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ABSTRACT

A three-dimensional, z-level, primitive-equation ocean circulation model (DieCAST) is modified to include
a free-surface and partial cells. The updating of free-surface elevation is implicit in time so that the extra
computational cost is minimal compared with the original DieCAST code, which uses the rigid-lid approximation.
The addition of partial cells allows the bottom cell of the model to have variable thickness, hence improving
the ability to accurately represent topographic variations. The modified model is tested by solving a two-
dimensional, linearized problem of internal tide generation over topography. Baines’ method is modified to more
cleanly separate the internal tide from the full solution. The model results compare favorably with the semianalytic
solution of Craig. In particular, the model reproduces the predicted variation of internal tide energy flux as a
function of the ratio of bottom slope to characteristic slope.

1. Introduction

DieCAST is a finite-difference numerical model that
solves the three-dimensional primitive equations gov-
erning the ocean circulation. It is a z-level model, that
is, the vertical space is discretized into cells that do not
vary in thickness over the horizontal. The original code
includes the rigid-lid approximation with the surface
pressure updated by solving a two-dimensional (2D)
elliptic equation. The DieCAST model has been suc-
cessfully applied to simulate the circulation in oceans
and lakes driven by wind, buoyancy flux, and boundary
mixing (e.g., Dietrich and Lin 1994; Davidson et al.
1998; Sheng et al. 1998; and Sheng 2001, hereafter
SHE).

Two limiting features of the model are 1) the exclu-
sion of surface gravity waves by the rigid-lid approxi-
mation and 2) the use of fixed z levels in the vertical
discretization, potentially causing a poor representation
of topographic variations. The first weakness particu-
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larly limits the application of the model in coastal waters
if one wants to simulate motions driven by tides and
synoptic atmospheric forcings. To overcome this weak-
ness, the surface elevation must be free to change in
response to divergence and convergence of the depth-
integrated flow. Various schemes have been proposed
for incorporating a free-surface into general circulation
models. In this study, we choose to implement the time-
implicit scheme of Dukowicz and Smith (1994) rather
than an explicit scheme such as that considered by Kill-
worth et al. (1991). This choice is motivated by the
desire to avoid major changes to the code while retaining
the computational efficiency of the rigid-lid model. Both
goals are achieved satisfactorily using Dukowicz and
Smith’s (1994) method.

With fixed-height z levels, topographic changes such
as a continental slope are represented by a staircase
approximation. Obviously, the accuracy of this approx-
imation increases with an increase in the number of
levels and a decrease in the thickness of the levels,
hence, an increase in computational cost. By contrast,
terrain-following coordinates (e.g., the s coordinate)
can accurately resolve topographic changes even with
a single layer. To minimize this weakness, we use the
method of partial cells (Adcroft et al. 1997; Pacanowski
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and Gnanadesikan 1998) in which the bottom cell of
each vertical column has variable thickness (uniform
over each cell) in order to more accurately represent the
true water depth. We will show that the use of partial
cells significantly improves the model solution above
the sloping bottom. Terrain-following coordinates have
another advantage, that is, the boundary layer near the
sea bed can be better resolved by increasing the number
of layers near the bottom. The use of partial cells does
not help to resolve the bottom boundary layer over var-
iable topography; however, it does help in situations
where topographic variations play an important role, but
the topography is not well represented without using an
undesirably large number of fixed-height z levels. Ad-
vantages of using a z-level model include the conve-
nience of easier analysis of results and the elimination
of the pressure gradient error associated with s-coor-
dinate models when both density stratification and to-
pographic gradients are present (Haney 1991; Mellor et
al. 1994).

It should be noted that neither fixed z levels nor s
coordinates are well suited to focusing vertical resolu-
tion in the vicinity of the thermocline where shear pro-
duction of turbulence may be particularly important
(e.g., Xing and Davies 1996, 1998). Fixed z levels may
have some advantage over s coordinates for this prob-
lem, but isopycnal models are clearly better suited to
thermocline problems than either of the other formu-
lations.

The model modifications are tested using an idealized
study of internal tide generation over sloping topogra-
phy. For this problem, terrain-following coordinates
have an additional advantage over fixed z-level models
that was not mentioned above. In order to accurately
represent the internal waves that propagate onto the
shelf, at least several layers are required on the shallow
side of the slope. Obviously terrain-following coordi-
nates are well suited to handling this problem. In our
z-level model, we will choose our vertical grid resolu-
tion to be finer near the surface in order to reasonably
resolve the vertical structure of the internal wave field
on the shelf. It is noteworthy that most previous studies
of internal tide generation (e.g., Holloway 1996; Xing
and Davies 1998) have been conducted with models
using terrain-following coordinates; it is not obvious
how fine the horizontal and vertical resolutions of a z-
level model will have to be in order to successfully solve
this problem.

The internal tide generation problem is particularly
relevant to the validation of the model extensions con-
sidered here because the surface tide serves as the en-
ergy source, and the bottom topography plays an es-
sential role in the barotropic-to-baroclinic energy trans-
fer. Further, the specific problem considered here is ap-
propriate for model validation because results can be
readily compared with those from a semianalytic so-
lution documented by Craig (1987).

This modeling study, although idealized, comple-

ments previous modeling efforts focused on the internal
tide generation problem (e.g., Holloway 1996; Cummins
and Oey 1997; Xing and Davies 1998; Holloway and
Merrifield 1999). The results of these previous studies
reveal that the generation of waves strongly depends on
topographic and stratification variations. The wave field
undergoes large variations over relatively small spatial
scales, consistent with observations. It has long been
speculated that the energy transfered from surface to
internal tides plays an important role in both coastal and
deep ocean mixing (e.g., Sandstrom and Oakey 1995;
Munk 1997). On the other hand, there is observational
evidence, for example, from satellite altimetry data (Ray
and Mitchum 1996), that shows the propagation of in-
ternal tides over thousands of kilometers from their
source regions. The development and application of
models that can deal with this problem and the analysis
of the results remain challenging issues in oceanogra-
phy.

