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Introduction & Motivation

Canadian Meteorological Centre runs a number of coupled
atmosphere/ocean forecasting systems
Resolutions increasing with time

Atmospheric system moved from 25 to 15km resolution (1/4◦

ocean)
Coupled ensembles in the works

Coupled forecasting systems are expensive
Would help if we could increase the coupled timestep
GEM (atmospheric model) already has semi-Lagrangian
advection, why not try this in NEMO also?

Objective: to develop a semi-Lagrangian advection scheme for
NEMO that allows us to increase the timestep in operational
configurations

. . . while retaining compatibility with ongoing NEMO development

. . . and while maintaining or improving accuracy
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Semi-Lagrangian challenges in NEMO
Grid:

Z-level grid (in coupled forecasting system) with partial cells at
the ocean-bottom layer
Non-uniform resolutions, with grid stretching in both horizontal
and vertical directions
Staggering of momentum and tracer points

Boundaries:
Free surface, bottom, and lateral boundaries
Interactions between lateral boundaries and grid staggering

Math:
NEMO (currently) structured around leapfrog timestepping
Expects advection to be just one of many forcings
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ORCA grid
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ORCA grid

100°W 80°W 60°W
55°N

60°N

65°N

ORCA025 Grid Size

3

6

9

12

15

G
ri

d
 S

p
a
ci

n
g
 (

km
)

“Tripolar” ORCA grid at nominal 1
4
◦

resolution

Page 6 – 21 October 2020



Semi-Lagrangian time-stepping
Df
Dt

+ g = 0

D~x
Dt

= ~u

Continuous, Lagrangian representation following the flow ( D
Dt )

Fluid parcels (~x) definitionally follow the local velocity (~u).

f A = f D − ∆t
2 (gA + gD)

~xA = ~xD + ∆t
2 (~uA + ~uD)

Fluid properties at arrival point (~xA) governed by departure-point
f D and forcing over the trajectory
Arrival/departure points determined by local velocities→ implicit
relationship to solve
Semi-Lagrangian takes ~xA = ~x ref as the grid & solves for xD

Requires off-grid interpolation at each timestep
Finite difference framing of equations
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Leapfrog in NEMO
∂f
∂t

= g

NEMO takes an Eulerian, finite-volume view of flow
Fluid properties always expressed over static (z-coordinate!)
locations, but forcing G includes advective fluxes

f A

2∆t
=

f B

2∆t
+ gN

Semi-discretized via leapfrog method
Properties “after” (·)A are governed by properties “before” (·)B

and forcing “now” (·)N

Explicit timestepping, no need for iteration
How does a semi-Lagrangian method fit in this framework?

Split the advection operator and match the product
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Semi-Lagrangian leapfrog
Consider tracer flow with only advection:

Tracers conserved following a fluid parcel

(Semi-)Lagrangian:
Df
Dt

= 0

Define arrival and departure points
Take arrival at “after” time-level, departure at “before”

Eulerian:
∂f
∂t

+ ~u · ∇f = 0

Discretize with “after”, “before”, and “now” levels
Solve for “after” tracer
Define the (trend) term that NEMO needs

Equate: (trend) =
1

2∆t
(f D − f B)

Semi-Lagrangian advection gives a time-trend that looks just
like any other advective process
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Related questions & answers
Where did the “now” fields go?

f n genuinely disappears
~un is defines trajectories – effectively a frozen, time-centered flow

What about other forcing?
Preserve NEMO’s computation of all non-advection terms
Effectively operator splitting – no interaction between
semi-Lagrangian advection and other forcing terms

What about conservation?
Classic advection routines discretize with finite-volume form,
conserving tracers following (incompressible) flow
Potential for non-conservation via interpolation –
semi-Lagrangian implicitly uses a finite-difference framework

What about velocity?
Velocity components are not left unchanged following motion
. . . but NEMO has separate forcing for Coriolis forces and metric
terms
Semi-Lagrangian advection replaces flux form momentum
advection schemes
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Interpolation

Key problem: compute f D, off-grid interpolation of “before” fields
Tradeoff between interpolation error and stencil
size/computational work

Three-dimensional interpolation
4× 4× 4 stencil can exactly reproduce cubic polynomials

Split interpolation by grid dimension, and apply repeated 1D
interpolation schemes

Interpolate first in vertical, then in horizontal
Better compatibility with z-level coordinate system and partial
cells

Base interpolation on cubic Hermite splines
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Cubic Hermite splines
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Vertical interpolation

