = chalsu0-chalev0       !! Latent heat of fusion (J.kg^{-1})
237  REAL(r_std), PARAMETER :: c_stefan = 5.6697E-8            !! Stefan-Boltzman constant (W.m^{-2}.K^{-4})
238  REAL(r_std), PARAMETER :: cp_air = 1004.675               !! Specific heat of dry air (J.kg^{-1}.K^{-1})
239  REAL(r_std), PARAMETER :: cte_molr = 287.05               !! Specific constant of dry air (kg.mol^{-1})
[720]240  REAL(r_std), PARAMETER :: kappa = cte_molr/cp_air         !! Kappa : ratio between specific constant and specific heat
241                                                            !! of dry air (unitless)
[737]242  REAL(r_std), PARAMETER :: msmlr_air = 28.964E-03          !! Molecular weight of dry air (kg.mol^{-1})
243  REAL(r_std), PARAMETER :: msmlr_h2o = 18.02E-03           !! Molecular weight of water vapor (kg.mol^{-1})
244  REAL(r_std), PARAMETER :: cp_h2o = &                      !! Specific heat of water vapor (J.kg^{-1}.K^{-1})
[720]245       & cp_air*(quatre*msmlr_air)/( 3.5_r_std*msmlr_h2o) 
[737]246  REAL(r_std), PARAMETER :: cte_molr_h2o = cte_molr/quatre  !! Specific constant of water vapor (J.kg^{-1}.K^{-1})
[720]247  REAL(r_std), PARAMETER :: retv = msmlr_air/msmlr_h2o-un   !! Ratio between molecular weight of dry air and water
248                                                            !! vapor minus 1(unitless) 
249  REAL(r_std), PARAMETER :: rvtmp2 = cp_h2o/cp_air-un       !! Ratio between specific heat of water vapor and dry air
250                                                            !! minus 1 (unitless)
[737]251  REAL(r_std), PARAMETER :: cepdu2 = (0.1_r_std)**2         !! Squared wind shear (m^2.s^{-2})
[3524]252  REAL(r_std), PARAMETER :: ct_karman = 0.41_r_std          !! Van Karmann Constant (unitless)
[737]253  REAL(r_std), PARAMETER :: cte_grav = 9.80665_r_std        !! Acceleration of the gravity (m.s^{-2})
[720]254  REAL(r_std), PARAMETER :: pa_par_hpa = 100._r_std         !! Transform pascal into hectopascal (unitless)
[2031]255  REAL(r_std), PARAMETER :: RR = 8.314                      !! Ideal gas constant (J.mol^{-1}.K^{-1})
[890]256  REAL(r_std), PARAMETER :: Sct = 1370.                     !! Solar constant (W.m^{-2})
[531]257
[890]258
[3972]259  INTEGER(i_std), SAVE :: testpft = 6
[5539]260!$OMP THREADPRIVATE(testpft)
[511]261  !-
[531]262  ! 3. Climatic constants
[511]263  !-
[620]264  !! Constantes of the Louis scheme
[2222]265  REAL(r_std), SAVE :: cb = 5._r_std              !! Constant of the Louis scheme (unitless);
[720]266                                                  !! reference to Louis (1979)
[2903]267!$OMP THREADPRIVATE(cb)
[2222]268  REAL(r_std), SAVE :: cc = 5._r_std              !! Constant of the Louis scheme (unitless);
[720]269                                                  !! reference to Louis (1979)
[2903]270!$OMP THREADPRIVATE(cc)
[2222]271  REAL(r_std), SAVE :: cd = 5._r_std              !! Constant of the Louis scheme (unitless);
[720]272                                                  !! reference to Louis (1979)
[2903]273!$OMP THREADPRIVATE(cd)
[2222]274  REAL(r_std), SAVE :: rayt_cste = 125.           !! Constant in the computation of surface resistance (W.m^{-2})
[2903]275!$OMP THREADPRIVATE(rayt_cste)
[2222]276  REAL(r_std), SAVE :: defc_plus = 23.E-3         !! Constant in the computation of surface resistance (K.W^{-1})
[2903]277!$OMP THREADPRIVATE(defc_plus)
[2222]278  REAL(r_std), SAVE :: defc_mult = 1.5            !! Constant in the computation of surface resistance (K.W^{-1})
[2903]279!$OMP THREADPRIVATE(defc_mult)
[531]280
[511]281  !-
[531]282  ! 4. Soil thermodynamics constants
[511]283  !-
[1082]284  ! Look at constantes_soil.f90
[511]285
[1082]286
[531]287  !
288  ! OPTIONAL PARTS OF THE MODEL
289  !
[720]290  LOGICAL,PARAMETER :: diag_qsat = .TRUE.         !! One of the most frequent problems is a temperature out of range
291                                                  !! we provide here a way to catch that in the calling procedure.
292                                                  !! (from Jan Polcher)(true/false)
[2720]293  LOGICAL, SAVE     :: almaoutput =.FALSE.        !! Selects the type of output for the model.(true/false)
[720]294                                                  !! Value is read from run.def in intersurf_history
[1078]295!$OMP THREADPRIVATE(almaoutput)
[1082]296
[531]297  !
298  ! DIVERSE
299  !
[1078]300  CHARACTER(LEN=100), SAVE :: stomate_forcing_name='NONE'  !! NV080800 Name of STOMATE forcing file (unitless)
301                                                           ! Compatibility with Nicolas Viovy driver.
302!$OMP THREADPRIVATE(stomate_forcing_name)
303  CHARACTER(LEN=100), SAVE :: stomate_Cforcing_name='NONE' !! NV080800 Name of soil forcing file (unitless)
304                                                           ! Compatibility with Nicolas Viovy driver.
305!$OMP THREADPRIVATE(stomate_Cforcing_name)
[720]306  INTEGER(i_std), SAVE :: forcing_id                 !! Index of the forcing file (unitless)
[1078]307!$OMP THREADPRIVATE(forcing_id)
[2305]308  LOGICAL, SAVE :: allow_forcing_write=.TRUE.        !! Allow writing of stomate_forcing file.
309                                                     !! This variable will be set to false for teststomate.
[5543]310!$OMP THREADPRIVATE(allow_forcing_write)
[511]311
312
313
[531]314                         !------------------------!
315                         !  SECHIBA PARAMETERS    !
316                         !------------------------!
317 
[511]318
[531]319  !
320  ! GLOBAL PARAMETERS   
321  !
[737]322  REAL(r_std), SAVE :: min_wind = 0.1      !! The minimum wind (m.s^{-1})
[1078]323!$OMP THREADPRIVATE(min_wind)
[6019]324  REAL(r_std), PARAMETER :: min_qc = 1.e-4 !! The minimum value for qc (qc=drag*wind) used in coupled(enerbil) and forced mode (enerbil and diffuco)
[737]325  REAL(r_std), SAVE :: snowcri = 1.5       !! Sets the amount above which only sublimation occures (kg.m^{-2})
[1078]326!$OMP THREADPRIVATE(snowcri)
[511]327
[1082]328
[511]329  !
330  ! FLAGS ACTIVATING SUB-MODELS
331  !
[620]332  LOGICAL, SAVE :: treat_expansion = .FALSE.   !! Do we treat PFT expansion across a grid point after introduction? (true/false)
[1078]333!$OMP THREADPRIVATE(treat_expansion)
[947]334  LOGICAL, SAVE :: ok_herbivores = .FALSE.     !! flag to activate herbivores (true/false)
[1078]335!$OMP THREADPRIVATE(ok_herbivores)
[947]336  LOGICAL, SAVE :: harvest_agri = .TRUE.       !! flag to harvest aboveground biomass from agricultural PFTs)(true/false)
[1078]337!$OMP THREADPRIVATE(harvest_agri)
[2668]338  LOGICAL, SAVE :: lpj_gap_const_mort          !! constant moratlity (true/false). Default value depend on OK_DGVM.
[1078]339!$OMP THREADPRIVATE(lpj_gap_const_mort)
[4962]340  LOGICAL, SAVE :: disable_fire = .TRUE.       !! flag that disable fire (true/false)
[1078]341!$OMP THREADPRIVATE(disable_fire)
[1100]342  LOGICAL, SAVE :: spinup_analytic = .FALSE.   !! Flag to activate analytical resolution for spinup (true/false)
343!$OMP THREADPRIVATE(spinup_analytic)
[1102]344
[511]345  !
