
Towards semi-Lagrangian advection in
NEMO

Christopher Subich, Pierre Pellerin,
Greg Smith, Frederic Dupont

Christopher.Subich@canada.ca

21 October 2020

Outline
1 Introduction

Motivation
ORCA ocean grid
Timestepping

2 Interpolation
Vertical interpolation
Horizontal interpolation
Limiting

3 Trajectories
Boundaries
Corners

4 Results
Flow past a box
NEMO 3.1 free runs

5 Future work
Page 2 – 21 October 2020

Introduction & Motivation

Canadian Meteorological Centre runs a number of coupled
atmosphere/ocean forecasting systems
Resolutions increasing with time

Atmospheric system moved from 25 to 15km resolution (1/4◦

ocean)
Coupled ensembles in the works

Coupled forecasting systems are expensive
Would help if we could increase the coupled timestep
GEM (atmospheric model) already has semi-Lagrangian
advection, why not try this in NEMO also?

Objective: to develop a semi-Lagrangian advection scheme for
NEMO that allows us to increase the timestep in operational
configurations

. . . while retaining compatibility with ongoing NEMO development

. . . and while maintaining or improving accuracy

Page 3 – 21 October 2020

Semi-Lagrangian challenges in NEMO
Grid:

Z-level grid (in coupled forecasting system) with partial cells at
the ocean-bottom layer
Non-uniform resolutions, with grid stretching in both horizontal
and vertical directions
Staggering of momentum and tracer points

Boundaries:
Free surface, bottom, and lateral boundaries
Interactions between lateral boundaries and grid staggering

Math:
NEMO (currently) structured around leapfrog timestepping
Expects advection to be just one of many forcings

Page 4 – 21 October 2020

ORCA grid

120°W 60°W 0° 60°E 120°E

60°S

30°S

0°

30°N

60°N

ORCA025 Grid Size

3

5

10

15

20

25

28

G
ri

d
 S

p
a
ci

n
g
 (

km
)

“Tripolar” ORCA grid at nominal 1
4
◦

resolution

Page 5 – 21 October 2020

ORCA grid

100°W 80°W 60°W
55°N

60°N

65°N

ORCA025 Grid Size

3

6

9

12

15

G
ri

d
 S

p
a
ci

n
g
 (

km
)

“Tripolar” ORCA grid at nominal 1
4
◦

resolution

Page 6 – 21 October 2020

Semi-Lagrangian time-stepping
Df
Dt

+ g = 0

D~x
Dt

= ~u

Continuous, Lagrangian representation following the flow (D
Dt)

Fluid parcels (~x) definitionally follow the local velocity (~u).

f A = f D − ∆t
2 (gA + gD)

~xA = ~xD + ∆t
2 (~uA + ~uD)

Fluid properties at arrival point (~xA) governed by departure-point
f D and forcing over the trajectory
Arrival/departure points determined by local velocities→ implicit
relationship to solve
Semi-Lagrangian takes ~xA = ~x ref as the grid & solves for xD

Requires off-grid interpolation at each timestep
Finite difference framing of equations

Page 7 – 21 October 2020

Leapfrog in NEMO
∂f
∂t

= g

NEMO takes an Eulerian, finite-volume view of flow
Fluid properties always expressed over static (z-coordinate!)
locations, but forcing G includes advective fluxes

f A

2∆t
=

f B

2∆t
+ gN

Semi-discretized via leapfrog method
Properties “after” (·)A are governed by properties “before” (·)B

and forcing “now” (·)N

Explicit timestepping, no need for iteration
How does a semi-Lagrangian method fit in this framework?

