

Christopher Subich, Pierre Pellerin, Greg Smith, Frederic Dupont

Christopher.Subich@canada.ca

21 October 2020

Outline

- Introduction
 - Motivation
 - ORCA ocean grid
 - Timestepping
- Interpolation
 - Vertical interpolation
 - Horizontal interpolation
 - Limiting
- **Trajectories**
 - Boundaries
 - Corners
- Results
 - Flow past a box
 - NEMO 3.1 free runs
- Future work

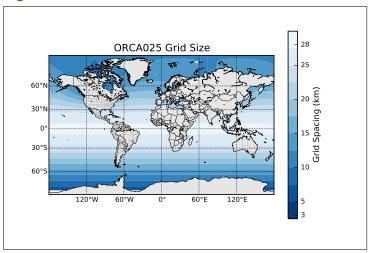
Introduction & Motivation

- Canadian Meteorological Centre runs a number of coupled atmosphere/ocean forecasting systems
- Resolutions increasing with time
 - Atmospheric system moved from 25 to 15km resolution (1/4°) ocean)
 - Coupled ensembles in the works
- Coupled forecasting systems are expensive
 - Would help if we could increase the coupled timestep
 - GEM (atmospheric model) already has semi-Lagrangian advection, why not try this in NEMO also?
- Objective: to develop a semi-Lagrangian advection scheme for NEMO that allows us to increase the timestep in operational configurations
 - ... while retaining compatibility with ongoing NEMO development
 - ...and while maintaining or improving accuracy

Semi-Lagrangian challenges in NEMO

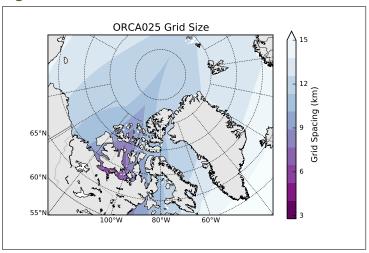
- Grid:
 - Z-level grid (in coupled forecasting system) with partial cells at the ocean-bottom layer
 - Non-uniform resolutions, with grid stretching in both horizontal and vertical directions
 - Staggering of momentum and tracer points
- Boundaries:
 - Free surface, bottom, and lateral boundaries
 - Interactions between lateral boundaries and grid staggering
- Math:
 - NEMO (currently) structured around leapfrog timestepping
 - Expects advection to be just one of many forcings

ORCA grid



• "Tripolar" ORCA grid at nominal $\frac{1}{4}^{\circ}$ resolution

ORCA grid



• "Tripolar" ORCA grid at nominal $\frac{1}{4}$ resolution

Semi-Lagrangian time-stepping

$$Df = 0$$

- Continuous, Lagrangian representation following the flow $(\frac{D}{Dt})$
- Fluid parcels (\vec{x}) definitionally follow the local velocity (\vec{u}) .

$$\bullet \vec{x}^A = \vec{x}^D + \frac{\Delta t}{2} (\vec{u}^A + \vec{u}^D)$$

- Fluid properties at arrival point (\vec{x}^A) governed by departure-point f^D and forcing over the trajectory
- Arrival/departure points determined by local velocities → implicit relationship to solve
- Semi-Lagrangian takes $\vec{x}^A = \vec{x}^{ref}$ as the grid & solves for x^D
- Requires off-grid interpolation at each timestep
- Finite difference framing of equations

Leapfrog in NEMO

$$\bullet \ \frac{\partial f}{\partial t} = g$$

- NEMO takes an Eulerian, finite-volume view of flow
- Fluid properties always expressed over static (z-coordinate!) locations, but forcing G includes advective fluxes

- Semi-discretized via leapfrog method
- Properties "after" $(\cdot)^A$ are governed by properties "before" $(\cdot)^B$ and forcing "now" $(\cdot)^N$
- Explicit timestepping, no need for iteration
- How does a semi-Lagrangian method fit in this framework?
 - Split the advection operator and match the product

- Consider tracer flow with only advection:
 - Tracers conserved following a fluid parcel
- (Semi-)Lagrangian: $\frac{Df}{Dt} = 0$
 - Define arrival and departure points
 - Take arrival at "after" time-level, departure at "before"
- Eulerian: $\frac{\partial f}{\partial t} + \vec{u} \cdot \nabla f = 0$
 - Discretize with "after", "before", and "now" levels
 - Solve for "after" tracer
 - Define the (trend) term that NEMO needs
- Equate: $(trend) = \frac{1}{2 \wedge t} (f^D f^B)$
- Semi-Lagrangian advection gives a time-trend that looks just