[531]346  ! CONFIGURATION VEGETATION
[511]347  !
[620]348  LOGICAL, SAVE :: agriculture = .TRUE.    !! allow agricultural PFTs (true/false)
[1078]349!$OMP THREADPRIVATE(agriculture)
[620]350  LOGICAL, SAVE :: impveg = .FALSE.        !! Impose vegetation ? (true/false)
[1078]351!$OMP THREADPRIVATE(impveg)
[620]352  LOGICAL, SAVE :: impsoilt = .FALSE.      !! Impose soil ? (true/false)
[1078]353!$OMP THREADPRIVATE(impsoilt)
[2718]354  LOGICAL, SAVE :: do_now_stomate_lcchange = .FALSE.  !! Time to call lcchange in stomate_lpj
355!$OMP THREADPRIVATE(do_now_stomate_lcchange)
[4657]356  LOGICAL, SAVE :: do_now_stomate_woodharvest = .FALSE.  !! Time to call woodharvest in stomate_lpj
357!$OMP THREADPRIVATE(do_now_stomate_woodharvest)
[3094]358  LOGICAL, SAVE :: done_stomate_lcchange = .FALSE.    !! If true, call lcchange in stomate_lpj has just been done.
359!$OMP THREADPRIVATE(done_stomate_lcchange)
[947]360  LOGICAL, SAVE :: read_lai = .FALSE.      !! Flag to read a map of LAI if STOMATE is not activated (true/false)
[1078]361!$OMP THREADPRIVATE(read_lai)
[628]362  LOGICAL, SAVE :: veget_reinit = .TRUE.   !! To change LAND USE file in a run. (true/false)
[1078]363!$OMP THREADPRIVATE(veget_reinit)
[5605]364  LOGICAL, SAVE :: vegetmap_reset = .FALSE.!! Reset the vegetation map and reset carbon related variables
365!$OMP THREADPRIVATE(vegetmap_reset)
[5389]366  INTEGER(i_std) , SAVE :: veget_update    !! Update frequency in years for landuse (nb of years)
367!$OMP THREADPRIVATE(veget_update)
[511]368  !
[531]369  ! PARAMETERS USED BY BOTH HYDROLOGY MODELS
[511]370  !
[628]371  REAL(r_std), SAVE :: max_snow_age = 50._r_std !! Maximum period of snow aging (days)
[1078]372!$OMP THREADPRIVATE(max_snow_age)
[3605]373  REAL(r_std), SAVE :: snow_trans = 0.2_r_std   !! Transformation time constant for snow (m), reduced from the value 0.3 (04/07/2016)
[1078]374!$OMP THREADPRIVATE(snow_trans)
[737]375  REAL(r_std), SAVE :: sneige                   !! Lower limit of snow amount (kg.m^{-2})
[1078]376!$OMP THREADPRIVATE(sneige)
[2053]377  REAL(r_std), SAVE :: maxmass_snow = 3000.     !! The maximum mass of snow (kg.m^{-2})
378!$OMP THREADPRIVATE(maxmass_snow)
[1082]379
[2222]380  !! Heat capacity
381  REAL(r_std), PARAMETER :: capa_ice = 2.228*1.E3       !! Heat capacity of ice (J/kg/K)
382  REAL(r_std), PARAMETER :: rho_water = 1000.           !! Density of water (kg/m3)
383  REAL(r_std), PARAMETER :: rho_ice = 920.              !! Density of ice (kg/m3)
[4820]384  REAL(r_std), PARAMETER :: rho_soil = 2700.            !! Density of soil particles (kg/m3), value from Peters-Lidard et al. 1998
[2222]385
386  !! Thermal conductivities
387  REAL(r_std), PARAMETER :: cond_water = 0.6            !! Thermal conductivity of liquid water (W/m/K)
388  REAL(r_std), PARAMETER :: cond_ice = 2.2              !! Thermal conductivity of ice (W/m/K)
389  REAL(r_std), PARAMETER :: cond_solid = 2.32           !! Thermal conductivity of mineral soil particles (W/m/K)
390
391  !! Time constant of long-term soil humidity (s)
392  REAL(r_std), PARAMETER :: lhf = 0.3336*1.E6           !! Latent heat of fusion (J/kg)
393
394  INTEGER(i_std), PARAMETER :: nsnow=3                  !! Number of levels in the snow for explicit snow scheme   
395  REAL(r_std), PARAMETER    :: XMD    = 28.9644E-3 
396  REAL(r_std), PARAMETER    :: XBOLTZ      = 1.380658E-23 
397  REAL(r_std), PARAMETER    :: XAVOGADRO   = 6.0221367E+23 
398  REAL(r_std), PARAMETER    :: XRD    = XAVOGADRO * XBOLTZ / XMD 
399  REAL(r_std), PARAMETER    :: XCPD   = 7.* XRD /2. 
400  REAL(r_std), PARAMETER    :: phigeoth = 0.057 ! 0. DKtest
401  REAL(r_std), PARAMETER    :: thick_min_snow = .01 
402
403  !! The maximum snow density and water holding characterisicts
404  REAL(r_std), SAVE         :: xrhosmax = 750.  ! (kg m-3)
[5541]405!$OMP THREADPRIVATE(xrhosmax)
[2222]406  REAL(r_std), SAVE         :: xwsnowholdmax1   = 0.03  ! (-)
[5539]407!$OMP THREADPRIVATE(xwsnowholdmax1)
[2222]408  REAL(r_std), SAVE         :: xwsnowholdmax2   = 0.10  ! (-)
[5539]409!$OMP THREADPRIVATE(xwsnowholdmax2)
[2222]410  REAL(r_std), SAVE         :: xsnowrhohold     = 200.0 ! (kg/m3)
[5539]411!$OMP THREADPRIVATE(xsnowrhohold)
[2222]412  REAL(r_std), SAVE         :: xrhosmin = 50. 
[5539]413!$OMP THREADPRIVATE(xrhosmin)
[2222]414  REAL(r_std), PARAMETER    :: xci = 2.106e+3 
415  REAL(r_std), PARAMETER    :: xrv = 6.0221367e+23 * 1.380658e-23 /18.0153e-3 
416
417  !! ISBA-ES Critical snow depth at which snow grid thicknesses constant
418  REAL(r_std), PARAMETER    :: xsnowcritd = 0.03  ! (m)
[2650]419
420  !! The threshold of snow depth used for preventing numerical problem in thermal calculations
421  REAL(r_std), PARAMETER    :: snowcritd_thermal = 0.01  ! (m) 
[2222]422 
423  !! ISBA-ES CROCUS (Pahaut 1976): snowfall density coefficients:
424  REAL(r_std), PARAMETER       :: snowfall_a_sn = 109.0  !! (kg/m3)
425  REAL(r_std), PARAMETER       :: snowfall_b_sn =   6.0  !! (kg/m3/K)
426  REAL(r_std), PARAMETER       :: snowfall_c_sn =  26.0  !! [kg/(m7/2 s1/2)]
427
428  REAL(r_std), PARAMETER       :: dgrain_new_max=  2.0e-4!! (m) : Maximum grain size of new snowfall
429 
[2650]430  !! Used in explicitsnow to prevent numerical problems as snow becomes vanishingly thin.
[2222]431  REAL(r_std), PARAMETER                :: psnowdzmin = .0001   ! m
432  REAL(r_std), PARAMETER                :: xsnowdmin = .000001  ! m
433
434  REAL(r_std), PARAMETER                :: ph2o = 1000.         !! Water density [kg/m3]
435 
436  ! ISBA-ES Thermal conductivity coefficients from Anderson (1976):
437  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
438  REAL(r_std), SAVE                     :: ZSNOWTHRMCOND1 = 0.02    ! [W/m/K]
[5539]439!$OMP THREADPRIVATE(ZSNOWTHRMCOND1)
[2222]440  REAL(r_std), SAVE                     :: ZSNOWTHRMCOND2 = 2.5E-6  ! [W m5/(kg2 K)]
[5539]441!$OMP THREADPRIVATE(ZSNOWTHRMCOND2)
[2222]442 
443  ! ISBA-ES Thermal conductivity: Implicit vapor diffn effects
444  ! (sig only for new snow OR high altitudes)
445  ! from Sun et al. (1999): based on data from Jordan (1991)
446  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
447  !