Split the advection operator and match the product

Page 8 – 21 October 2020

Semi-Lagrangian leapfrog
Consider tracer flow with only advection:

Tracers conserved following a fluid parcel

(Semi-)Lagrangian:
Df
Dt

= 0

Define arrival and departure points
Take arrival at “after” time-level, departure at “before”

Eulerian:
∂f
∂t

+ ~u · ∇f = 0

Discretize with “after”, “before”, and “now” levels
Solve for “after” tracer
Define the (trend) term that NEMO needs

Equate: (trend) =
1

2∆t
(f D − f B)

Semi-Lagrangian advection gives a time-trend that looks just
like any other advective process

Page 9 – 21 October 2020

Semi-Lagrangian leapfrog
Consider tracer flow with only advection:

Tracers conserved following a fluid parcel

(Semi-)Lagrangian: f A = f D

Define arrival and departure points
Take arrival at “after” time-level, departure at “before”

Eulerian:
f A − f B

2∆t
+ ~uN · ∇f N = 0

Discretize with “after”, “before”, and “now” levels
Solve for “after” tracer
Define the (trend) term that NEMO needs

Equate: (trend) =
1

2∆t
(f D − f B)

Semi-Lagrangian advection gives a time-trend that looks just
like any other advective process

Page 9 – 21 October 2020

Semi-Lagrangian leapfrog
Consider tracer flow with only advection:

Tracers conserved following a fluid parcel

(Semi-)Lagrangian: f A = f D

Define arrival and departure points
Take arrival at “after” time-level, departure at “before”

Eulerian: f A = f B − 2∆t(~uN · ∇f N)

Discretize with “after”, “before”, and “now” levels
Solve for “after” tracer
Define the (trend) term that NEMO needs

Equate: (trend) =
1

2∆t
(f D − f B)

Semi-Lagrangian advection gives a time-trend that looks just
like any other advective process

Page 9 – 21 October 2020

Semi-Lagrangian leapfrog
Consider tracer flow with only advection:

Tracers conserved following a fluid parcel

(Semi-)Lagrangian: f A = f D

Define arrival and departure points
Take arrival at “after” time-level, departure at “before”

Eulerian: f A = f B + 2∆t(trend)

Discretize with “after”, “before”, and “now” levels
Solve for “after” tracer
Define the (trend) term that NEMO needs

Equate: (trend) =
1

2∆t
(f D − f B)

Semi-Lagrangian advection gives a time-trend that looks just
like any other advective process

Page 9 – 21 October 2020

Semi-Lagrangian leapfrog
Consider tracer flow with only advection:

Tracers conserved following a fluid parcel

(Semi-)Lagrangian: f A = f D

Define arrival and departure points
Take arrival at “after” time-level, departure at “before”

Eulerian: f A = f B + 2∆t(trend)

Discretize with “after”, “before”, and “now” levels
Solve for “after” tracer
Define the (trend) term that NEMO needs

Equate: (trend) =
1

2∆t
(f D − f B)

Semi-Lagrangian advection gives a time-trend that looks just
like any other advective process

Page 9 – 21 October 2020

Related questions & answers
Where did the “now” fields go?

f n genuinely disappears
~un is defines trajectories – effectively a frozen, time-centered flow

What about other forcing?
Preserve NEMO’s computation of all non-advection terms
Effectively operator splitting – no interaction between
semi-Lagrangian advection and other forcing terms

What about conservation?
Classic advection routines discretize with finite-volume form,
conserving tracers following (incompressible) flow
Potential for non-conservation via interpolation –
semi-Lagrangian implicitly uses a finite-difference framework

What about velocity?
Velocity components are not left unchanged following motion
. . . but NEMO has separate forcing for Coriolis forces and metric
terms
Semi-Lagrangian advection replaces flux form momentum
advection schemes

Page 10 – 21 October 2020

Interpolation

Key problem: compute f D, off-grid interpolation of “before” fields
Tradeoff between interpolation error and stencil
size/computational work

Three-dimensional interpolation
4× 4× 4 stencil can exactly reproduce cubic polynomials

Split interpolation by grid dimension, and apply repeated 1D
interpolation schemes

Interpolate first in vertical, then in horizontal
Better compatibility with z-level coordinate system and partial
cells