As part of this study, we must separate the internal
tide field from the full model solution in order to es-
timate the energy flux carried by the internal tide. We
will discuss the necessary modifications to previously
proposed methods (e.g., Baines 1982; Holloway 1986).
The remainder of the paper is arranged as follows. In
the next section, we introduce the idealized study of
internal tide generation and present the method used to
separate the internal tide from the full model solution.
In section 3, we introduce the DieCAST ocean model
and its setup to solve this test case. Appendix A dis-
cusses details of the free surface formulation, appendix
B gives some model details that are unique to the A-
grid formulation, and appendix C discusses details of
the partial cell implementation. In section 4, we present
the model results in terms of the flow field and energy
fluxes and make comparisons with theoretical expec-
tations. A summary and conclusions are presented in
section 5.

2. Internal tide generation: A test problem

a. The 2D linear problem

The linear, 2D problem of internal tide generation,
solved using a semianalytic method by Craig (1987), is
formulated as follows. The 2D model geometry is il-
lustrated in Fig. 1. It consists of deep and shallow re-
gions of uniform depth, separated by a linearly sloping
region. The model coordinates are chosen such that the
topography varies in the x direction; all gradients in the
y direction vanish. The depth of the ocean, measured
from the undisturbed surface, is H(x). Under the hy-
drostatic and Boussinesq approximations, the linearized
equations for this problem are
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FIG. 1. The model domain, consisting of shallow and deep regions
with a sloping bottom in between.

u 2 fy 1 p /r* 5 0, (1)t x

y 1 fu 5 0, (2)t

p 1 (r 1 r̃)g 5 0, (3)z o

u 1 w 5 0, (4)x z

r̃ 1 wr 5 0, (5)t oz

where the subscripts x and t denote the partial deriva-
tives with respect to the x coordinate and time, respec-
tively; u, y, and w are the x, y, and z velocity compo-
nents; p is pressure; r* is a reference density (a constant
value); ro(z) is the background time-mean density field
(chosen to have no horizontal variation); (x, z, t) is ther̃
density perturbation due to advection by the tidal flow;
and f is the Coriolis parameter.

Because the 2D velocity field is nondivergent, one
can define a stream-function c such that u 5
2Re{cze2ivt}, w 5 Re{cxe2ivt}, where v is the tidal
frequency and i 5 . From (1), (2), (3), and (5), oneÏ21
can derive an equation for c :

2c 2 c c 5 0,xx zz (6)

where N 5 (2groz/r*)1/2 is the buoyancy frequency and
c2 5 (v2 2 f 2)/N 2 is the characteristic slope of the
internal tide. Craig (1987) seeks the solution for (6)
under the following conditions: c 5 0 at z 5 2H and
cxx 5 0 at z 5 0 (the assumption of an x-independent
vertical velocity through z 5 0 is justified when the x-
extent of the model domain is small compared with the
wavelength of the surface tide). Craig shows that the
solution structure is determined by a nondimensional
parameter, a 5 Hx/c, the ratio of bottom slope to the
characteristic slope of the internal tide. The value of a
5 1 divides the problem into subcritical (a , 1) and

supercritical (a . 1) cases. In the following discussion,
we consider the case f 5 0. However, we note that the
solution of (6) for nonzero f can be obtained simply by
including the appropriate value of f in the definition of
c. The results presented here as a function of a would
not be changed for nonzero f , except for the interpre-
tation of a.

b. Separating surface and internal tide components

An internal tide is generated when a barotropic sur-
face tide propagates in stratified water into a region with
spatially varying topography. To examine the generation
of an internal tide using results from a primitive equation
numerical model, one must be able to separate the in-
ternal tide field from the full solution.

Following Baines (1982), we first define the ‘‘surface
tide’’ (denoted by a superscript ‘‘s’’) as the solution of
the following equations:

s su 1 p /r* 5 0, (7)t x

sp 1 r g 5 0, (8)z o

s su 1 w 5 0. (9)x z

Note that the surface tide solution is calculated in the
absence of horizontal density gradients. Baines uses this
solution as an estimate of the external mode and sub-
tracts it from the full solution to estimate the internal
tide. Following this procedure, we find that the resulting
estimate of the baroclinic energy flux exhibits large am-
plitude periodic variations in x over the flat regions (see
Fig. 6a). These anomalous periodic variations indicate
that the baroclinic mode is not cleanly separated from
the external mode using this method.

We observe that in the presence of background den-
sity stratification, ro(z), the isopycnals are heaved by
the vertical velocity associated with the surface tide
even in the absence of internal wave motion. This results
in changes of density and pressure, denoted as and p̂,r̂
respectively, which satisfy

sr̂ 1 w r 5 0, (10)t oz

sp̂ 1 (r 1 r̂)g 5 0; p̂ 5 p at z 5 0. (11)z o

Note that advection by ws alone determines and p̂;r̂
advection by baroclinic flow is excluded. Clearly, andr̂
p̂ are part of the external mode of response and should
be accounted for in the estimation of the surface tide.

The internal tide fields (denoted by a superscript ‘‘i’’)
are now estimated by

i i s s(u , w ) 5 (u 2 u , w 2 w ), (12)
i i(p , r ) 5 (p 2 p̂, r̃ 2 r̂), (13)

which satisfy the following equations:
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i i su 1 p /r* 5 (p 2 p̂) /r*, (14)t x x

i i i sp 1 r g 5 0; p 5 p 2 p at z 5 0, (15)z

i iu 1 w 5 0, (16)x z

i ir 1 w r 5 0. (17)t oz

The above approach to separating out the internal tide
is introduced in order to account for the pressure effect
associated with the heaving of the density field by the
barotropic flow, an effect that was not accounted for in
the early work of Baines (1982). An alternative ap-
proach to dealing with this issue has been taken, for
example, by Holloway (1996) and Holloway and Mer-
rifield (1999). In these studies, pi is calculated using

0

i i 2p 5 2r* w N dz9, (18)t E
z

where v2 has been neglected compared to N 2, consistent
with the hydrostatic approximation. With this method,
pressure perturbations due to isopycnal heaving by the
barotropic tide are excluded from the estimates of pi.
However, the assumption that pi vanishes at z 5 0 gives
rise to a different error in the estimation of the internal
energy flux (see Fig. 5 and the discussion in section
2c).

The term on the right side of (14), (ps 2 p̂)x/r*, may
be thought of as a ‘‘body force’’ that generates the in-
ternal tide. It is very small over the flat regions (ideally,
it should vanish), but its magnitude is amplified over
variable topography.