448  REAL(r_std), SAVE                       :: ZSNOWTHRMCOND_AVAP  = -0.06023 ! (W/m/K)
[5541]449!$OMP THREADPRIVATE(ZSNOWTHRMCOND_AVAP)
[2222]450  REAL(r_std), SAVE                       :: ZSNOWTHRMCOND_BVAP  = -2.5425  ! (W/m)
[5541]451!$OMP THREADPRIVATE(ZSNOWTHRMCOND_BVAP)
[2222]452  REAL(r_std), SAVE                       :: ZSNOWTHRMCOND_CVAP  = -289.99  ! (K)
[5541]453!$OMP THREADPRIVATE(ZSNOWTHRMCOND_CVAP)
[2222]454 
455  REAL(r_std),SAVE :: xansmax = 0.85      !! Maxmimum snow albedo
[5539]456!$OMP THREADPRIVATE(xansmax)
[2222]457  REAL(r_std),SAVE :: xansmin = 0.50      !! Miniumum snow albedo
[5539]458!$OMP THREADPRIVATE(xansmin)
[2222]459  REAL(r_std),SAVE :: xans_todry = 0.008  !! Albedo decay rate for dry snow
[5539]460!$OMP THREADPRIVATE(xans_todry)
[2222]461  REAL(r_std),SAVE :: xans_t = 0.240      !! Albedo decay rate for wet snow
[5539]462!$OMP THREADPRIVATE(xans_t)
[2222]463
464  ! ISBA-ES Thermal conductivity coefficients from Anderson (1976):
465  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
466  REAL(r_std), PARAMETER                  :: XP00 = 1.E5
467
468  ! ISBA-ES Thermal conductivity: Implicit vapor diffn effects
469  ! (sig only for new snow OR high altitudes)
470  ! from Sun et al. (1999): based on data from Jordan (1991)
471  ! see Boone, Meteo-France/CNRM Note de Centre No. 70 (2002)
[890]472  !
[2222]473  REAL(r_std), SAVE          :: ZSNOWCMPCT_RHOD  = 150.0        !! (kg/m3)
[5539]474!$OMP THREADPRIVATE(ZSNOWCMPCT_RHOD)
475  REAL(r_std), SAVE          :: ZSNOWCMPCT_ACM   = 2.8e-6       !! (1/s
476!$OMP THREADPRIVATE(ZSNOWCMPCT_ACM)
[2222]477  REAL(r_std), SAVE          :: ZSNOWCMPCT_BCM   = 0.04         !! (1/K)
[5539]478!$OMP THREADPRIVATE(ZSNOWCMPCT_BCM)
[2222]479  REAL(r_std), SAVE          :: ZSNOWCMPCT_CCM   = 460.         !! (m3/kg)
[5539]480!$OMP THREADPRIVATE(ZSNOWCMPCT_CCM)
[2222]481  REAL(r_std), SAVE          :: ZSNOWCMPCT_V0    = 3.7e7        !! (Pa/s)
[5539]482!$OMP THREADPRIVATE(ZSNOWCMPCT_V0)
[2222]483  REAL(r_std), SAVE          :: ZSNOWCMPCT_VT    = 0.081        !! (1/K)
[5539]484!$OMP THREADPRIVATE(ZSNOWCMPCT_VT)
[2222]485  REAL(r_std), SAVE          :: ZSNOWCMPCT_VR    = 0.018        !! (m3/kg)
[5539]486!$OMP THREADPRIVATE(ZSNOWCMPCT_VR)
[2222]487
488  !
[890]489  ! BVOC : Biogenic activity  for each age class
490  !
491  REAL(r_std), SAVE, DIMENSION(nleafages) :: iso_activity = (/0.5, 1.5, 1.5, 0.5/)     !! Biogenic activity for each
492                                                                                       !! age class : isoprene (unitless)
[1078]493!$OMP THREADPRIVATE(iso_activity)
[890]494  REAL(r_std), SAVE, DIMENSION(nleafages) :: methanol_activity = (/1., 1., 0.5, 0.5/)  !! Biogenic activity for each
495                                                                                       !! age class : methanol (unnitless)
[1078]496!$OMP THREADPRIVATE(methanol_activity)
[511]497
[531]498  !
499  ! condveg.f90
500  !
[511]501
502  ! 1. Scalar
503
[531]504  ! 1.1 Flags used inside the module
[511]505
[947]506  LOGICAL, SAVE :: alb_bare_model = .FALSE. !! Switch for choosing values of bare soil
507                                            !! albedo (see header of subroutine)
508                                            !! (true/false)
[1078]509!$OMP THREADPRIVATE(alb_bare_model)
[4962]510  LOGICAL, SAVE :: alb_bg_modis = .TRUE.    !! Switch for choosing values of bare soil
[3171]511                                            !! albedo read from file
512                                            !! (true/false)
513!$OMP THREADPRIVATE(alb_bg_modis)
[947]514  LOGICAL, SAVE :: impaze = .FALSE.         !! Switch for choosing surface parameters
515                                            !! (see header of subroutine). 
516                                            !! (true/false)
[1078]517!$OMP THREADPRIVATE(impaze)
[4962]518  LOGICAL, SAVE :: rough_dyn = .TRUE.       !! Chooses between two methods to calculate the
[3524]519                                            !! the roughness height : static or dynamic (varying with LAI)
[947]520                                            !! (true/false)
[3524]521!$OMP THREADPRIVATE(rough_dyn)
522
[3972]523  LOGICAL, SAVE :: new_watstress = .FALSE.
524!$OMP THREADPRIVATE(new_watstress)