Take ~xD = (xd , yd , zd )

Vertical interpolation finds F (xi , yj , zd ), for xi , yj at grid points
inside 4× 4 stencil
Also masks points inside land boundary
Vertical interpolation needs derivative continuity – 4-point stencil
has discontinuous derivatives at grid points
Schematic: oscillatory motion

Fluid parcel goes down by ε, f (xi , yj , zk ) decreases by εF−z
Fluid parcel goes up by ε, f (xi , yj , zk ) increases by εF +

z
Net drift proportional to the difference in one-sided derivatives,
acts like vertical diffusion

Solution: use 3-point central stencil to precompute fz
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Horizontal interpolation

After vertical interpolation: we have F (xi , yj , zd ) and want
F (xd , yd , zd )

Repeat dimension splitting: interpolate in 1D to F (xd , yj , zd ),
then F (xd , yd , zd )

Horizontal flow is less oscillatory, more driven by mean currents
and long-lived eddies
Use more accurate, one-sided stencils for endpoint derivatives

Full fit of 3rd-order polynomial to 4 points
Minimizes numerical diffusion

Further approximation: interpolate on grid-index basis
Avoids complications from horizontal coordinate transformations
Justified because grid changes slowly over the horizontal
interpolation stencil

Boundaries (horizontal and vertical) implemented by symmetry
conditions
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Limiting

So far, interpolation has been defined without limiting
Most accurate specification, but allows for new minima/maxima
Undesirable, and early testing showed potential for instability
with tracer overshoots near lateral boundaries
Method implements weak limiting:
Horizontal:

If f (0) is a local minima, then f ′(0)← min(0, f ′(0))
If f (0) is a local maxima, then f ′(0)← max(0, f ′(0))
Symmetric conditions on f ′(1)

Overshoots still possible in the middle of the interval, but these
do not appear to cause problems
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Vertical limiting

Limiting everywhere is far too diffusive in the vertical direction
Vertical interpolation is not limited, save near boundaries
Limiting called for near partial cells, somewhat ad hoc:

If (xi , yj , zd ) corresponds to a partial cell with thickness > 175%
of its thinnest neighbour, strictly limit vertical interpolation to
forbid an overshoot
Helps prevent an observed problem of deep-ocean cells
developing extraordinary temperatures/salinities (< −10◦!) when
partial-cell topography prevents lateral flow
Limiting everywhere in bottom layer would diffuse stratified flow
near a sloping ocean bottom

In progress question: whether limiting is necessary for all fields
(current implementation) or tracers only
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Trajectories

Interpolation is half the problem
Evaluating f (~xD) requires some way of specifying the departure
points
Lagrangian equation of motion: D~x

Dt = ~u(~x , t)
Want consistency with leapfrog timestepping

Freeze the flow, so RHS is ~v(~x , tn) based on “now” timestep
Time-centered approximation

Still face an iterative problem to solve for departure points
Traditional approach: trapezoidal rule
~xD ≈ ~xA − ∆t

2 (~uN(x) + ~uB(~xD))
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The boundary problem

Trapezoidal rule has a problem near lateral boundaries
Trajectories must never cross boundaries – no from-land
advection

Not guaranteed by trapezoidal calculation of trajectories
No robust way to fix this, e.g. with velocity extrapolation
Special case of Lipschitz trajectory-crossing criterion

Solution: approximate the velocity field, but integrate exactly in
time
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Exponential trajectories
d~x
dt = ~u(~x)

Analytic solution exists if ~u varies linearly
Linearly-varying field can be constructed from two
measurements

We have two measurements: ~uA and ~u at a candidate departure
point
Works perfectly inside trajectory iteration

Physical intuition: fluid parcel arrives at ~xA tangent to ~uA,
defining a rotated coordinate axis

~u ≈ ~uA + (~uD − ~uA)
(~x − ~xA) · ~uA

(~xD − ~xA) · ~uA

Analytically solvable, with solution in terms of exponentials
Speed optimization: trilinear interpolation to find ~uD in trajectory
calculations
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A corner case

Bilinear interpolation of velocities breaks at lateral boundary
corners
Product of grid staggering:

The full tracer-cell is either water or land
Velocity points are staggered by 1

2 cell
From perspective of velocity points, boundary can be 1

2 water, 1
2

land.
Bilinear interpolation breaks no normal-flow boundary condition,
causes discontinuities at cell edges

Fictitious normal flow: trajectories try to converge inside
boundary
Large cell-edge discontinuities: poor convergence of iteration