Multiplying (14) by ui and (15) by wi and adding, we
obtain the kinetic energy budget for the internal tide:

i 2 i i i i[r*(u ) ] 1 (u p ) 1 (w p )t x z

i i i s5 2gr w 1 u (p 2 p̂) . (19)x

The terms on the left side of (19) are the change of
kinetic energy with time and the divergences of hori-
zontal and vertical energy fluxes, respectively. The
terms on the right side are the rate of exchange between
internal potential energy and internal kinetic energy and
the rate of energy transfer from the external to the in-
ternal mode.

Similarly, multiplying (17) by gri/roz, we obtain the
potential energy equation for the internal tide:

22r*N ri i i5 gr w . (20)1 2[ ]2 roz t

The left side represents the rate of change of internal
potential energy, while the term on the right side rep-
resents the conversion between internal potential and
internal kinetic energy.

Averaging the energy equations over a tidal cycle
(denoted by an angle bracket ^ &), the time-derivative
terms drop out, since the tidal forcing is constant, and
^griwi& 5 0 because ri and wi are 908 out of phase

according to (17). Hence, the time-averaged energy
equation is

i i i i i s^u p & 1 ^w p & 5 ^u (p 2 p̂) &,x z x (21)

which represents a balance between the divergence of
internal energy flux and the rate of energy conversion
from surface to internal tide averaged over a tidal cycle.
The right side represents the energy source for the in-
ternal tide, and the left side represents the energy re-
distribution by the internal tide. In section 4, we will
show that the energy source is concentrated over the
slope as expected and that the baroclinic energy flux
over the flat regions is well defined.

The key to the above procedure for separating the
internal tide from the full solution lies in determining
the pressure field with baroclinic motions eliminated. In
the above discussion, this has been achieved by con-
sidering the tidal flow that would occur in the absence
of density stratification. While this approach gives a
reasonable result, one must bear in mind that the energy
loss from surface to internal tide is neglected. The po-
tentially significant influence of nonlinear bottom stress
is also not considered. The latter effect could be ac-
counted for by using an appropriately linearized bottom
stress formulation (e.g., see Wright and Thompson
1983).

One approach that can account for the energy loss to
the internal tide is as follows. Consider a supplementary
run, which differs from the basic model run by the ad-
dition of very strong vertical mixing in the horizontal
momentum equations (using an implicit numerical for-
mulation), but with the surface and bottom stress set to
zero. By mixing momentum so strongly that baroclinic
motions are eliminated over just one or two model time
steps, baroclinic motions are effectively eliminated, and
the results of this run can be used in place of the results
obtained from Eqs. (7)–(11) as an estimate of the ‘‘sur-
face tide.’’ The advantage of this approach is that the
energy transfer from the surface tide to the internal tide
is accounted for, and the pressure variations due to the
heaving of the background density field by the surface
tide (without any heaving by the baroclinic tide) are
automatically determined.

Of course, a disadvantage of both of the approaches
discussed above is that a supplementary model run is
required to estimate the surface tide so that the baro-
clinic tide can be obtained by differencing. However,
this is a relatively minor price to pay for an improved
separation of the surface and internal tidal motions. In
the next section, we consider what information about
the baroclinic energy flux can be reliably obtained with-
out making any additional runs.

c. Decomposition using only the full model solution

In the previous section, we presented methods for
separating the internal tide from the total solution that
involved an auxiliary model run in which baroclinic
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motion was suppressed. Here we consider whether or
not it is possible to separate the energy fluxes associated
with the surface and internal tides using only the so-
lution of the full model, which includes the combination
of the two tides, without doing an additional model run.

The horizontal velocity associated with the surface
tide is usually taken as the depth-average of the full
velocity (e.g., Cummins and Oey 1997), that is,

0

su 5 u dz/H. (22)E
2H

Once us is determined, the vertical velocity associated
with the surface tide can be estimated using

s sw 5 (1 1 z/H)h 1 z/HH u ,t x (23)

where Hxus is the vertical velocity just above the bottom
associated with us. The relative differences between the
(us, ws) calculated using (22) and (23) and those ob-
tained by solving (7)–(9) are small. We note that the
approximation of us by (22) assumes that ui has a neg-
ligible depth-mean ( ui dz 5 0), and the determination0#2H

of ws by (23) assumes that the contribution hi 5 h 2
hs [where hs 5 ps/(r*g) at z 5 0 and ps is determined
as in the previous section] to the surface elevation is
also negligible. Equations (22) and (23) effectively cor-
respond to making the rigid-lid approximation for the
internal tide.

In reality, the surface elevation hi associated with the
internal tide makes a finite contribution to pi. By sep-
arating the surface elevation as h 5 hs 1 hi, the vertical
integration of (15) gives

0

i i ip 5 r*gh 1 g r dz9. (24)E
z

The second term on the right is well approximated by
the approach taken by Holloway (1996). The first term
on the right is neglected in Holloway’s approach. Ne-
glecting the surface pressure associated with the internal
wave field introduces an inaccuracy into the estimation
of the vertical structure of the baroclinic energy flux,
particularly near the surface. Of course, as the depth
increases, the second term becomes increasingly im-
portant and can dominate the surface pressure contri-
bution, especially for large-amplitude internal tides.

The depth-integrated energy flux consists of two
parts: the part associated with hi is r*g ^uihi& dz,0#2H

and that associated with density changes in the interior
is g ^ui ri dz9& dz. Because the depth-average of0 0# #2H z

ui is much smaller than the typical magnitude of ui, the
first part is negligible compared with the second part.
Consequently, the depth-integrated horizontal energy
flux can be calculated from the vertical integral g0#2H

^ui ri dz9& dz, using the estimates of ui and ri obtained0#z

from (22), (23), and (10)–(13). This is equivalent to
calculating pi using (18), following Holloway (1996).
Thus, a reliable estimate of the depth-integrated baro-

clinic energy flux can be obtained from the results of a
single run of the full model using either of these two
approaches.