525
526  REAL(r_std), SAVE :: alpha_watstress = 1.
527!$OMP THREADPRIVATE(alpha_watstress)
528
[531]529  ! 1.2 Others
530
[3524]531
532  REAL(r_std), SAVE :: height_displacement = 0.66        !! Factor to calculate the zero-plane displacement
[947]533                                                         !! height from vegetation height (m)
[1078]534!$OMP THREADPRIVATE(height_displacement)
[620]535  REAL(r_std), SAVE :: z0_bare = 0.01                    !! bare soil roughness length (m)
[1078]536!$OMP THREADPRIVATE(z0_bare)
[620]537  REAL(r_std), SAVE :: z0_ice = 0.001                    !! ice roughness length (m)
[1078]538!$OMP THREADPRIVATE(z0_ice)
[3605]539  REAL(r_std), SAVE :: tcst_snowa = 10.0                 !! Time constant of the albedo decay of snow (days), increased from the value 5.0 (04/07/2016)
[1078]540!$OMP THREADPRIVATE(tcst_snowa)
[1957]541  REAL(r_std), SAVE :: snowcri_alb = 10.                 !! Critical value for computation of snow albedo (cm)
[1078]542!$OMP THREADPRIVATE(snowcri_alb)
[947]543  REAL(r_std), SAVE :: fixed_snow_albedo = undef_sechiba !! To choose a fixed snow albedo value (unitless)
[1078]544!$OMP THREADPRIVATE(fixed_snow_albedo)
[947]545  REAL(r_std), SAVE :: z0_scal = 0.15                    !! Surface roughness height imposed (m)
[1078]546!$OMP THREADPRIVATE(z0_scal)
[947]547  REAL(r_std), SAVE :: roughheight_scal = zero           !! Effective roughness Height depending on zero-plane
548                                                         !! displacement height (m) (imposed)
[1078]549!$OMP THREADPRIVATE(roughheight_scal)
[947]550  REAL(r_std), SAVE :: emis_scal = 1.0                   !! Surface emissivity imposed (unitless)
[1078]551!$OMP THREADPRIVATE(emis_scal)
[3524]552
553  REAL(r_std), SAVE :: c1 = 0.32                         !! Constant used in the formulation of the ratio of
554!$OMP THREADPRIVATE(c1)                                  !! friction velocity to the wind speed at the canopy top
555                                                         !! see Ershadi et al. (2015) for more info
556  REAL(r_std), SAVE :: c2 = 0.264                        !! Constant used in the formulation of the ratio of
557!$OMP THREADPRIVATE(c2)                                  !! friction velocity to the wind speed at the canopy top
558                                                         !! see Ershadi et al. (2015) for more info
559  REAL(r_std), SAVE :: c3 = 15.1                         !! Constant used in the formulation of the ratio of
560!$OMP THREADPRIVATE(c3)                                  !! friction velocity to the wind speed at the canopy top
561                                                         !! see Ershadi et al. (2015) for more info
562  REAL(r_std), SAVE :: Cdrag_foliage = 0.2               !! Drag coefficient of the foliage
563!$OMP THREADPRIVATE(Cdrag_foliage)                       !! See Ershadi et al. (2015) and Su et. al (2001) for more info
564  REAL(r_std), SAVE :: Ct = 0.01                         !! Heat transfer coefficient of the leaf
565!$OMP THREADPRIVATE(Ct)                                  !! See Ershadi et al. (2015) and Su et. al (2001) for more info
566  REAL(r_std), SAVE :: Prandtl = 0.71                    !! Prandtl number used in the calculation of Ct_star
567!$OMP THREADPRIVATE(Prandtl)                             !! See Su et. al (2001) for more info
568
569
570
[511]571  ! 2. Arrays
572
[720]573  REAL(r_std), SAVE, DIMENSION(2) :: alb_deadleaf = (/ .12, .35/)    !! albedo of dead leaves, VIS+NIR (unitless)
[1078]574!$OMP THREADPRIVATE(alb_deadleaf)
[720]575  REAL(r_std), SAVE, DIMENSION(2) :: alb_ice = (/ .60, .20/)         !! albedo of ice, VIS+NIR (unitless)
[1078]576!$OMP THREADPRIVATE(alb_ice)
[947]577  REAL(r_std), SAVE, DIMENSION(2) :: albedo_scal = (/ 0.25, 0.25 /)  !! Albedo values for visible and near-infrared
578                                                                     !! used imposed (unitless)
[1078]579!$OMP THREADPRIVATE(albedo_scal)
580  REAL(r_std) , SAVE, DIMENSION(classnb) :: vis_dry = (/0.24,&
[947]581       &0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.27/)  !! Soil albedo values to soil colour classification:
582                                                          !! dry soil albedo values in visible range
[1078]583!$OMP THREADPRIVATE(vis_dry)
584  REAL(r_std), SAVE, DIMENSION(classnb) :: nir_dry = (/0.48,&
[947]585       &0.44, 0.40, 0.36, 0.32, 0.28, 0.24, 0.20, 0.55/)  !! Soil albedo values to soil colour classification:
586                                                          !! dry soil albedo values in near-infrared range
[1078]587!$OMP THREADPRIVATE(nir_dry)
588  REAL(r_std), SAVE, DIMENSION(classnb) :: vis_wet = (/0.12,&
[947]589       &0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.15/)  !! Soil albedo values to soil colour classification:
590                                                          !! wet soil albedo values in visible range
[1078]591!$OMP THREADPRIVATE(vis_wet)
592  REAL(r_std), SAVE, DIMENSION(classnb) :: nir_wet = (/0.24,&
[947]593       &0.22, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.31/)  !! Soil albedo values to soil colour classification:
594                                                          !! wet soil albedo values in near-infrared range
[1078]595!$OMP THREADPRIVATE(nir_wet)
596  REAL(r_std), SAVE, DIMENSION(classnb) :: albsoil_vis = (/ &
[947]597       &0.18, 0.16, 0.16, 0.15, 0.12, 0.105, 0.09, 0.075, 0.25/)   !! Soil albedo values to soil colour classification:
598                                                                   !! Averaged of wet and dry soil albedo values
599                                                                   !! in visible and near-infrared range
[1078]600!$OMP THREADPRIVATE(albsoil_vis)
601  REAL(r_std), SAVE, DIMENSION(classnb) :: albsoil_nir = (/ &
[947]602       &0.36, 0.34, 0.34, 0.33, 0.30, 0.25, 0.20, 0.15, 0.45/)  !! Soil albedo values to soil colour classification:
603                                                                !! Averaged of wet and dry soil albedo values
604                                                                !! in visible and near-infrared range
[1078]605!$OMP THREADPRIVATE(albsoil_nir)
[511]606
[531]607  !
608  ! diffuco.f90
609  !
610
611  ! 0. Constants
612
[720]613  REAL(r_std), PARAMETER :: Tetens_1 = 0.622         !! Ratio between molecular weight of water vapor and molecular weight 
614                                                     !! of dry air (unitless)
615  REAL(r_std), PARAMETER :: Tetens_2 = 0.378         !!
[2031]616  REAL(r_std), PARAMETER :: ratio_H2O_to_CO2 = 1.6   !! Ratio of water vapor diffusivity to the CO2 diffusivity (unitless)
[3972]617  REAL(r_std), PARAMETER :: mol_to_m_1 = 0.0244      !!
[720]618  REAL(r_std), PARAMETER :: RG_to_PAR = 0.5          !!
[3972]619  REAL(r_std), PARAMETER :: W_to_mol = 4.6          !! W_to_mmol * RG_to_PAR = 2.3
[531]620
[511]621  ! 1. Scalar
622
[720]623  INTEGER(i_std), SAVE :: nlai = 20             !! Number of LAI levels (unitless)
[1078]624!$OMP THREADPRIVATE(nlai)
[620]625  LOGICAL, SAVE :: ldq_cdrag_from_gcm = .FALSE. !! Set to .TRUE. if you want q_cdrag coming from GCM
[1078]626!$OMP THREADPRIVATE(ldq_cdrag_from_gcm)
[890]627  REAL(r_std), SAVE :: laimax = 12.             !! Maximal LAI used for splitting LAI into N layers (m^2.m^{-2})
[1078]628!$OMP THREADPRIVATE(laimax)
[6393]629  LOGICAL, SAVE :: downregulation_co2 = .TRUE.             !! Set to .TRUE. if you want CO2 downregulation version used for CMIP6 6.1.0-6.1.10
[1882]630!$OMP THREADPRIVATE(downregulation_co2)
[6393]631  LOGICAL, SAVE :: downregulation_co2_new = .FALSE.        !! Set to .TRUE. if you want CO2 downregulation version revised for CMIP6 6.1.11
632!$OMP THREADPRIVATE(downregulation_co2_new)
[4962]633  REAL(r_std), SAVE :: downregulation_co2_baselevel = 380. !! CO2 base level (ppm)
[1925]634!$OMP THREADPRIVATE(downregulation_co2_baselevel)
[6393]635  REAL(r_std), SAVE :: downregulation_co2_minimum = 280.   !! CO2 value above which downregulation is taken into account
636!$OMP THREADPRIVATE(downregulation_co2_minimum)
[511]637
[3972]638  REAL(r_std), SAVE :: gb_ref = 1./25.                     !! Leaf bulk boundary layer resistance (s m-1)
[5539]639!$OMP THREADPRIVATE(gb_ref)
[3972]640
[511]641  ! 3. Coefficients of equations
642
[720]643  REAL(r_std), SAVE :: lai_level_depth = 0.15  !!
[1078]644!$OMP THREADPRIVATE(lai_level_depth)
[2031]645!
[720]646  REAL(r_std), SAVE, DIMENSION(6) :: dew_veg_poly_coeff = &            !! coefficients of the 5 degree polynomomial used
647  & (/ 0.887773, 0.205673, 0.110112, 0.014843,  0.000824,  0.000017 /) !! in the equation of coeff_dew_veg
[1078]648!$OMP THREADPRIVATE(dew_veg_poly_coeff)
[2031]649!
650  REAL(r_std), SAVE               :: Oi=210000.    !! Intercellular oxygen partial pressure (ubar)
651!$OMP THREADPRIVATE(Oi)
[531]652  !
653  ! slowproc.f90
654  !