- Consider tracer flow with only advection:
 - Tracers conserved following a fluid parcel
- (Semi-)Lagrangian: $f^A = f^D$
 - Define arrival and departure points
 - Take arrival at "after" time-level, departure at "before"
- Eulerian: $\frac{f^A f^B}{2\Delta t} + \vec{u}^N \cdot \nabla f^N = 0$
 - Discretize with "after", "before", and "now" levels
 - Solve for "after" tracer
 - Define the (trend) term that NEMO needs
- Equate: $(trend) = \frac{1}{2\Delta t}(f^D f^B)$
- Semi-Lagrangian advection gives a time-trend that looks just like any other advective process

- Consider tracer flow with only advection:
 - Tracers conserved following a fluid parcel
- (Semi-)Lagrangian: $f^A = f^D$
 - Define arrival and departure points
 - Take arrival at "after" time-level, departure at "before"
- Eulerian: $f^A = f^B 2\Delta t(\vec{u}^N \cdot \nabla f^N)$
 - Discretize with "after", "before", and "now" levels
 - Solve for "after" tracer
 - Define the (trend) term that NEMO needs
- Equate: $(trend) = \frac{1}{2\Delta t}(f^D f^B)$
- Semi-Lagrangian advection gives a time-trend that looks just like any other advective process

- Consider tracer flow with only advection:
 - Tracers conserved following a fluid parcel
- (Semi-)Lagrangian: $f^A = f^D$
 - Define arrival and departure points
 - Take arrival at "after" time-level, departure at "before"
- Eulerian: $f^A = f^B + 2\Delta t (trend)$
 - Discretize with "after", "before", and "now" levels
 - Solve for "after" tracer
 - Define the (trend) term that NEMO needs
- Equate: $(trend) = \frac{1}{2 \wedge t} (f^D f^B)$
- Semi-Lagrangian advection gives a time-trend that looks just

- Consider tracer flow with only advection:
 - Tracers conserved following a fluid parcel
- (Semi-)Lagrangian: $f^A = f^D$
 - Define arrival and departure points
 - Take arrival at "after" time-level, departure at "before"
- Eulerian: $f^A = f^B + 2\Delta t (trend)$
 - Discretize with "after", "before", and "now" levels
 - Solve for "after" tracer
 - Define the (trend) term that NEMO needs
- Equate: $(trend) = \frac{1}{2 \wedge t} (f^D f^B)$
- Semi-Lagrangian advection gives a time-trend that looks just like any other advective process

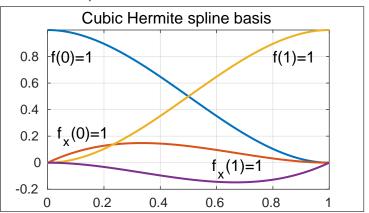
Related questions & answers

- Where did the "now" fields go?
 - fⁿ genuinely disappears
 - \vec{u}^n is defines trajectories effectively a frozen, time-centered flow
- What about other forcing?
 - Preserve NEMO's computation of all non-advection terms
 - Effectively operator splitting no interaction between semi-Lagrangian advection and other forcing terms
- What about conservation?
 - Classic advection routines discretize with finite-volume form, conserving tracers following (incompressible) flow
 - Potential for non-conservation via interpolation semi-Lagrangian implicitly uses a finite-difference framework
- What about velocity?
 - Velocity components are not left unchanged following motion
 - ... but NEMO has separate forcing for Coriolis forces and metric terms
 - Semi-Lagrangian advection replaces flux form momentum advection schemes

Interpolation

- Key problem: compute f^D , off-grid interpolation of "before" fields
- Tradeoff between interpolation error and stencil size/computational work
 - Three-dimensional interpolation
 - 4 × 4 × 4 stencil can exactly reproduce cubic polynomials
- Split interpolation by grid dimension, and apply repeated 1D interpolation schemes
 - Interpolate first in vertical, then in horizontal
 - Better compatibility with z-level coordinate system and partial cells
- Base interpolation on cubic Hermite splines

Cubic Hermite splines



- Basis functions have $f = \pm 1$ or $f_x = \pm 1$ at the endpoints
- 4-point finite difference stencils for derivatives reproduce Lagrange interpolation