Base interpolation on cubic Hermite splines

Page 11 – 21 October 2020

Cubic Hermite splines

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

Cubic Hermite spline basis

f(0)=1 f(1)=1

f
x
(0)=1

f
x
(1)=1

Basis functions have f = ±1 or fx = ±1 at the endpoints
4-point finite difference stencils for derivatives reproduce
Lagrange interpolation

Page 12 – 21 October 2020

Vertical interpolation

Take ~xD = (xd , yd , zd)

Vertical interpolation finds F (xi , yj , zd), for xi , yj at grid points
inside 4× 4 stencil
Also masks points inside land boundary
Vertical interpolation needs derivative continuity – 4-point stencil
has discontinuous derivatives at grid points
Schematic: oscillatory motion

Fluid parcel goes down by ε, f (xi , yj , zk) decreases by εF−z
Fluid parcel goes up by ε, f (xi , yj , zk) increases by εF +

z
Net drift proportional to the difference in one-sided derivatives,
acts like vertical diffusion

Solution: use 3-point central stencil to precompute fz

Page 13 – 21 October 2020

Horizontal interpolation

After vertical interpolation: we have F (xi , yj , zd) and want
F (xd , yd , zd)

Repeat dimension splitting: interpolate in 1D to F (xd , yj , zd),
then F (xd , yd , zd)

Horizontal flow is less oscillatory, more driven by mean currents
and long-lived eddies
Use more accurate, one-sided stencils for endpoint derivatives

Full fit of 3rd-order polynomial to 4 points
Minimizes numerical diffusion

Further approximation: interpolate on grid-index basis
Avoids complications from horizontal coordinate transformations
Justified because grid changes slowly over the horizontal
interpolation stencil

Boundaries (horizontal and vertical) implemented by symmetry
conditions

Page 14 – 21 October 2020

Limiting

So far, interpolation has been defined without limiting
Most accurate specification, but allows for new minima/maxima
Undesirable, and early testing showed potential for instability
with tracer overshoots near lateral boundaries
Method implements weak limiting:
Horizontal:

If f (0) is a local minima, then f ′(0)← min(0, f ′(0))
If f (0) is a local maxima, then f ′(0)← max(0, f ′(0))
Symmetric conditions on f ′(1)

Overshoots still possible in the middle of the interval, but these
do not appear to cause problems

Page 15 – 21 October 2020

Vertical limiting

Limiting everywhere is far too diffusive in the vertical direction
Vertical interpolation is not limited, save near boundaries
Limiting called for near partial cells, somewhat ad hoc:

If (xi , yj , zd) corresponds to a partial cell with thickness > 175%
of its thinnest neighbour, strictly limit vertical interpolation to
forbid an overshoot
Helps prevent an observed problem of deep-ocean cells
developing extraordinary temperatures/salinities (< −10◦!) when
partial-cell topography prevents lateral flow
Limiting everywhere in bottom layer would diffuse stratified flow
near a sloping ocean bottom

In progress question: whether limiting is necessary for all fields
(current implementation) or tracers only

Page 16 – 21 October 2020

Trajectories

Interpolation is half the problem
Evaluating f (~xD) requires some way of specifying the departure
points
Lagrangian equation of motion: D~x

Dt = ~u(~x , t)
Want consistency with leapfrog timestepping

Freeze the flow, so RHS is ~v(~x , tn) based on “now” timestep
Time-centered approximation

Still face an iterative problem to solve for departure points
Traditional approach: trapezoidal rule
~xD ≈ ~xA − ∆t

2 (~uN(x) + ~uB(~xD))

Page 17 – 21 October 2020

The boundary problem

Trapezoidal rule has a problem near lateral boundaries
Trajectories must never cross boundaries – no from-land
advection

Not guaranteed by trapezoidal calculation of trajectories
No robust way to fix this, e.g. with velocity extrapolation
Special case of Lipschitz trajectory-crossing criterion

Solution: approximate the velocity field, but integrate exactly in
time

Page 18 – 21 October 2020

Exponential trajectories
d~x
dt = ~u(~x)