[511]655
656  ! 1. Scalar
657
[947]658  INTEGER(i_std), SAVE :: veget_year_orig = 0        !!  first year for landuse (number)
[1078]659!$OMP THREADPRIVATE(veget_year_orig)
[4808]660! The default value for clay fraction is an heritage, with no documentation nor justification.   
[947]661  REAL(r_std), SAVE :: clayfraction_default = 0.2    !! Default value for clay fraction (0-1, unitless)
[1078]662!$OMP THREADPRIVATE(clayfraction_default)
[4808]663! We need to output sand and silt fractiosn for SP-MIP, and the following default values, corresponding to a Loamy soil, are selected.
664  REAL(r_std), SAVE :: sandfraction_default = 0.4    !! Default value for sand fraction (0-1, unitless)
665!$OMP THREADPRIVATE(sandfraction_default)
666  REAL(r_std), SAVE :: siltfraction_default = 0.4    !! Default value for silt fraction (0-1, unitless)
667!$OMP THREADPRIVATE(siltfraction_default)
[720]668  REAL(r_std), SAVE :: min_vegfrac = 0.001           !! Minimal fraction of mesh a vegetation type can occupy (0-1, unitless)
[1078]669!$OMP THREADPRIVATE(min_vegfrac)
[720]670  REAL(r_std), SAVE :: frac_nobio_fixed_test_1 = 0.0 !! Value for frac_nobio for tests in 0-dim simulations (0-1, unitless)
[1078]671!$OMP THREADPRIVATE(frac_nobio_fixed_test_1)
672 
[720]673  REAL(r_std), SAVE :: stempdiag_bid = 280.          !! only needed for an initial LAI if there is no restart file
[1078]674!$OMP THREADPRIVATE(stempdiag_bid)
[511]675
676
677                           !-----------------------------!
678                           !  STOMATE AND LPJ PARAMETERS !
679                           !-----------------------------!
680
[531]681
[511]682  !
[531]683  ! lpj_constraints.f90
684  !
[511]685 
686  ! 1. Scalar
687
[947]688  REAL(r_std), SAVE  :: too_long = 5.      !! longest sustainable time without
689                                           !! regeneration (vernalization) (years)
[1078]690!$OMP THREADPRIVATE(too_long)
[511]691
692
[531]693  !
694  ! lpj_establish.f90
695  !
696
[511]697  ! 1. Scalar
[531]698
[4185]699  REAL(r_std), SAVE :: estab_max_tree = 0.12   !! Maximum tree establishment rate (ind/m2/dt_stomate)
[1078]700!$OMP THREADPRIVATE(estab_max_tree)
[4185]701  REAL(r_std), SAVE :: estab_max_grass = 0.12  !! Maximum grass establishment rate (ind/m2/dt_stomate)
[1078]702!$OMP THREADPRIVATE(estab_max_grass)
[511]703 
704  ! 3. Coefficients of equations
705
[720]706  REAL(r_std), SAVE :: establish_scal_fact = 5.  !!
[1078]707!$OMP THREADPRIVATE(establish_scal_fact)
[720]708  REAL(r_std), SAVE :: max_tree_coverage = 0.98  !! (0-1, unitless)
[1078]709!$OMP THREADPRIVATE(max_tree_coverage)
[720]710  REAL(r_std), SAVE :: ind_0_estab = 0.2         !! = ind_0 * 10.
[1078]711!$OMP THREADPRIVATE(ind_0_estab)
[511]712
713
[531]714  !
715  ! lpj_fire.f90
716  !
717
[511]718  ! 1. Scalar
719
[720]720  REAL(r_std), SAVE :: tau_fire = 30.           !! Time scale for memory of the fire index (days).
[1078]721!$OMP THREADPRIVATE(tau_fire)
[947]722  REAL(r_std), SAVE :: litter_crit = 200.       !! Critical litter quantity for fire
723                                                !! below which iginitions extinguish
724                                                !! @tex $(gC m^{-2})$ @endtex
[1078]725!$OMP THREADPRIVATE(litter_crit)
[720]726  REAL(r_std), SAVE :: fire_resist_struct = 0.5 !!
[1078]727!$OMP THREADPRIVATE(fire_resist_struct)
[511]728  ! 2. Arrays
729
[947]730  REAL(r_std), SAVE, DIMENSION(nparts) :: co2frac = &    !! The fraction of the different biomass
731       & (/ .95, .95, 0., 0.3, 0., 0., .95, .95 /)       !! compartments emitted to the atmosphere
[1078]732!$OMP THREADPRIVATE(co2frac)                                                         !! when burned (unitless, 0-1) 
[511]733
734  ! 3. Coefficients of equations
735
[720]736  REAL(r_std), SAVE, DIMENSION(3) :: bcfrac_coeff = (/ .3,  1.3,  88.2 /)         !! (unitless)
[1078]737!$OMP THREADPRIVATE(bcfrac_coeff)
[720]738  REAL(r_std), SAVE, DIMENSION(4) :: firefrac_coeff = (/ 0.45, 0.8, 0.6, 0.13 /)  !! (unitless)
[1078]739!$OMP THREADPRIVATE(firefrac_coeff)
[511]740
[531]741  !
742  ! lpj_gap.f90
743  !
[511]744
[531]745  ! 1. Scalar
[511]746
[947]747  REAL(r_std), SAVE :: ref_greff = 0.035         !! Asymptotic maximum mortality rate
748                                                 !! @tex $(year^{-1})$ @endtex
[1078]749!$OMP THREADPRIVATE(ref_greff)
[511]750
[531]751  !               
752  ! lpj_light.f90
753  !             
[511]754
755  ! 1. Scalar
756 
[720]757  LOGICAL, SAVE :: annual_increase = .TRUE. !! for diagnosis of fpc increase, compare today's fpc to last year's maximum (T) or
758                                            !! to fpc of last time step (F)? (true/false)
[1078]759!$OMP THREADPRIVATE(annual_increase)
[720]760  REAL(r_std), SAVE :: min_cover = 0.05     !! For trees, minimum fraction of crown area occupied
761                                            !! (due to its branches etc.) (0-1, unitless)
762                                            !! This means that only a small fraction of its crown area
763                                            !! can be invaded by other trees.
[1078]764!$OMP THREADPRIVATE(min_cover)
[531]765  !
766  ! lpj_pftinout.f90
767  !
768
[511]769  ! 1. Scalar
770
[720]771  REAL(r_std), SAVE :: min_avail = 0.01         !! minimum availability
[1078]772!$OMP THREADPRIVATE(min_avail)
[720]773  REAL(r_std), SAVE :: ind_0 = 0.02             !! initial density of individuals
[1078]774!$OMP THREADPRIVATE(ind_0)
[511]775  ! 3. Coefficients of equations
776 
[947]777  REAL(r_std), SAVE :: RIP_time_min = 1.25      !! test whether the PFT has been eliminated lately (years)
[1078]778!$OMP THREADPRIVATE(RIP_time_min)
[737]779  REAL(r_std), SAVE :: npp_longterm_init = 10.  !! Initialisation value for npp_longterm (gC.m^{-2}.year^{-1})
[1078]780!$OMP THREADPRIVATE(npp_longterm_init)
[720]781  REAL(r_std), SAVE :: everywhere_init = 0.05   !!
[1078]782!$OMP THREADPRIVATE(everywhere_init)
[511]783
784
[531]785  !
786  ! stomate_alloc.f90
787  !
[511]788
[531]789  ! 0. Constants
790
[737]791  REAL(r_std), PARAMETER :: max_possible_lai = 10. !! (m^2.m^{-2})
[720]792  REAL(r_std), PARAMETER :: Nlim_Q10 = 10.         !!
