# Evaluation of A Global Total Water Level Model in the Presence of Radiational S<sub>2</sub> Tide

## Pengcheng Wang,

N.B. Bernier, K.R. Thompson,

T. Kodaira



### **MOTIVATION**

- Need for total water level (TWL) forecast for the benefits of Canadians
- Need for a global model
  - Allow enough room to resolve important coastal wave guides
  - Allow the inclusion of global processes (e.g., the oceanic response to atmospheric S<sub>2</sub> forcing over the tropics)
- Address the two following questions
  - How can we best predict tides using a model with limited spatial resolution? "Tidal nudging"?
  - What is the impact of neglecting nonlinear interactions on TWL prediction by a global model forced by hourly forcing?





### **OBSERVATIONS**

- TPXO8 (M2, S2, N2, K2, K1, O1, P1, and Q1)
- Tide gauge data from UHSLC in the year 2008



### **MODEL: GOVERNING EQUATIONS**

Self-attraction and loading

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \boldsymbol{f} \times \boldsymbol{u} = -g\nabla((1 - \alpha_s)\eta - \eta_A) + A\nabla^2 \boldsymbol{u}$$

### **Nudging U**

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \boldsymbol{f} \times \boldsymbol{u} = -g\nabla((1 - \alpha_s)\eta - \eta_A) + A\nabla^2 \boldsymbol{u}$$

$$+ \frac{\boldsymbol{\tau}_s - \boldsymbol{\tau}_b}{\rho H} - \frac{1}{\rho}\nabla p_a - c_{iw}\boldsymbol{u} + \lambda(\boldsymbol{x})\langle \boldsymbol{u}_{obs} - \boldsymbol{u}\rangle$$
Internal wave drag (This study)

$$\frac{\partial \eta}{\partial t} + \nabla \cdot (H\boldsymbol{u}) = 0$$

$$u_{obs} = \frac{\text{Transport}(\text{TPXO8})}{\text{Depth}(\text{NEMO})}$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \boldsymbol{f} \times \boldsymbol{u} = -g\nabla((1 - \alpha_s)\eta - \eta_A) + A\nabla^2 \boldsymbol{u}$$

### Nudging n

$$+rac{oldsymbol{ au}_s-oldsymbol{ au}_b}{
ho H}-rac{1}{
ho}
abla p_a-c_{iw}oldsymbol{u}$$

$$\frac{\partial \eta}{\partial t} + \nabla \cdot (H\boldsymbol{u}) = \lambda(\boldsymbol{x}) \langle \eta_{obs} - \eta \rangle$$



Environment and Climate Change Canada Changement climatique Canada

(Kodaira et al., 2019)



## Model setup based on NEMO

1/40

Too coarse to predict tides and surges

1/120

Acceptable tide and surge predictions on a global scale

1/36°

Only localized improvements at a considerable increase in cost

- Self-attraction and loading, internal wave drag (Kodaira et al., 2016)
- Surface wind stress formula (Bernier and Thompson, 2007)
- ORCA12 → eORCA12 grid: allow tidal propagation under ice shelves in the Ross Sea and Weddell Sea
- Tidal nudging





### Spatial distribution of the nudging coefficient

Nudge deep water only, allow surge and nonlinear processes to freely evolve on shelves

- On the shelf:  $\lambda = 0$  for water depth shallower than ~400 m
- In deeper water: λ increases with water depth, spatially smoothed





# ATMOSPHERIC FORCING (GDRS IN 2008, ~39 KM, HOURLY)

#### S<sub>2</sub> component of winds and air pressure



The hourly forcing has a significant  $S_2$  tide which can trigger a global ocean response known as radiational  $S_2$  tide (r $S_2$ ).



GDRS: Global Deterministic Reforecast System (GEPS-reforecast control member)

### **DESIGN OF EXPERIMENTS**

(Tide-only, Surge-only, coupled tide-surge run)

|              |                                            | Tidal<br>potential      | Full forcing               | S <sub>2</sub> signal removed | Nudging<br>U                                               | Nudging<br>η                                |
|--------------|--------------------------------------------|-------------------------|----------------------------|-------------------------------|------------------------------------------------------------|---------------------------------------------|
| _            |                                            | $\eta_A$                | $(\boldsymbol{	au}_s,p_a)$ | $({m 	au}_s',p_a')$           | $\lambda \langle oldsymbol{u}_{obs} - oldsymbol{u}  angle$ | $\lambda \langle \eta_{obs} - \eta \rangle$ |
| Tide<br>only | $\mathrm{Run}_{\mathrm{T}}$                | $\checkmark$            |                            |                               |                                                            |                                             |
|              | $\operatorname{Run}_{\operatorname{Tr}}$   | ı √                     |                            |                               | $\checkmark$                                               |                                             |
|              | $\operatorname{Run}_{\operatorname{Tr}}^*$ | <b>√</b>                |                            |                               |                                                            | ✓                                           |
| Surge only   | $\mathrm{Run}_{\mathrm{S}}$                |                         | $\checkmark$               |                               |                                                            |                                             |
|              | $\mathrm{Run}_{S'}$                        |                         |                            | $\checkmark$                  |                                                            |                                             |
| Coupled      | Run <sub>TS</sub>                          | s ✓                     | <b>√</b>                   |                               |                                                            |                                             |
|              | $\operatorname{Run}_{\operatorname{Tr}}$   | $_{ m as}$ $\checkmark$ | $\checkmark$               |                               | $\checkmark$                                               |                                             |

### Tidal Nudging $(\lambda, \kappa)$

- κ controls the width of the nudged bands and the spin-up time of the filter.
- Conceptually similar to applying a tidal analysis over a sliding window, and increasing  $\kappa$  is equivalent to reducing the window length.