3. Model description

a. Model modification

The DieCAST model solves the three-dimensional
(3D) nonlinear equations governing temperature, salin-
ity, density, pressure, and velocity. The Boussinesq and
hydrostatic approximations are made. The numerical
methods used in earlier versions of the DieCAST model
are documented by, for example, Dietrich et al. (1987),
Dietrich (1992), and Sheng et al. (1998). These papers
use the Arakawa C grid for the spatial discretization
(e.g., Sheng et al. 1998). In the present study, we work
with the A-grid version of DieCAST (see appendix B
for some numerical details on the A-grid). The major
modifications made to the model code for the purpose
of the present work are the additions of a free-surface
formulation and allowance for partial thicknesses of the
bottom cells of the model. The method used to allow a
free surface is the time-implicit scheme suggested by
Dukowicz and Smith (1994). Appendix A provides a
brief account of how to implement this method in the
DieCAST model. The primary advantage of including
free-surface effects is that gravity waves associated with
the free surface are explicitly represented. The incor-
poration of partial cells into the DieCAST code is dis-
cussed in appendix C. By using this method, a z-level
model can accurately resolve the changes in the topog-
raphy (as with terrain-following coordinates, the accu-
racy remains limited by horizontal resolution).

b. Model setup

To solve the 2D internal tide generation problem, as
outlined in the previous section, we choose the model
domain as a straight channel with a single grid in the
cross-channel (y) direction and set the velocity, fluxes,
and gradients of all quantities to be zero in this direction.
In the along-channel (x) direction, the model configu-
ration is identical to that of Craig (1987). The shallow
water region is 200 m deep and 50 km wide, the sloping
region has a constant slope of 0.01 over a distance of
80 km, and the deep water is 1000 m deep and 500 km
wide. The x axis is discretized using uniform grid spac-
ing (Dx). We shall show that the model solutions are
sensitive to the choice of Dx. We discretize the vertical
space using 25 nonuniformly spaced layers. The thick-
ness of these layers ranges from 20 m near the surface
to 69 m near the bottom, with 8 layers in the upper 200
m. As discussed later, such a choice of vertical levels
ensures that there is sufficient vertical resolution to re-
solve the baroclinic mode in both the deep and shallow
regions.

At the open boundary in the deep water (at x 5 0 in
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FIG. 2. Snapshots of the vertical velocity in a model run (a) with and (b) without partial cells. Negative values are
plotted using broken lines; zero and positive values are plotted using solid lines. The contour interval is 1 3 1024 m
s21.

Fig. 1) we introduce a surface tide, which propagates
into the model domain and sets up a surface elevation
of 1 m in magnitude at the coast (at x 5 L in Fig. 1).
The surface tide is reflected at x 5 L by enforcing zero
depth-integrated flow there, but it is allowed to prop-
agate out of the model domain through x 5 0 using a
radiation boundary condition [the radiation phase speed
for the surface tide is (gH)1/2]. The internal tide is al-
lowed to propagate out through both x 5 0 and x 5 L
using radiation boundary conditions for the baroclinic
mode (the radiation phase speed is taken equal to that
of the first baroclinic mode). The tidal frequency is set
at v 5 1024 s21.

The DieCAST model solves the advection–diffusion
equation for temperature and salinity. In this idealized
test, we initialize the salinity to be uniform and set zero
salt fluxes at all the model boundaries. The salinity fields
are thus uniform in both space and time. The density
variation is purely due to changes in temperature. The
initial temperature field varies linearly in the vertical
and is uniform in the horizontal. A linear equation of
state is applied, hence the buoyancy frequency (N) is
uniform. We run the model with different values of the
buoyancy frequency, hence different values of a 5 HxN/
v. Insulation conditions for heat are applied at the sur-

face, bottom, and side boundaries. A radiation condition
is applied to the temperature at x 5 0 and x 5 L.

To be consistent with Craig (1987), momentum ad-
vection is neglected, heat advection is linearized about
the initial state, and minimal subgrid scale mixing is
used. No explicit mixing of heat is included in either
the horizontal or vertical directions. A slip condition is
applied to the velocity at the side boundaries, there is
no explicit mixing of momentum in the vertical, and the
bottom stress is set to zero. A Laplacian formulation is
used for the horizontal mixing of momentum, with the
diffusion coefficient set to 10 m2 s21 (momentum dif-
fusion over a horizontal distance of 3 km requires ap-
proximately 9 days, comparable with the maximum time
required for the internal waves generated at the sloping
topography to propagate out of the model domain).

4. Model results: Validation

a. Internal tide flow fields

We first illustrate the improvement in the model so-
lution achieved by using partial cells. Figure 2 shows
two snapshots of the vertical velocity field obtained
from simulations with and without partial cells. When
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FIG. 3. A time sequence of internal tide streamfunction (ci) plots. Starting from the second
panel from the top, each panel lags the one above it by 10.9 (the tidal period is 17.45 h). Negative
ci (broken lines) correspond to counterclockwise baroclinic circulation. Positive ci (solid lines)
correspond to clockwise circulation. The contour interval is 0.25 m2 s21. The results are for a
5 0.6 and were simulated using Dx 5 1 km.

only standard vertical cells are used, the poor represen-
tation of the sloping bottom leads to substantial grid-
scale noise in the velocity field. The noise is not limited
over the slope, since the vertical motion generates in-
ternal waves that propagate into the flat regions. When
partial cells are used, the grid-scale noise is almost com-
pletely eliminated, and a smoothly varying velocity field
is obtained. The improvements are also evident in the
results for other variables and the subsequent calculation
of energy fluxes.

The implementation of partial cells has also been val-
idated against the analytic solution of Rhines (1975) for

a bottom-intensified Rossby wave in a stratified re-en-
trant channel. This test of partial cells has been ex-
amined previously for an implementation in the GFDL
Modular Ocean Model (Pacanowski and Gnanadesikan
1998). Although this test case serves as an additional
validation of the model, the results obtained with our
implementation of partial cells in the DieCAST model
are similar to those presented by Pacanowski and Gnan-
adesikan and will not be reproduced here. Partial cells
are used throughout the rest of the model experiments
presented here.