[531]793
[511]794  ! 1. Scalar
795
[720]796  LOGICAL, SAVE :: ok_minres = .TRUE.              !! [DISPENSABLE] Do we try to reach a minimum reservoir even if
797                                                   !! we are severely stressed? (true/false)
[1078]798!$OMP THREADPRIVATE(ok_minres)
[947]799  REAL(r_std), SAVE :: reserve_time_tree = 30.     !! Maximum number of days during which
800                                                   !! carbohydrate reserve may be used for
801                                                   !! trees (days)
[1078]802!$OMP THREADPRIVATE(reserve_time_tree)
[947]803  REAL(r_std), SAVE :: reserve_time_grass = 20.    !! Maximum number of days during which
804                                                   !! carbohydrate reserve may be used for
805                                                   !! grasses (days)
[1078]806!$OMP THREADPRIVATE(reserve_time_grass)
[947]807
[720]808  REAL(r_std), SAVE :: f_fruit = 0.1               !! Default fruit allocation (0-1, unitless)
[1078]809!$OMP THREADPRIVATE(f_fruit)
[947]810  REAL(r_std), SAVE :: alloc_sap_above_grass = 1.0 !! fraction of sapwood allocation above ground
811                                                   !! for grass (0-1, unitless)
[1078]812!$OMP THREADPRIVATE(alloc_sap_above_grass)
[947]813  REAL(r_std), SAVE :: min_LtoLSR = 0.2            !! Prescribed lower bounds for leaf
814                                                   !! allocation (0-1, unitless)
[1078]815!$OMP THREADPRIVATE(min_LtoLSR)
[947]816  REAL(r_std), SAVE :: max_LtoLSR = 0.5            !! Prescribed upper bounds for leaf
817                                                   !! allocation (0-1, unitless)
[1078]818!$OMP THREADPRIVATE(max_LtoLSR)
[947]819  REAL(r_std), SAVE :: z_nitrogen = 0.2            !! Curvature of the root profile (m)
[1078]820!$OMP THREADPRIVATE(z_nitrogen)
[511]821
822  ! 3. Coefficients of equations
823
[628]824  REAL(r_std), SAVE :: Nlim_tref = 25.             !! (C)
[1078]825!$OMP THREADPRIVATE(Nlim_tref)
[511]826
827
828  !
[531]829  ! stomate_data.f90
[511]830  !
831
[531]832  ! 1. Scalar
833
834  ! 1.1 Parameters for the pipe model
835
[628]836  REAL(r_std), SAVE :: pipe_tune1 = 100.0        !! crown area = pipe_tune1. stem diameter**(1.6) (Reinicke's theory) (unitless)
[1078]837!$OMP THREADPRIVATE(pipe_tune1)
[628]838  REAL(r_std), SAVE :: pipe_tune2 = 40.0         !! height=pipe_tune2 * diameter**pipe_tune3 (unitless)
[1078]839!$OMP THREADPRIVATE(pipe_tune2)
[628]840  REAL(r_std), SAVE :: pipe_tune3 = 0.5          !! height=pipe_tune2 * diameter**pipe_tune3 (unitless)
[1078]841!$OMP THREADPRIVATE(pipe_tune3)
[628]842  REAL(r_std), SAVE :: pipe_tune4 = 0.3          !! needed for stem diameter (unitless)
[1078]843!$OMP THREADPRIVATE(pipe_tune4)
[620]844  REAL(r_std), SAVE :: pipe_density = 2.e5       !! Density
[1078]845!$OMP THREADPRIVATE(pipe_density)
[620]846  REAL(r_std), SAVE :: pipe_k1 = 8.e3            !! one more SAVE
[1078]847!$OMP THREADPRIVATE(pipe_k1)
[628]848  REAL(r_std), SAVE :: pipe_tune_exp_coeff = 1.6 !! pipe tune exponential coeff (unitless)
[1078]849!$OMP THREADPRIVATE(pipe_tune_exp_coeff)
[531]850
[720]851  ! 1.2 climatic parameters
[511]852
[720]853  REAL(r_std), SAVE :: precip_crit = 100.        !! minimum precip, in (mm/year)
[1078]854!$OMP THREADPRIVATE(precip_crit)
[720]855  REAL(r_std), SAVE :: gdd_crit_estab = 150.     !! minimum gdd for establishment of saplings
[1078]856!$OMP THREADPRIVATE(gdd_crit_estab)
[720]857  REAL(r_std), SAVE :: fpc_crit = 0.95           !! critical fpc, needed for light competition and establishment (0-1, unitless)
[1078]858!$OMP THREADPRIVATE(fpc_crit)
[531]859
[511]860  ! 1.3 sapling characteristics
861
[720]862  REAL(r_std), SAVE :: alpha_grass = 0.5         !! alpha coefficient for grasses (unitless)
[1078]863!$OMP THREADPRIVATE(alpha_grass)
[720]864  REAL(r_std), SAVE :: alpha_tree = 1.           !! alpha coefficient for trees (unitless)
[1078]865!$OMP THREADPRIVATE(alpha_tree)
[628]866  REAL(r_std), SAVE :: mass_ratio_heart_sap = 3. !! mass ratio (heartwood+sapwood)/sapwood (unitless)
[1078]867!$OMP THREADPRIVATE(mass_ratio_heart_sap)
[531]868
[511]869  ! 1.4  time scales for phenology and other processes (in days)
870
[628]871  REAL(r_std), SAVE :: tau_hum_month = 20.        !! (days)       
[1078]872!$OMP THREADPRIVATE(tau_hum_month)
[628]873  REAL(r_std), SAVE :: tau_hum_week = 7.          !! (days) 
[1078]874!$OMP THREADPRIVATE(tau_hum_week)
[628]875  REAL(r_std), SAVE :: tau_t2m_month = 20.        !! (days)     
[1078]876!$OMP THREADPRIVATE(tau_t2m_month)
[628]877  REAL(r_std), SAVE :: tau_t2m_week = 7.          !! (days) 
[1078]878!$OMP THREADPRIVATE(tau_t2m_week)
[628]879  REAL(r_std), SAVE :: tau_tsoil_month = 20.      !! (days)     
[1078]880!$OMP THREADPRIVATE(tau_tsoil_month)
[628]881  REAL(r_std), SAVE :: tau_soilhum_month = 20.    !! (days)     
[1078]882!$OMP THREADPRIVATE(tau_soilhum_month)
[628]883  REAL(r_std), SAVE :: tau_gpp_week = 7.          !! (days) 
[1078]884!$OMP THREADPRIVATE(tau_gpp_week)
[628]885  REAL(r_std), SAVE :: tau_gdd = 40.              !! (days) 
[1078]886!$OMP THREADPRIVATE(tau_gdd)
[628]887  REAL(r_std), SAVE :: tau_ngd = 50.              !! (days) 
[1078]888!$OMP THREADPRIVATE(tau_ngd)
[628]889  REAL(r_std), SAVE :: coeff_tau_longterm = 3.    !! (unitless)
[1078]890!$OMP THREADPRIVATE(coeff_tau_longterm)
[2441]891  REAL(r_std), SAVE :: tau_longterm_max           !! (days) 
892!$OMP THREADPRIVATE(tau_longterm_max)
[531]893
[511]894  ! 3. Coefficients of equations
895
[720]896  REAL(r_std), SAVE :: bm_sapl_carbres = 5.             !!
[1078]897!$OMP THREADPRIVATE(bm_sapl_carbres)
[720]898  REAL(r_std), SAVE :: bm_sapl_sapabove = 0.5           !!
[1078]899!$OMP THREADPRIVATE(bm_sapl_sapabove)
[720]900  REAL(r_std), SAVE :: bm_sapl_heartabove = 2.          !!
[1078]901!$OMP THREADPRIVATE(bm_sapl_heartabove)
[720]902  REAL(r_std), SAVE :: bm_sapl_heartbelow = 2.          !!
[1078]903!$OMP THREADPRIVATE(bm_sapl_heartbelow)
[720]904  REAL(r_std), SAVE :: init_sapl_mass_leaf_nat = 0.1    !!
[1078]905!$OMP THREADPRIVATE(init_sapl_mass_leaf_nat)
[720]906  REAL(r_std), SAVE :: init_sapl_mass_leaf_agri = 1.    !!
[1078]907!$OMP THREADPRIVATE(init_sapl_mass_leaf_agri)
[720]908  REAL(r_std), SAVE :: init_sapl_mass_carbres = 5.      !!
[1078]909!$OMP THREADPRIVATE(init_sapl_mass_carbres)
[720]910  REAL(r_std), SAVE :: init_sapl_mass_root = 0.1        !!
[1078]911!$OMP THREADPRIVATE(init_sapl_mass_root)
[720]912  REAL(r_std), SAVE :: init_sapl_mass_fruit = 0.3       !! 