Analytic solution exists if ~u varies linearly
Linearly-varying field can be constructed from two
measurements

We have two measurements: ~uA and ~u at a candidate departure
point
Works perfectly inside trajectory iteration

Physical intuition: fluid parcel arrives at ~xA tangent to ~uA,
defining a rotated coordinate axis

~u ≈ ~uA + (~uD − ~uA)
(~x − ~xA) · ~uA

(~xD − ~xA) · ~uA

Analytically solvable, with solution in terms of exponentials
Speed optimization: trilinear interpolation to find ~uD in trajectory
calculations

Page 19 – 21 October 2020

A corner case

Bilinear interpolation of velocities breaks at lateral boundary
corners
Product of grid staggering:

The full tracer-cell is either water or land
Velocity points are staggered by 1

2 cell
From perspective of velocity points, boundary can be 1

2 water, 1
2

land.
Bilinear interpolation breaks no normal-flow boundary condition,
causes discontinuities at cell edges

Fictitious normal flow: trajectories try to converge inside
boundary
Large cell-edge discontinuities: poor convergence of iteration

Incorporate corner into interpolation with blended solution:
Bilinear interpolation: good away from the wall
Singularity solution (corner function): good near the wall, with
angle dependence

Page 20 – 21 October 2020

A corner case
Bilinear Interpolation

-1 -0.5 0 0.5 1

x

0

0.5

1
y

0

0.5

1

Bilinear interpolation of velocity: boundary inconsistency and
discontinuities at edges

Page 21 – 21 October 2020

A corner case
Modified Interpolation

-1 -0.5 0 0.5 1

x

0

0.5

1
y

0

0.5

1

Modified interpolation: boundary consistency and weaker
discontinuities

Page 22 – 21 October 2020

Flow past a box

Difficult to look at time-stepping stability in isolation
Full ocean mixes different modes:

Surface wave modes
Baroclinic internal waves
Ice processes
Explicit lateral diffusion
Advection – the only change here

Look at a simpler, theoretical test case: isothermal flow past a
box
Primarily test of stability for momentum advection; other
influences negligible

Page 23 – 21 October 2020

Flow past a box
Problem setup

Domain:
280× 70× 3 grid, nearly two-dimensional
∆x = ∆y = 5m, 30m “ocean” depth
10× 10 box (50× 50m) masked in center of domain
Initial and far-field flow of ‖~v‖ = 3cm/s
Run to final time of 8000s

Control: traditional advection of momentum
Flux-form advection operator with QUICKEST scheme
(best-behaving of NEMO advection schemes)
Slope limited, so no explicit diffusion of momentum
Implicit, linear free surface

Semi-Lagrangian advection:
Semi-Lagrangian advection of momentum to u and v points
w unmodified, computed via hydrostatic approximation

Flow sets up recirculation cells behind the box, over long time
would develop a Von Karman vortex street

Page 24 – 21 October 2020

Flow past a box
Results

130 140 150 160 170
20
25
30
35
40
45
50

∆t=5s

130 140 150 160 170

∆t=10s
``QUICKEST'' Advection

130 140 150 160 170
20
25
30
35
40
45
50

∆t=5s

130 140 150 160 170

∆t=10s
Semi-Lagrangian Advection

Page 25 – 21 October 2020

Flow past a box
Results

130 140 150 160 170
20
25
30
35
40
45
50

∆t=20s

130 140 150 160 170

∆t=40s
``QUICKEST'' Advection

130 140 150 160 170
20
25
30
35
40
45
50

∆t=20s

130 140 150 160 170

∆t=40s
Semi-Lagrangian Advection

Page 26 – 21 October 2020

Flow past a box
Long-timestep results

130 140 150 160 170
20
25
30
35
40
45
50

∆t=80s

130 140 150 160 170

∆t=160s
Semi-Lagrangian Advection

Control run unstable with ∆t = 80s,
semi-Lagrangian stable to ∆t = 160s
Steady-state Courant number > 1, higher with initial transients
Flow strongly accelerated near leading edge of box, handled
sensibly (if diffusively) with semi-Lagrangian method