Figure 3 shows a time sequence of streamfunction ci
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FIG. 4. Same as in Fig. 3 but with Dx 5 4 km. Note the weaker baroclinic velocity in shallow
water.

plots for the internal tide. We define ci such that ui 5
2 , wi 5 with ci 5 0 at z 5 2H. The results showni ic cz x

in Fig. 3 are for the subcritical case a 5 0.6, obtained
using a horizontal grid spacing of Dx 5 1 km. The time
sequence of ci clearly shows that the internal tide is
predominantly generated at the bottom of the slope, after
the surface tide arrives there, and propagates toward
both the deep ocean and the shelf. The propagation
speed is approximately equal to the local phase speed
of the first baroclinic mode. After the solution reaches
a periodic state, the evolution of ci over a tidal cycle
(not shown here) agrees, both qualitatively and quan-
titatively, with the semianalytic solution of Craig (1987;
see his Fig. 5).

It is of interest to consider whether we can achieve
similar results to those presented in Fig. 3 with coarser
resolution. For a 5 0.6, we have considered Dx 5 2
km and Dx 5 4 km. Results show that the solution with
Dx 5 2 km is very close to that with Dx 5 1 km. For
Dx 5 4 km (Fig. 4), the solution does not change sig-
nificantly in the deep water, but the internal tide in the
shallow region is greatly reduced. These conclusions
based on idealized experiments are generally consistent
with results obtained in much more realistic 3D config-
urations (e.g., Cummins and Oey 1997; Xing and Davies
1996, 1998).

The spatial resolution required to accurately repro-
duce the nature of the internal wave field is related to
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FIG. 5. (a) The horizontal energy flux of the internal tide, ^uipi&, for a 5 0.6. Zero and positive values are plotted
as solid lines. Negative values are plotted as broken lines. The contour interval is 0.005 W m 22. (b) Same as (a)
except for contour of ^ui ri dz9&.0#z

the wavelength of the internal tide. In the vertical di-
rection, the wavelength of the first mode equals twice
the water depth (for this constant N case), hence 25
levels in deep water and 8 levels in shallow water are
adequate to resolve the vertical variations associated
with the first internal mode and marginally adequate to
resolve the vertical variations in the second mode. For
a given characteristic slope, c 5 v/N, the horizontal
wavelength of the first baroclinic mode is 2H/c 5 2aH/
Hx. For a 5 0.6 and Hx 5 0.01, the wavelength is 120
km in deep water (H 5 1000 m) and 24 km in shallow
water (H 5 200 m). Hence Dx 5 4 km is easily sufficient
to resolve the internal tide in the deep water but marginal
at best in the shallow water. The situation is exacerbated
if higher modes are involved in the energy transfers over
the slope. For larger a values, the spatial resolution is
less of a constraint in the flat regions but more of a
constraint over the sloping region.

b. The energy budget

In Fig. 5a, we show the contour lines of the horizontal
energy flux, ^uipi&, for a 5 0.6. In the deep water, the
energy flux is directed to the left (negative values). In
the shallow water, the flux is directed to the right (pos-
itive values). We noted earlier that the pressure pi as-

sociated with the internal tide includes a contribution
from h i, the sea level change associated with the internal
tide [Eq. (24)]. While this contribution is tiny compared
with hs, the influence on the estimation of the baroclinic
energy flux is significant. This point is emphasized by
Fig. 5b, which shows the quantity ^uig ri dz9&, ob-0#z

tained by neglecting hi in the calculation of the energy
flux shown in Fig. 5a. This is effectively equivalent to
the result that would be obtained using the approach of
Holloway (1996). As noted earlier, the fact that the depth
integral of ui is small results in negligible contribution
from h i to the depth-integrated energy flux (Fig. 6a).
However, if one wishes to examine the depth distribu-
tion of the internal energy flux, the surface pressure
variation associated with the internal tide should be ac-
counted for unless one is confident that the internal tide
does not extend to the surface.

Note that if the density variations associated with
heaving of the density field by the surface tide are not
removed from ri (and hence also from pi), then the
depth-integrated energy flux would include large am-
plitude variations over the length scale of the internal
tide. This erroneous result is shown as the thinner bro-
ken line in Fig. 6a. Such variations are a clear indication
of poor separation between the surface and internal
wave modes.



JUNE 2001 1085L U E T A L .

FIG. 6. (a) The depth-integrated horizontal energy fluxes calculated using ^uipi& (solid line) and
^ui ri dz9& (thicker broken line, essentially overlying the solid line). The thinner broken line0#z

shows the erroneous result that is obtained when heaving of the density field is not accounted
for in the estimation of the pressure variations associated with the surface tide. (b) The depth-
integrated values of ^ui(ps 2 p̂)x&, the rate of energy conversion from surface to internal tides.
Both (a) and (b) are for the case a 5 0.6.

Figure 6a shows that the values of the depth-inte-
grated internal tide energy flux jumps from negative to
positive at the bottom of the slope. This flux divergence
is balanced by the source term ^ui(ps 2 p̂)x&, the con-
version rate from surface to internal tidal energy. In Fig.
6b, we plot the depth-integrated values of ^ui(ps 2 p̂)x&.
This plot shows that the energy conversion takes place
mainly at the bottom of the slope.

The other region with nonzero ^ui(ps 2 p̂)x& is at the
top of the slope where the depth-integrated conversion
rate is negative for this geometry and choice of param-
eters.

Except near the bottom and the top of the slope, the
magnitude of ^ui(ps 2 p̂)x& is small, and the energy
fluxes (^uipi&, ^wipi&) have almost no divergence. Con-
sequently, one can define a scaler C such that ^uipi& 5
2Cz, ^wipi& 5 Cx, and C can be used to illustrate the
pathway of the baroclinic energy flux, as shown in Fig.
7. The directions of the flux vectors (^uipi&, ^wipi&) are
parallel to the contour lines. Starting from the bottom
of the slope, internal tide energy propagates toward the
deep water along ‘‘rays’’ that bounce back and forth
between sea surface and sea bed. Similar rays also prop-
agate up the slope toward the shallow water.