η<sub>s</sub>: surge (AR1 model)

 $\eta_T$ : tide (8 constituents)

<>: tidal filter

$$T_{spin} = \kappa^{-1} \Delta t$$



# Nudging u VS. Nudging η Comparison with TPXO8 for M2 tide (top) and tidal current (bottom)

 $\mathrm{Run}_{\mathrm{Tn}}^*$ 

Nudging n

 $Run_{Tn}$ 

Nudging u

(cm)

 $|Z_{obs}-Z_{mod}|$   $\tilde{\gamma}^2=\frac{\int_0^p |\tilde{\mathbf{u}}_{obs}(t)-\tilde{\mathbf{u}}_{mod}(t)|^2dt}{\int_0^p |\tilde{\mathbf{u}}_{obs}(t)|^2dt}$ 

 $Run_T$ 

As nudging η violates mass conservation which may create inconsistency between η and u, a fair comparison is to compare simulated tidal currents (bottom panel)

Un-nudged

# Nudging u VS. Nudging η (Comparison with tide gauge data)



Overall, the comparison of tidal currents from TPXO8 and tides at gauges demonstrate that nudging u is the best approach.





## Predicting the tides

- RMS<sub>50</sub>: median of RMS values for observed tides at 304 gauges.
- RMSE<sub>50</sub>: median of RMSE values for runs without and with tidal nudging

|                                                 | $O_1 K_1 P_1 Q_1$ | $M_2 S_2 N_2 K_2$ | $S_2$ | All   |
|-------------------------------------------------|-------------------|-------------------|-------|-------|
| $\mathrm{RMS}_{50}$                             | 0.143             | 0.365             | 0.118 |       |
| $\mathrm{RMSE}_{50}\ \mathrm{Run}_{\mathrm{T}}$ | 0.028             | 0.077             | 0.035 | 0.086 |
| ${\rm RMSE_{50}~Run_{Tn}}$                      | 0.023             | 0.040             | 0.013 | 0.053 |

The impact of nudging is most drastic for  $S_2$ . One reason is that  $Run_{Tn}$ includes rS<sub>2</sub> through the nudging to TPXO8, consistent with tide gauge data which also include this rS<sub>2</sub> signal.





### **Predicting the tides**

- Tidal nudging improves the model skill at 82% of the 304 stations, and reduces the average RMSE by 23% (from 0.13 m to 0.10 m).
- Comparable to dataassimilative model FES2012 in terms of average RMSE (Muis et al., 2016)







# Sea level response to S<sub>2</sub> air pressure and need for hourly forcing



### **Predicting the surges**

- rS<sub>2</sub> in Run<sub>S</sub> needs to be removed to be consistent with tidal residuals in which rS2 is also removed by t\_tide.
- rS<sub>2</sub> is removed by removing the S<sub>2</sub> component from the forcing, which is Run<sub>S</sub>,
- Low frequency (>20 days) signals are filtered out





# Time series of observed and predicted surge level at three selected stations



### Damping of rS<sub>2</sub> by the gravitational tide

If a current is a combination of tidal components, then bottom friction at a given tidal frequency can be increased by other tidal components



# Predicting the total water level

| Run <sub>T+S</sub>  | No tidal nudging; No nonlinear interaction                   |
|---------------------|--------------------------------------------------------------|
| Run <sub>TS</sub>   | No tidal nudging                                             |
| Run <sub>Tn+S</sub> | No nonlinear interaction; Double counting of rS <sub>2</sub> |
| Run <sub>TnS</sub>  | Include both tidal nudging and nonlinear interaction         |

|                    | Unfiltered | Subseasonal | Diurnal     | Semi-diurnal       |
|--------------------|------------|-------------|-------------|--------------------|
|                    |            | 480 > p     | 30 > p > 18 | 16 > p > 9.6       |
| Obs                | 43.4       | 42.6        | 13.8        | 36.4 Median of RMS |
| Obs - $Run_{T+S}$  | 12.5       | 10.3        | 3.3         | 8.5                |
| Obs - $Run_{TS}$   | 12.3       | 10.3        | 3.2         | 8.4                |
| Obs - $Run_{Tn+S}$ | 11.2       | 8.2         | 2.9         | 5.7 Median of RMSE |
| Obs - $Run_{TnS}$  | 10.7       | 8.0         | 2.9         | 5.1                |

## Predicting the total water level

- No filter is applied, only the mean is removed.
- RMSE below 0.20 m for 83% of the stations
- The average RMSE in Run<sub>TnS</sub> is 0.15 m. For comparison, it is 0.17 m in Muis et al., (2016). Note that tide gauges and analysis periods in the two studies are different.







### CONCLUSIONS

- Tidal nudging in deep water only is shown to improve tide prediction at the coast.
- Hourly atmospheric forcing is required to resolve the radiational S<sub>2</sub> tide (rS<sub>2</sub>).
- rS<sub>2</sub> is subject to strong nonlinear interaction with gravitational tides.
- Due to this nonlinear interaction, it is necessary to use the coupled tide-surge run for global operational forecasting and climate sensitivity studies.