Vertical interpolation

- Take $\vec{x}^D = (x_d, y_d, z_d)$
- Vertical interpolation finds $F(x_i, y_i, z_d)$, for x_i , y_i at grid points inside 4×4 stencil
- Also masks points inside land boundary
- Vertical interpolation needs derivative continuity 4-point stencil has discontinuous derivatives at grid points
- Schematic: oscillatory motion
 - Fluid parcel goes down by ϵ , $f(x_i, y_i, z_k)$ decreases by ϵF_z^-
 - Fluid parcel goes up by ϵ , $f(x_i, y_i, z_k)$ increases by ϵF_z^+
 - Net drift proportional to the difference in one-sided derivatives, acts like vertical diffusion
- Solution: use 3-point central stencil to precompute f_7

Horizontal interpolation

- After vertical interpolation: we have $F(x_i, y_i, z_d)$ and want $F(x_d, y_d, z_d)$
- Repeat dimension splitting: interpolate in 1D to $F(x_d, y_i, z_d)$, then $F(x_d, y_d, z_d)$
- Horizontal flow is less oscillatory, more driven by mean currents and long-lived eddies
- Use more accurate, one-sided stencils for endpoint derivatives
 - Full fit of 3rd-order polynomial to 4 points
 - Minimizes numerical diffusion
- Further approximation: interpolate on grid-index basis
 - Avoids complications from horizontal coordinate transformations
 - Justified because grid changes slowly over the horizontal interpolation stencil
- Boundaries (horizontal and vertical) implemented by symmetry conditions

Limitina

- So far, interpolation has been defined without limiting
- Most accurate specification, but allows for new minima/maxima
- Undesirable, and early testing showed potential for instability with tracer overshoots near lateral boundaries
- Method implements weak limiting:
- Horizontal:
 - If f(0) is a local minima, then $f'(0) \leftarrow \min(0, f'(0))$
 - If f(0) is a local maxima, then $f'(0) \leftarrow \max(0, f'(0))$
 - Symmetric conditions on f'(1)
- Overshoots still possible in the middle of the interval, but these do not appear to cause problems

Vertical limiting

- Limiting everywhere is far too diffusive in the vertical direction
- Vertical interpolation is not limited, save near boundaries
- Limiting called for near partial cells, somewhat ad hoc:
 - If (x_i, y_i, z_d) corresponds to a partial cell with thickness > 175% of its thinnest neighbour, strictly limit vertical interpolation to forbid an overshoot
 - Helps prevent an observed problem of deep-ocean cells developing extraordinary temperatures/salinities (< -10°!) when partial-cell topography prevents lateral flow
 - Limiting everywhere in bottom layer would diffuse stratified flow near a sloping ocean bottom
- In progress question: whether limiting is necessary for all fields (current implementation) or tracers only

Trajectories

- Interpolation is half the problem
- Evaluating $f(\vec{x}^D)$ requires some way of specifying the departure points
- Lagrangian equation of motion: $\frac{D\vec{x}}{Dt} = \vec{u}(\vec{x}, t)$
- Want consistency with leapfrog timestepping
 - Freeze the flow, so RHS is $\vec{v}(\vec{x}, t_n)$ based on "now" timestep
 - Time-centered approximation
- Still face an iterative problem to solve for departure points
- Traditional approach: trapezoidal rule
- $\vec{X}^D \approx \vec{X}^A \frac{\Delta t}{2} (\vec{u}^N(X) + \vec{u}^B(\vec{X}^D))$

The boundary problem

- Trapezoidal rule has a problem near lateral boundaries
- Trajectories must never cross boundaries no from-land advection
 - Not guaranteed by trapezoidal calculation of trajectories
 - No robust way to fix this, e.g. with velocity extrapolation
 - Special case of Lipschitz trajectory-crossing criterion
- Solution: approximate the velocity field, but integrate *exactly* in time

Exponential trajectories

- \bullet $\frac{d\vec{x}}{dt} = \vec{u}(\vec{x})$
- Analytic solution exists if \vec{u} varies linearly
- Linearly-varying field can be constructed from two measurements
 - We have two measurements: \vec{u}^A and \vec{u} at a candidate departure point
 - Works perfectly inside trajectory iteration
- Physical intuition: fluid parcel arrives at \vec{x}^A tangent to \vec{u}^A , defining a rotated coordinate axis