Page 27 – 21 October 2020

NEMO 3.1 runs

Method initially implemented in NEMO 3.1 (based on CMC
coupled forecast configuration)
10-year free runs, initialized October 1, 2001 with ocean at rest
Atmospheric forcing given by 0.25◦ global reforecast
(uncoupled)
ORCA025 grid, CICEv4 ice modeling, 50 vertical levels

Implicit, linear free surface
Objectives – proof of concept

Test for any conservation issues, especially for tracers
Start performance measurements
Find bugs in specification or implementation
Examine any qualitative differences in output

Page 28 – 21 October 2020

NEMO 3.1 runs
Three cases

Control:
TVD advection of temperature and salinity
EEN (Energy and Enstrophy Conserving) vector-form advection
of velocities
Lateral, iso-neutral Laplacian diffusion of 300m2/s for tracers
−3 · 1011m4/s horizontal Bilaplacian diffusion of momentum
600s timestep (limited by strong ice/ocean drag coupling)

Semi-Lagrangian tracer:
Semi-Lagrangian advection of only tracers
Zero explicit diffusion of tracers

Fully semi-Lagrangian:
Also semi-Lagrangian advection of momentum
900s timestep (longer caused difficulties in ice dynamics)

Page 29 – 21 October 2020

Conservation – temperature

2003 2004 2005 2006 2007 2008 2009 2010
3.56

3.58

3.60

3.62

3.64

3.66

T
e
m

p
e
ra

tu
re

 (
°C

)

Ocean average temperature

Control

SL (Tracer)

SL (Momentum)

Page 30 – 21 October 2020

Conservation – salinity

2003 2004 2005 2006 2007 2008 2009 2010
0.000

0.002

0.004

0.006

0.008

0.010

S
a
lin

it
y
 (

P
S
U

)

+3.4722e1 Ocean average salinity

Control

SL (Tracer)

SL (Momentum)

Page 31 – 21 October 2020

Qualitative results
Labrador Sea

Page 32 – 21 October 2020

Qualitative results
Weddell Sea

Page 33 – 21 October 2020

Kinetic energy

2003 2004 2005 2006 2007 2008 2009 2010
1500

2000

2500

3000

3500

K
E
 (

E
J)

Ocean kinetic energy

Control

SL (Tracer)

SL (Momentum)

Page 34 – 21 October 2020

Conclusions
Semi-Lagrangian advection provides reasonable conservation
of temperature and salinity, despite no explicit guarantee

Good conservation within layers, not just globally
Please be careful before trying this in very long-running climate
simulations

The method is stable without explicit diffusion for tracers
Potential for improvements in effective resolution (needs further
analysis)

Semi-Lagrangian advection of momentum has a surprisingly
large effect on energy budget

Focus of ongoing work in NEMO 3.6

Still a significant performance penalty, about 1hr/5d compared
to 30min/5d – but room to optimize
More detail recently published in GMD:

Development of a semi-Lagrangian advection scheme for the
NEMO ocean model (3.1)

Page 35 – 21 October 2020

Conclusions & Future Work
Semi-Lagrangian advection in NEMO is generally successful

Meets major goal of allowing a longer timestep
Does not cause large conservation errors
Optimistic signs for reducing salinity/temperature diffusion

Goal: implementation in the forecast setting
Coupled global forecast – similar to this code-base; also coupled
ensembles
Regional models – needs extension to allow for tides (variable
vertical grid)
Comparison with ALE coordinates

Contribution back to NEMO trunk
“Just another advection scheme” design
May need tweaks for RK3 timestepping

Page 36 – 21 October 2020

	Introduction
	Motivation
	ORCA ocean grid
	Timestepping

	Interpolation
	Vertical interpolation
	Horizontal interpolation
	Limiting

	Trajectories
	Boundaries
	Corners

	Results
	Flow past a box
	NEMO 3.1 free runs

	Future work