c. Energy flux as a function of a 5 HxN/v

We now consider the results from a sequence of model
runs using different values of a (by changing the back-

ground density field ro hence the buoyancy frequency
N). The energy fluxes are calculated for each individual
run. In Fig. 8, we plot the values of the internal tide
energy flux toward the deep ocean [denoted by F1 as in
Craig (1987)] as a function of a. Superimposed on this
plot are the values of F1 calculated by Craig. The agree-
ment between the two sets of values, both in the sub-
critical (a , 1) and supercritical (a . 1) regimes, are
quite good. An interesting feature of the model calculated
values is the presence of two regions of reduced energy
flux near a 5 0.4 and a 5 0.7. These two anomalies
are not indicated by Craig’s values (although he did not
calculate energy fluxes for as many values of a as pre-
sented here). Interestingly, the occurrence of these two
reductions of the energy flux approximately coincide with
two special cases in terms of internal tide characteristics,
as shown in Fig. 9. For the first case, which occurs at a
5 2/3 for the present model geometry, the wave char-
acteristics link the bottom and top corners of the slope
with one reflection at the surface. For the second case,
which occurs at a ø 0.38, the wave characteristics link
the same two regions with two reflections from the sur-
face. These results are at least qualitatively consistent
with the prediction of Müller and Liu (2000) that a linear
slope will be transparent to internal waves with this prop-
erty. [Note that there is a misprint in the sign of the last
term in Eq. (39) of Müller and Liu (2000).] In this case,
forward-propagating internal waves generated at the base
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FIG. 7. Contours of C defined as ^uipi& 5 2Cz, ^wipi& 5 Cx, for a 5 0.6. Negative values are plotted as broken
lines with a contour interval of 0.5 W m21. Zero and positive values are plotted as solid lines with a contour interval
of 1 W m21. The vectorial direction of the internal tide energy flux (^uipi&, ^wipi&) is parallel to the contour lines. The
two arrows indicate the directions of the depth-integrated energy fluxes in the deep and shallow waters, respectively.

FIG. 9. Internal tide characteristics (broken lines) that link the bot-
tom and top corners of the shelf break. The two cases shown are (a)
a 5 2/3 and (b) a 5 0.38 for the model geometry specified in section
4a.

FIG. 8. Magnitude of the internal tide energy flux into the deep
ocean as a function of a 5 HxN/v. Squares denote the semianalytical
solution of Craig (1987), and solid circles are calculated using the
free-surface DieCAST model.

of the slope should traverse the slope without reflection,
resulting in reduced total reflected internal wave energy.
The spreading of the anomalies in the a axis is probably
influenced by a combination of nonzero diffusion in our
model and the approximate representation of the bottom
topography by the finite model resolution. Regarding the
influence of finite model resolution, it is noteworthy that
analytic solutions have singularities at sharp corners
(Sandstrom 1976).

5. Conclusions

The addition of a free-surface and partial cells makes
two important modifications to the DieCAST ocean cir-
culation model. The time-implicit, free-surface scheme
of Dukowicz and Smith (1994) is similar to the implicit
method of updating the surface pressure field in the
rigid-lid DieCAST model (appendix A). Hence, the

amount of work required to modify the rigid-lid code
and the extra computational cost of including a free-
surface are minimal. We note that the same free-surface
method has been implemented in the Los Alamos Par-
allel Ocean Program (Smith et al. 1992). The method
of including partial cells is that of Adcroft et al. (1997),
and an implementation in the GFDL Modular Ocean
Model has been discussed previously by Pacanowski
and Gnanadesikan (1998). With a free-surface included,
the forcing of the surface tide can be explicitly included.
The use of partial cells significantly improves the model
solution, compared with using standard, fixed-thickness
z levels.

To test these new developments, the modified
DieCAST model is applied to simulate the 2D, linear
problem of internal tide generation over topography.
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The method of separating the internal tide from the full
model solution, which includes the motions and density
variations associated with the surface tide, is discussed.
It is shown that a consistent determination of the energy
budget for the internal tide requires accounting for the
fact that the density variations due to heaving by the
surface tide and the associated pressure variations are
part of the external mode and not part of the internal
mode. Attention to this point is essential to achieve zero
divergence of the depth-integrated internal tide energy
flux away from its generation regions. It is also shown
that the surface pressure variations associated with the
internal tide must be accounted for to accurately esti-
mate the vertical structure of the baroclinic energy flux.
This latter effect is not critical to the determination of
the depth-integrated energy flux associated with the in-
ternal tide.

The model is used to determine numerical solutions
corresponding to the problem considered by Craig
(1987), and results are compared with his semianalytical
solution. Close agreement between the numerical model
and analytical results are obtained when the spatial res-
olution of the model is adequate to resolve the wave-
length of the lowest mode. By running the model with
different background density gradients, the model pre-
dicts a variation of the internal tide energy flux (F1) as
a function of the ratio of bottom slope to characteristic
slope (a). The model results reveal two dips in F1 within
the subcritical range of a, but otherwise shows a mono-
tonic increase of F1 with increasing a, in agreement
with the results presented by Craig (1987). The two dips
in the energy flux occur for the parameter values at
which the results of Müller and Liu (2000) predict that
a linear slope will be transparent to the internal waves
generated at the base of the slope. It is likely that this
effect accounts for the reduction in internal wave energy
reflected backward from the slope. This question war-
rants further investigation but is beyond the scope of
the present work.

In summary, the results from this study demonstrate
the successful addition of a free-surface and partial cells
to a z-level ocean model (DieCAST). The modifications
extend the applicability of the model to include prob-
lems that require the relaxation of the rigid-lid approx-
imation and more accurate representation of topographic
changes. The idealized test case of internal tide gen-
eration can easily be extended to more general situations
that include nonlinear effects, turbulent mixing, and
three-dimensionality. Potential problems with previous
approaches to separating the surface and internal tides
have been identified, and simple corrective measures
have been suggested.
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APPENDIX A

Implicit Free-Surface Method

To relax the rigid lid approximation, we linearize the
kinematic boundary condition at the sea surface to give

w 5 h , at z 5 0.t (A1)

Vertical integration of the nondivergent continuity equa-
tion then gives

0

h 1 = · u dz 5 0, (A2)t E1 2
2H

and integration of the hydrostatic equation gives
0

p 5 r*gh 1 g r dz9. (A3)E
z

The horizontal momentum equation is

u 1 L (u) 1 f 3 ut

0

5 2g= r /r* dz9 2 g=h 1 D (u)E m

z

1 (A u ) . (A4)y z z

In the above equations, we define u as the horizontal
velocity vector; h is the surface elevation measured
from the position of the undisturbed sea surface (z 5
0); z 5 2H(x, y) is the position of the bottom; f is an
upward directed vector with magnitude equal to the Cor-
iolis parameter; (=, L, Dm) are the horizontal gradient,
advection, and horizontal diffusion operators, respec-
tively; and Ay is the vertical viscosity.