Incorporate corner into interpolation with blended solution:
Bilinear interpolation: good away from the wall
Singularity solution (corner function): good near the wall, with
angle dependence
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A corner case
Bilinear Interpolation
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A corner case
Modified Interpolation
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Flow past a box

Difficult to look at time-stepping stability in isolation
Full ocean mixes different modes:

Surface wave modes
Baroclinic internal waves
Ice processes
Explicit lateral diffusion
Advection – the only change here

Look at a simpler, theoretical test case: isothermal flow past a
box
Primarily test of stability for momentum advection; other
influences negligible
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Flow past a box
Problem setup

Domain:
280× 70× 3 grid, nearly two-dimensional
∆x = ∆y = 5m, 30m “ocean” depth
10× 10 box (50× 50m) masked in center of domain
Initial and far-field flow of ‖~v‖ = 3cm/s
Run to final time of 8000s

Control: traditional advection of momentum
Flux-form advection operator with QUICKEST scheme
(best-behaving of NEMO advection schemes)
Slope limited, so no explicit diffusion of momentum
Implicit, linear free surface

Semi-Lagrangian advection:
Semi-Lagrangian advection of momentum to u and v points
w unmodified, computed via hydrostatic approximation

Flow sets up recirculation cells behind the box, over long time
would develop a Von Karman vortex street
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Flow past a box
Results
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Flow past a box
Results
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Flow past a box
Long-timestep results
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Control run unstable with ∆t = 80s,
semi-Lagrangian stable to ∆t = 160s
Steady-state Courant number > 1, higher with initial transients
Flow strongly accelerated near leading edge of box, handled
sensibly (if diffusively) with semi-Lagrangian method
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NEMO 3.1 runs

Method initially implemented in NEMO 3.1 (based on CMC
coupled forecast configuration)
10-year free runs, initialized October 1, 2001 with ocean at rest
Atmospheric forcing given by 0.25◦ global reforecast
(uncoupled)
ORCA025 grid, CICEv4 ice modeling, 50 vertical levels

Implicit, linear free surface
Objectives – proof of concept

Test for any conservation issues, especially for tracers
Start performance measurements
Find bugs in specification or implementation
Examine any qualitative differences in output
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NEMO 3.1 runs
Three cases

Control:
TVD advection of temperature and salinity
EEN (Energy and Enstrophy Conserving) vector-form advection
of velocities
Lateral, iso-neutral Laplacian diffusion of 300m2/s for tracers
−3 · 1011m4/s horizontal Bilaplacian diffusion of momentum
600s timestep (limited by strong ice/ocean drag coupling)

Semi-Lagrangian tracer:
Semi-Lagrangian advection of only tracers
Zero explicit diffusion of tracers

Fully semi-Lagrangian:
Also semi-Lagrangian advection of momentum
900s timestep (longer caused difficulties in ice dynamics)
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Conservation – temperature

2003 2004 2005 2006 2007 2008 2009 2010
3.56

3.58

3.60

3.62

3.64

3.66

T
e
m

p
e
ra

tu
re

 (
°C

)

Ocean average temperature

Control

SL (Tracer)

SL (Momentum)

Page 30 – 21 October 2020



Conservation – salinity
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Qualitative results
Labrador Sea
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Qualitative results
Weddell Sea
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Kinetic energy
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Conclusions
Semi-Lagrangian advection provides reasonable conservation
of temperature and salinity, despite no explicit guarantee

Good conservation within layers, not just globally
Please be careful before trying this in very long-running climate
simulations

The method is stable without explicit diffusion for tracers
Potential for improvements in effective resolution (needs further
analysis)

Semi-Lagrangian advection of momentum has a surprisingly
large effect on energy budget

Focus of ongoing work in NEMO 3.6

Still a significant performance penalty, about 1hr/5d compared
to 30min/5d – but room to optimize
More detail recently published in GMD:

Development of a semi-Lagrangian advection scheme for the
NEMO ocean model (3.1)
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Conclusions & Future Work
Semi-Lagrangian advection in NEMO is generally successful

Meets major goal of allowing a longer timestep
Does not cause large conservation errors
Optimistic signs for reducing salinity/temperature diffusion

Goal: implementation in the forecast setting
Coupled global forecast – similar to this code-base; also coupled
ensembles
Regional models – needs extension to allow for tides (variable
vertical grid)
Comparison with ALE coordinates

Contribution back to NEMO trunk
“Just another advection scheme” design
May need tweaks for RK3 timestepping
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