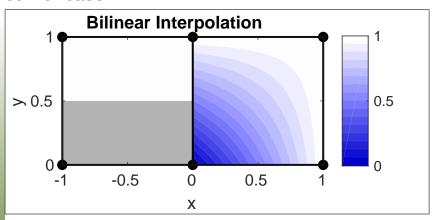
$$\bullet \ \vec{u} \approx \vec{u}^A + (\vec{u}^D - \vec{u}^A) \frac{(\vec{x} - \vec{x}^A) \cdot \vec{u}^A}{(\vec{x}^D - \vec{x}^A) \cdot \vec{u}^A}$$

- Analytically solvable, with solution in terms of exponentials
- Speed optimization: trilinear interpolation to find \vec{u}^D in trajectory calculations

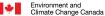
A corner case

- Bilinear interpolation of velocities breaks at lateral boundary corners
- Product of grid staggering:
 - The full tracer-cell is either water or land.
 - Velocity points are staggered by ½ cell
 - From perspective of velocity points, boundary can be $\frac{1}{2}$ water, $\frac{1}{2}$ land.
- Bilinear interpolation breaks no normal-flow boundary condition. causes discontinuities at cell edges
 - Fictitious normal flow: trajectories try to converge inside boundary
 - Large cell-edge discontinuities: poor convergence of iteration
- Incorporate corner into interpolation with blended solution:
 - Bilinear interpolation: good away from the wall
 - Singularity solution (corner function): good near the wall, with angle dependence

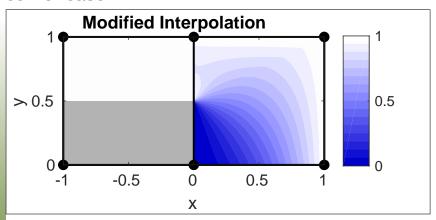
A corner case



 Bilinear interpolation of velocity: boundary inconsistency and discontinuities at edges



A corner case

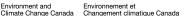


Modified interpolation: boundary consistency and weaker discontinuities

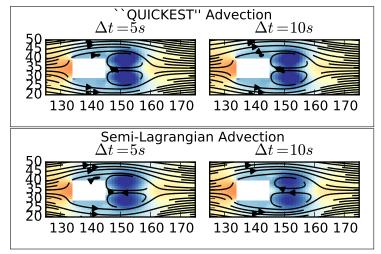
- Difficult to look at time-stepping stability in isolation
- Full ocean mixes different modes:
 - Surface wave modes
 - Baroclinic internal waves
 - Ice processes
 - Explicit lateral diffusion
 - Advection the only change here
- Look at a simpler, theoretical test case: isothermal flow past a box
- Primarily test of stability for momentum advection; other influences negligible

Problem setup

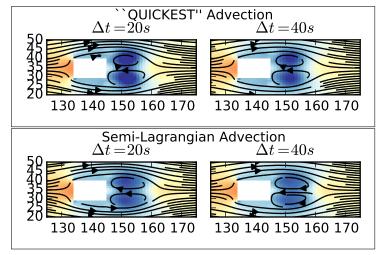
- Domain:
 - $280 \times 70 \times 3$ grid, nearly two-dimensional
 - $\Delta x = \Delta y = 5$ m, 30m "ocean" depth
 - 10×10 box (50×50 m) masked in center of domain
 - Initial and far-field flow of $\|\vec{v}\| = 3$ cm/s
 - Run to final time of 8000s
- Control: traditional advection of momentum
 - Flux-form advection operator with QUICKEST scheme (best-behaving of NEMO advection schemes)
 - Slope limited, so no explicit diffusion of momentum
 - Implicit, linear free surface
- Semi-Lagrangian advection:
 - Semi-Lagrangian advection of momentum to u and v points
 - w unmodified, computed via hydrostatic approximation
- Flow sets up recirculation cells behind the box, over long time would develop a Von Karman vortex street



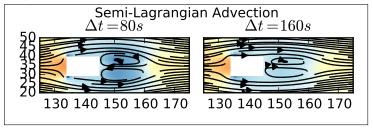
Results



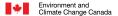
Results



Long-timestep results



- Control run unstable with $\Delta t = 80$ s, semi-Lagrangian stable to $\Delta t = 160$ s
- Steady-state Courant number > 1, higher with initial transients
- Flow strongly accelerated near leading edge of box, handled sensibly (if diffusively) with semi-Lagrangian method