[1078]913!$OMP THREADPRIVATE(init_sapl_mass_fruit)
[720]914  REAL(r_std), SAVE :: cn_sapl_init = 0.5               !!
[1078]915!$OMP THREADPRIVATE(cn_sapl_init)
[720]916  REAL(r_std), SAVE :: migrate_tree = 10.*1.E3          !!
[1078]917!$OMP THREADPRIVATE(migrate_tree)
[720]918  REAL(r_std), SAVE :: migrate_grass = 10.*1.E3         !!
[1078]919!$OMP THREADPRIVATE(migrate_grass)
[720]920  REAL(r_std), SAVE :: lai_initmin_tree = 0.3           !!
[1078]921!$OMP THREADPRIVATE(lai_initmin_tree)
[720]922  REAL(r_std), SAVE :: lai_initmin_grass = 0.1          !!
[1078]923!$OMP THREADPRIVATE(lai_initmin_grass)
[720]924  REAL(r_std), SAVE, DIMENSION(2) :: dia_coeff = (/ 4., 0.5 /)            !!
[1078]925!$OMP THREADPRIVATE(dia_coeff)
[720]926  REAL(r_std), SAVE, DIMENSION(2) :: maxdia_coeff =(/ 100., 0.01/)        !!
[1078]927!$OMP THREADPRIVATE(maxdia_coeff)
[720]928  REAL(r_std), SAVE, DIMENSION(4) :: bm_sapl_leaf = (/ 4., 4., 0.8, 5./)  !!
[1078]929!$OMP THREADPRIVATE(bm_sapl_leaf)
[511]930
931
932
[531]933  !
934  ! stomate_litter.f90
935  !
[511]936
[531]937  ! 0. Constants
[511]938
[720]939  REAL(r_std), PARAMETER :: Q10 = 10.               !!
[531]940
[511]941  ! 1. Scalar
942
[720]943  REAL(r_std), SAVE :: z_decomp = 0.2               !!  Maximum depth for soil decomposer's activity (m)
[1078]944!$OMP THREADPRIVATE(z_decomp)
[511]945
946  ! 2. Arrays
947
[720]948  REAL(r_std), SAVE :: frac_soil_struct_aa = 0.55   !! corresponding to frac_soil(istructural,iactive,iabove)
[1078]949!$OMP THREADPRIVATE(frac_soil_struct_aa)
[720]950  REAL(r_std), SAVE :: frac_soil_struct_ab = 0.45   !! corresponding to frac_soil(istructural,iactive,ibelow)
[1078]951!$OMP THREADPRIVATE(frac_soil_struct_ab)
[720]952  REAL(r_std), SAVE :: frac_soil_struct_sa = 0.7    !! corresponding to frac_soil(istructural,islow,iabove)
[1078]953!$OMP THREADPRIVATE(frac_soil_struct_sa)
[720]954  REAL(r_std), SAVE :: frac_soil_struct_sb = 0.7    !! corresponding to frac_soil(istructural,islow,ibelow)
[1078]955!$OMP THREADPRIVATE(frac_soil_struct_sb)
[720]956  REAL(r_std), SAVE :: frac_soil_metab_aa = 0.45    !! corresponding to frac_soil(imetabolic,iactive,iabove)
[1078]957!$OMP THREADPRIVATE(frac_soil_metab_aa)
[720]958  REAL(r_std), SAVE :: frac_soil_metab_ab = 0.45    !! corresponding to frac_soil(imetabolic,iactive,ibelow)
[1078]959!$OMP THREADPRIVATE(frac_soil_metab_ab)
[947]960  REAL(r_std), SAVE, DIMENSION(nparts) :: CN = &    !! C/N ratio of each plant pool (0-100, unitless)
[539]961       & (/ 40., 40., 40., 40., 40., 40., 40., 40. /) 
[1078]962!$OMP THREADPRIVATE(CN)
[947]963  REAL(r_std), SAVE, DIMENSION(nparts) :: LC = &    !! Lignin/C ratio of different plant parts (0,22-0,35, unitless)
[531]964       & (/ 0.22, 0.35, 0.35, 0.35, 0.35, 0.22, 0.22, 0.22 /)
[1078]965!$OMP THREADPRIVATE(LC)
[511]966
967  ! 3. Coefficients of equations
968
[720]969  REAL(r_std), SAVE :: metabolic_ref_frac = 0.85    !! used by litter and soilcarbon (0-1, unitless)
[1078]970!$OMP THREADPRIVATE(metabolic_ref_frac)
[720]971  REAL(r_std), SAVE :: metabolic_LN_ratio = 0.018   !! (0-1, unitless)   
[1078]972!$OMP THREADPRIVATE(metabolic_LN_ratio)
[720]973  REAL(r_std), SAVE :: tau_metabolic = 0.066        !!
[1078]974!$OMP THREADPRIVATE(tau_metabolic)
[720]975  REAL(r_std), SAVE :: tau_struct = 0.245           !!
[1078]976!$OMP THREADPRIVATE(tau_struct)
[720]977  REAL(r_std), SAVE :: soil_Q10 = 0.69              !!= ln 2
[1078]978!$OMP THREADPRIVATE(soil_Q10)
[720]979  REAL(r_std), SAVE :: tsoil_ref = 30.              !!
[1078]980!$OMP THREADPRIVATE(tsoil_ref)
[720]981  REAL(r_std), SAVE :: litter_struct_coef = 3.      !!
[1078]982!$OMP THREADPRIVATE(litter_struct_coef)
[720]983  REAL(r_std), SAVE, DIMENSION(3) :: moist_coeff = (/ 1.1,  2.4,  0.29 /) !!
[1078]984!$OMP THREADPRIVATE(moist_coeff)
[2282]985  REAL(r_std), SAVE :: moistcont_min = 0.25  !! minimum soil wetness to limit the heterotrophic respiration
986!$OMP THREADPRIVATE(moistcont_min)
[511]987
988
[531]989  !
990  ! stomate_lpj.f90
991  !
[511]992
993  ! 1. Scalar
994
[720]995  REAL(r_std), SAVE :: frac_turnover_daily = 0.55  !! (0-1, unitless)
[1078]996!$OMP THREADPRIVATE(frac_turnover_daily)
[511]997
998
[531]999  !
1000  ! stomate_npp.f90
1001  !
1002
[511]1003  ! 1. Scalar
1004
[947]1005  REAL(r_std), SAVE :: tax_max = 0.8 !! Maximum fraction of allocatable biomass used
[720]1006                                     !! for maintenance respiration (0-1, unitless)
[1078]1007!$OMP THREADPRIVATE(tax_max)
[511]1008
1009
[531]1010  !
1011  ! stomate_phenology.f90
1012  !
[511]1013
1014  ! 1. Scalar
1015
[720]1016  REAL(r_std), SAVE :: min_growthinit_time = 300.  !! minimum time since last beginning of a growing season (days)
[1078]1017!$OMP THREADPRIVATE(min_growthinit_time)
[947]1018  REAL(r_std), SAVE :: moiavail_always_tree = 1.0  !! moisture monthly availability above which moisture tendency doesn't matter
1019                                                   !!  - for trees (0-1, unitless)
[1078]1020!$OMP THREADPRIVATE(moiavail_always_tree)
[947]1021  REAL(r_std), SAVE :: moiavail_always_grass = 0.6 !! moisture monthly availability above which moisture tendency doesn't matter
1022                                                   !! - for grass (0-1, unitless)
[1078]1023!$OMP THREADPRIVATE(moiavail_always_grass)
[620]1024  REAL(r_std), SAVE :: t_always                    !! monthly temp. above which temp. tendency doesn't matter
[1078]1025!$OMP THREADPRIVATE(t_always)
[720]1026  REAL(r_std), SAVE :: t_always_add = 10.          !! monthly temp. above which temp. tendency doesn't matter (C)
[1078]1027!$OMP THREADPRIVATE(t_always_add)
[511]1028
1029  ! 3. Coefficients of equations
1030 
[720]1031  REAL(r_std), SAVE :: gddncd_ref = 603.           !!
[1078]1032!$OMP THREADPRIVATE(gddncd_ref)
[720]1033  REAL(r_std), SAVE :: gddncd_curve = 0.0091       !!