The implicit time-differencing scheme of Dukowicz
and Smith (1994) is applied to discretize (A2) and (A4).
This leads to

0

nn11 n(h 2 h )/Dt 1 = · u dz 5 0, (A5)E
2H

n11 n21 n n(u 2 u )/(2Dt) 1 L (u ) 1 f 3 u
0

nn n215 2g= r /r* dz9 2 g=h 1 D (u )E m

z

n111 (A u ) , (A6)y z z

where
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FIG. B1. A control volume center on Ai,j,k, where (p, T, S, r, u,
y)i,j,k are calculated. For the Arakawa A-grid, (p, T, S, r, u, y)i,j,k

actually represent averages over the cell volume. The positions of
the staggered C-grid velocities are denoted by (Ui,j,k, Vi,j,k, wi,j,k).

n n11 nu 5 uu 1 (1 2 u)u , (A7)
n n n21h 5 a dh 1 (a 1 a )h 1 (1 2 a 2 a )h , (A8)1 1 2 1 2

and dh 5 hn11 2 hn. The values of u, a1, and a2

determine whether an explicit or implicit scheme is em-
ployed to deal with the free surface elevation. u 5 1,
a1 5 1, and a2 5 0 give a fully implicit scheme while
u 5 0.5, a1 5 a2 5 1/3 give a time-centered explicit
scheme. Dukowicz and Smith (1994) give a detailed
discussion of the influences of different values of u and
a on the physical and computational modes. They also
show that the linear approximation (A1) can be replaced
by its nonlinear counterpart, and the vertical integral in
(A2) can be performed from z 5 2H to z 5 h. Also,
a variable thickness top-layer could be implemented into
the DieCAST model following Dukowicz and Smith’s
formulation. However, the linear formulation is justified
when the change of surface elevation is much smaller
than the total water depth.

The surface elevation and velocity fields are updated
according to the following procedure.

1) The velocity u is partially updated based on explicit
treatment of advection, Coriolis force, the baroclinic
pressure gradient, and h at previous time steps as
well as horizontal mixing; the trial field obtained is
denoted as ûn11;

2) the influence of vertical mixing on ûn11 is accounted
for using an implicit scheme; the new trial field is
denoted as ũn11;

3) h is implicitly updated by solving the following el-
liptic equation for P 5 2Dta1gdh:

= · (H=P) 2 gP 5 F 1 F*, (A9)

where F 5 = · ûn11 dz, F* 5 (1/u 2 1)= · un0 0# #2H 2H

dz, and g 5 1/[2(Dt)2ga1u]; and
4) the velocity field is finally updated using

n11 n11u 5 û 1 =P. (A10)

When the rigid-lid approximation is made, the po-
sition of the surface is fixed at z 5 0; h t in (A1) and
(A2) is zero, and h in (A3) and (A4) is replaced by po/
(r*g), where po is the pressure under the rigid-lid. In
the rigid-lid code, the updating procedure is similar to
that described above except for the following changes
(cf., Sheng et al. 1998): 1) in step 1), the updating of
u is based on the surface pressure at the previous time
step, , instead of hn21 and hn; and 2) the elliptic equa-npo

tion is constructed for P 5 dpo, and (A9) is replaced by

= · (H=P) 5 F. (A11)

Except for the change of forcing terms, the most sig-
nificant difference between (A9) and (A11) is the ap-
pearance of the g P term in (A9). Because the value of
g is a constant as long as Dt, u, and a1 are fixed, the
extra computations required in updating h are negligi-
ble.

The updating of the temperature (T) and salinity (S)

fields follows the same procedure as in the rigid-lid
model (e.g., Sheng et al. 1998).

APPENDIX B

A-Grid Details

The version of DieCAST used in the present study
uses the Arakawa A-grid formulation. It was developed
as a modification of the C-grid version of the DieCAST
model discussed by Sheng et al. (1998) and has bene-
fited from numerous consultations with Dr. David Die-
trich, the developer of the original version of DieCAST.
Details of the C-grid version of DieCAST are presented
by Sheng et al. and will not be repeated here. We discuss
only the differences between the C-grid and the A-grid
formulations.

The most important differences between the A-grid
and C-grid formulations are associated with the spatial
discretization of the horizontal velocity components u
and y. On the A-grid, u and y are defined at the center
of each cell (i.e., colocated with T, S, r, and p), whereas
in the C-grid formulation, u and y are defined on the
bounding faces of the control volume. Figure B1 shows
an isolated control volume centered at an A-grid point.
The A-grid point and the locations at which the C-grid
velocity components are defined are each indicated. The
colocation of u and y on the A-grid overcomes the dif-
ficulty with the C-grid in estimating the Coriolis terms.
However, the use of a control volume approach requires
knowledge of the velocity components normal to the
faces of the model grid cells, that is, at the C-grid lo-
cations. Thus interpolations of the horizontal velocity
components from the A-grid to the C-grid locations are
required.

As discussed in appendix A, a trial velocity ûn11 is
first determined at the A-grid points, which includes all
effects except for a corrective step to ensure continuity.
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FIG. C1. A partial cell Ai,k in the x–z plane with a regular cell Ai11,k

to its right. The thickness of the partial cell is reduced by an amount
equal to the height of the shaded area. A solid circle denotes the
center of each cell. The open circle denotes the position at which the
values of the A-grid variables are calculated by vertical inter-*Ai11,k

polation. The variables at Ai,k and are either averaged or dif-*Ai11,k

ferenced to provide estimates of velocity, flux, or pressure gradient
at the center of the intervening cell face (indicated by a 3).

The correction for continuity is done on the C-grid ve-
locity components, and the required velocity adjust-
ments are then interpolated to the A-grid. The first step
in this procedure is to interpolate the trial velocity ûn11

from A-grid points to the C-grid cell surfaces. To do
this, we use a straightforward, level by level, linear
interpolation in the horizontal (the adjustment required
for partial cells is discussed in appendix C). The depth-
integrated velocity, or transport, at the C-grid locations
is then calculated, and F, the term on the right side of
(A9), is obtained. After solving (A9), the C-grid veloc-
ities are adjusted to be consistent with the modification
of the surface pressure gradient. After this adjustment,
the C-grid transport satisfies the depth-integrated con-
tinuity equation. The vertical velocity (w) is determined
at the z levels between the levels where T, S, u, and y
are defined by integrating the divergence equation ex-
pressing incompressibility. This yields a nondivergent
velocity field which, in general, is subsequently used in
a control volume treatment of the advective terms for
heat, salt, and momentum. For the linearized problem
considered here, only heat advection is considered.