NEMO 3.1 runs

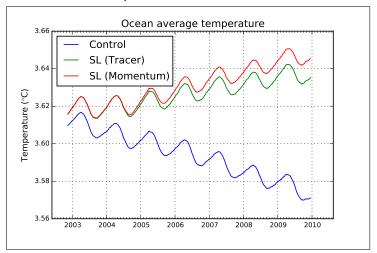
- Method initially implemented in NEMO 3.1 (based on CMC coupled forecast configuration)
- 10-year free runs, initialized October 1, 2001 with ocean at rest
- Atmospheric forcing given by 0.25° global reforecast (uncoupled)
- ORCA025 grid, CICEv4 ice modeling, 50 vertical levels
 - Implicit, linear free surface
- Objectives proof of concept
 - Test for any conservation issues, especially for tracers
 - Start performance measurements
 - Find bugs in specification or implementation
 - Examine any qualitative differences in output

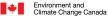
NEMO 3.1 runs

Three cases

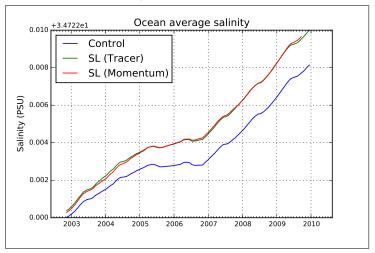
- Control:
 - TVD advection of temperature and salinity
 - EEN (Energy and Enstrophy Conserving) vector-form advection of velocities
 - Lateral, iso-neutral Laplacian diffusion of 300m²/s for tracers
 - −3 · 10¹¹m⁴/s horizontal Bilaplacian diffusion of momentum
 - 600s timestep (limited by strong ice/ocean drag coupling)
- Semi-Lagrangian tracer:
 - Semi-Lagrangian advection of only tracers
 - Zero explicit diffusion of tracers
- Fully semi-Lagrangian:
 - Also semi-Lagrangian advection of momentum
 - 900s timestep (longer caused difficulties in ice dynamics)

Conservation – temperature



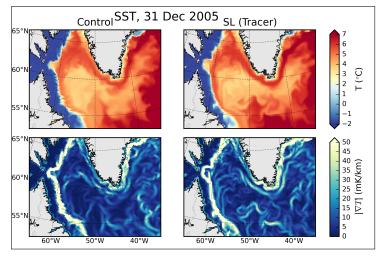


Conservation – salinity



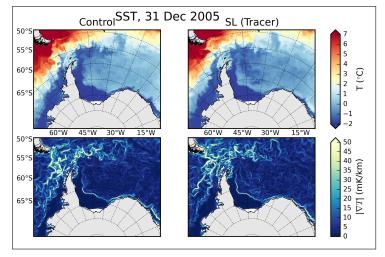
Qualitative results

Labrador Sea

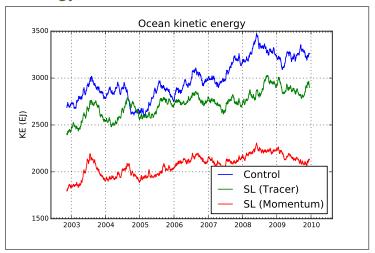


Qualitative results

Weddell Sea



Kinetic energy



Conclusions

- Semi-Lagrangian advection provides reasonable conservation of temperature and salinity, despite no explicit guarantee
 - Good conservation within layers, not just globally
 - Please be careful before trying this in very long-running climate simulations
- The method is stable without explicit diffusion for tracers
 - Potential for improvements in effective resolution (needs further analysis)
- Semi-Lagrangian advection of momentum has a surprisingly large effect on energy budget
 - Focus of ongoing work in NEMO 3.6
- Still a significant performance penalty, about 1hr/5d compared to 30min/5d – but room to optimize
- More detail recently published in GMD:
 - Development of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1)

Conclusions & Future Work

- Semi-Lagrangian advection in NEMO is generally successful
 - Meets major goal of allowing a longer timestep
 - Does not cause large conservation errors
 - Optimistic signs for reducing salinity/temperature diffusion
- Goal: implementation in the forecast setting
 - Coupled global forecast similar to this code-base; also coupled ensembles
 - Regional models needs extension to allow for tides (variable vertical grid)
 - Comparison with ALE coordinates
- Contribution back to NEMO trunk
 - "Just another advection scheme" design
 - May need tweaks for RK3 timestepping