[1078]1034!$OMP THREADPRIVATE(gddncd_curve)
[720]1035  REAL(r_std), SAVE :: gddncd_offset = 64.         !!
[1078]1036!$OMP THREADPRIVATE(gddncd_offset)
[511]1037
1038
[531]1039  !
1040  ! stomate_prescribe.f90
1041  !
[511]1042
1043  ! 3. Coefficients of equations
1044
[720]1045  REAL(r_std), SAVE :: bm_sapl_rescale = 40.       !!
[1078]1046!$OMP THREADPRIVATE(bm_sapl_rescale)
[511]1047
1048
[531]1049  !
1050  ! stomate_resp.f90
1051  !
[511]1052
1053  ! 3. Coefficients of equations
1054
[720]1055  REAL(r_std), SAVE :: maint_resp_min_vmax = 0.3   !!
[1078]1056!$OMP THREADPRIVATE(maint_resp_min_vmax)
[720]1057  REAL(r_std), SAVE :: maint_resp_coeff = 1.4      !!
[1078]1058!$OMP THREADPRIVATE(maint_resp_coeff)
[511]1059
1060
[531]1061  !
1062  ! stomate_soilcarbon.f90
1063  !
[511]1064
1065  ! 2. Arrays
1066
[531]1067  ! 2.1 frac_carb_coefficients
[511]1068
[720]1069  REAL(r_std), SAVE :: frac_carb_ap = 0.004  !! from active pool: depends on clay content  (0-1, unitless)
1070                                             !! corresponding to frac_carb(:,iactive,ipassive)
[1078]1071!$OMP THREADPRIVATE(frac_carb_ap)
[720]1072  REAL(r_std), SAVE :: frac_carb_sa = 0.42   !! from slow pool (0-1, unitless)
1073                                             !! corresponding to frac_carb(:,islow,iactive)
[1078]1074!$OMP THREADPRIVATE(frac_carb_sa)
[720]1075  REAL(r_std), SAVE :: frac_carb_sp = 0.03   !! from slow pool (0-1, unitless)
1076                                             !! corresponding to frac_carb(:,islow,ipassive)
[1078]1077!$OMP THREADPRIVATE(frac_carb_sp)
[720]1078  REAL(r_std), SAVE :: frac_carb_pa = 0.45   !! from passive pool (0-1, unitless)
1079                                             !! corresponding to frac_carb(:,ipassive,iactive)
[1078]1080!$OMP THREADPRIVATE(frac_carb_pa)
[720]1081  REAL(r_std), SAVE :: frac_carb_ps = 0.0    !! from passive pool (0-1, unitless)
1082                                             !! corresponding to frac_carb(:,ipassive,islow)
[1078]1083!$OMP THREADPRIVATE(frac_carb_ps)
[511]1084
1085  ! 3. Coefficients of equations
1086
[720]1087  REAL(r_std), SAVE :: active_to_pass_clay_frac = 0.68  !! (0-1, unitless)
[1078]1088!$OMP THREADPRIVATE(active_to_pass_clay_frac)
[620]1089  !! residence times in carbon pools (days)
1090  REAL(r_std), SAVE :: carbon_tau_iactive = 0.149   !! residence times in active pool (days)
[1078]1091!$OMP THREADPRIVATE(carbon_tau_iactive)
[4962]1092  REAL(r_std), SAVE :: carbon_tau_islow = 7.0       !! residence times in slow pool (days)
[1078]1093!$OMP THREADPRIVATE(carbon_tau_islow)
[4962]1094  REAL(r_std), SAVE :: carbon_tau_ipassive = 300.   !! residence times in passive pool (days)
[1078]1095!$OMP THREADPRIVATE(carbon_tau_ipassive)
[511]1096  REAL(r_std), SAVE, DIMENSION(3) :: flux_tot_coeff = (/ 1.2, 1.4, .75/)
[1078]1097!$OMP THREADPRIVATE(flux_tot_coeff)
[511]1098
[531]1099  !
1100  ! stomate_turnover.f90
1101  !
[511]1102
[720]1103  ! 3. Coefficients of equations
[511]1104
[628]1105  REAL(r_std), SAVE :: new_turnover_time_ref = 20. !!(days)
[1078]1106!$OMP THREADPRIVATE(new_turnover_time_ref)
[720]1107  REAL(r_std), SAVE :: leaf_age_crit_tref = 20.    !! (C)
[1078]1108!$OMP THREADPRIVATE(leaf_age_crit_tref)
[720]1109  REAL(r_std), SAVE, DIMENSION(3) :: leaf_age_crit_coeff = (/ 1.5, 0.75, 10./) !! (unitless)
[1078]1110!$OMP THREADPRIVATE(leaf_age_crit_coeff)
[511]1111
1112
[531]1113  !
1114  ! stomate_vmax.f90
1115  !
1116 
[511]1117  ! 1. Scalar
1118
[947]1119  REAL(r_std), SAVE :: vmax_offset = 0.3        !! minimum leaf efficiency (unitless)
[1078]1120!$OMP THREADPRIVATE(vmax_offset)
[947]1121  REAL(r_std), SAVE :: leafage_firstmax = 0.03  !! relative leaf age at which efficiency
1122                                                !! reaches 1 (unitless)
[1078]1123!$OMP THREADPRIVATE(leafage_firstmax)
[947]1124  REAL(r_std), SAVE :: leafage_lastmax = 0.5    !! relative leaf age at which efficiency
1125                                                !! falls below 1 (unitless)
[1078]1126!$OMP THREADPRIVATE(leafage_lastmax)
[947]1127  REAL(r_std), SAVE :: leafage_old = 1.         !! relative leaf age at which efficiency
1128                                                !! reaches its minimum (vmax_offset)
1129                                                !! (unitless)
[1078]1130!$OMP THREADPRIVATE(leafage_old)
[531]1131  !
1132  ! stomate_season.f90
1133  !
[511]1134
1135  ! 1. Scalar
1136
[947]1137  REAL(r_std), SAVE :: gppfrac_dormance = 0.2  !! report maximal GPP/GGP_max for dormance (0-1, unitless)
[1078]1138!$OMP THREADPRIVATE(gppfrac_dormance)
[720]1139  REAL(r_std), SAVE :: tau_climatology = 20.   !! tau for "climatologic variables (years)
[1078]1140!$OMP THREADPRIVATE(tau_climatology)
[720]1141  REAL(r_std), SAVE :: hvc1 = 0.019            !! parameters for herbivore activity (unitless)
[1078]1142!$OMP THREADPRIVATE(hvc1)
[720]1143  REAL(r_std), SAVE :: hvc2 = 1.38             !! parameters for herbivore activity (unitless)
[1078]1144!$OMP THREADPRIVATE(hvc2)
[947]1145  REAL(r_std), SAVE :: leaf_frac_hvc = 0.33    !! leaf fraction (0-1, unitless)
[1078]1146!$OMP THREADPRIVATE(leaf_frac_hvc)
[620]1147  REAL(r_std), SAVE :: tlong_ref_max = 303.1   !! maximum reference long term temperature (K)
[1078]1148!$OMP THREADPRIVATE(tlong_ref_max)
[620]1149  REAL(r_std), SAVE :: tlong_ref_min = 253.1   !! minimum reference long term temperature (K)
[1078]1150!$OMP THREADPRIVATE(tlong_ref_min)
[511]1151
1152  ! 3. Coefficients of equations
1153
[531]1154  REAL(r_std), SAVE :: ncd_max_year = 3.
[1078]1155!$OMP THREADPRIVATE(ncd_max_year)
[531]1156  REAL(r_std), SAVE :: gdd_threshold = 5.
[1078]1157!$OMP THREADPRIVATE(gdd_threshold)
[531]1158  REAL(r_std), SAVE :: green_age_ever = 2.
[1078]1159!$OMP THREADPRIVATE(green_age_ever)
[531]1160  REAL(r_std), SAVE :: green_age_dec = 0.5
[1078]1161!$OMP THREADPRIVATE(green_age_dec)
[511]1162
[1475]1163END MODULE constantes_var
Note: See TracBrowser for help on using the repository browser.