Once the velocity has been corrected to satisfy the
continuity equation on the C-grid, the changes required
by this correction are interpolated back to the A-grid.
Since these changes are associated entirely with a
change in the surface pressure gradient, the velocity
changes on the A-grid are taken to be depth-independent
and determined by interpolating the depth-integrated
transports from the C-grid to the A-grid. This completes
the updating of the velocity on both the A- and C-grids.

One other interpolation is required by the A-grid for-
mulation. Since the velocity is updated on the A-grid
but the pressure gradient is most naturally determined
at the C-grid locations, the pressure gradient must be
interpolated from the C-grid to the A-grid. To do this,
we use simple linear interpolation with the normal com-
ponent of the pressure gradient set to zero at all solid
boundaries. The justification for the latter choice is sim-
ple. It is equivalent to determining the changes in the
C-grid velocity associated with the pressure gradient and
then linearly interpolating from the C-grid to the A-
grid.

APPENDIX C

Partial Cells: Improving the Representation
of Topography

A detailed discussion of the implementation of partial
cells in the B-grid GFDL MOM2 model is given by
Pacanowski and Gnanadesikan (1998). Although we use
an A-grid version of DieCAST, making some algebraic
and numerical details different, the basic considerations
of the two implementations are the same. Here we brief-
ly review the changes in the model code that are required
when adding partial cells and refer readers to Paca-
nowski and Gnanadesikan (1998) for further details.

Figure C1 shows the configuration of a partial cell,
centered at Ai,k, at the level k. Its thickness is reduced
by an amount equal to the height of the shaded area in
order to more accurately represent the real topography.
The cells at upper levels (the level k 2 1 and above)
are full cells with no side boundaries adjoining partial
cells. Hence, all flux and conservation formulae are un-
changed for cells at the level k 2 1 and above. The cell
at the right of the partial cell, centered at Ai 1 1,k, has
full thickness but has an adjoining side in common with
the partial cell. Both Ai,k and Ai 1 1,k need special treat-
ment. The following factors must be properly accounted
for in order to correctly implement partial cells.

1) The fluxes across cell boundaries affected by partial
cells must account for the reduced surface area of
the face. This is a simple matter of multiplying by
the appropriate cell height when calculating the
boundary flux.

2) The horizontal velocity component normal to a cell
face with reduced height must be interpolated to the
midlevel of the cell face (e.g., the position indicated
by 3 in Fig. C1) in order to maintain second order
accuracy in the advective fluxes. For our A-grid
model, the vertical interpolations are done at the A-
grid locations (to the position of the open circle in
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Fig. C1), and then horizontal interpolation is used
to determine the component of velocity normal to
the intervening cell face.

3) The calculation of vertical velocity from the conti-
nuity equation must be based on the same interpo-
lated horizontal velocity components as used in the
calculation of advective fluxes. Note that the discre-
tized continuity equation ensures the balance of vol-
ume fluxes across all surfaces of a control volume.
The volume flux at the intervening cell face is the
interpolated velocity at 3 multiplied by the area of
that surface.

4) Horizontal diffusive fluxes must be based on differ-
ences between quantities that have been interpolated
to the appropriate middepth level of the face. Once
again, vertical interpolations are done on the A-grid,
and then first differences are used to estimate the
diffusive fluxes. If the quantity being interpolated is
a simple linear function of depth, its horizontal dif-
fusive flux is zero to within roundoff error in our
model.

5) An estimate of the average pressure gradients over
each cell volume is required. In the A-grid DieCAST
model, the components of the pressure gradient nor-
mal to the cell faces are first determined at the mid-
depth level of each cell face, and then these values
are used to estimate the average over the cell volume
by taking appropriate weighted averages. To deter-
mine the pressure gradient normal to a cell face, we
first estimate the pressure at the appropriate level on
each side of the face and then take the difference.
To determine the pressure at the midlevel of the cell
face, we first interpolate temperature and salinity to
this level and use these to determine the in situ den-
sity. The density is then assumed to vary linearly
between this level and the overlying level, and the
hydrostatic equation is used to determine the change
in pressure between these two levels. By using this
approach, the horizontal pressure gradients are zero
to within roundoff error, when T and S are linear
functions of depth, even when using a nonlinear
equation of state. Once the components of the pres-
sure gradient normal to the cell faces are determined,
a depth-weighted average [i.e., Ai 5 (hi21/2Ai21/2 1
hi11/2Ai11/2)/(2hi)] is used to estimate the gradient at
the center of the cell. Note that the depth weighting
makes the pressure gradient at a face have dimin-
ishing influence as the area of the face decreases. In
the limit as the vertical extent of a cell face ap-
proaches either zero or the full cell thickness, we
recover the standard formulae used to estimate the
cell-centered pressure gradient on an A-grid.

6) Finally, it is possible for partial cells to be very thin,
which can result in local numerical instabilities. One
way to avoid this possibility would be to limit the
minimum thickness of a partial cell such that the
stability criterion is not violated. However, we prefer
to avoid the resulting modification of the bottom
topography. If, instead of having a very thin partial

cell, we had a cell that was slightly thicker than the
normal cell depth, the stability problem would not
occur. Unfortunately, this approach would introduce
substantial additional complications, and hence we
take a much simpler approach. We accomplish es-
sentially the same effect by using an implicit scheme
for the vertical momentum mixing and increasing
the vertical viscosity between partial cells and the
overlying cell when the partial cell is so thin that
stability considerations might be a concern. In the
present study, we have increased the vertical mixing
at the top of partial cells when their thickness is less
than 10 m. When this occurs, the vertical viscosity
is increased to (Dz)2/Dt, where Dz is the distance
between the center of the partial cell and the center
of the overlying cell. No increase in the vertical dif-
fusivity for heat and salinity was needed or used in
the present study.
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