

Stock-take for NEMO kernel WG

NEMO Developers Committee January 2019

Content

- Meetings of kernel working group and of COMMODORE
- Topics discussed in strategy which ones will be covered in more detail
- Progress on main issues
- Note: what will be covered by IMMERSE will not be discussed in detail

Kernel WG meetings

- First year of Kernel WG meetings: presentations made
 - Gurvan Madec two on design of time-stepping
 - Mike Bell on approaches to calculation of HPG
 - Alex Megann summary of position on diapycnal mixing
 - Andrew Shao on a scheme for isopycnal mixing
 - Jerome Chanut –on improved representation of projection of bottom friction on the barotropic mode

COMMODORE group

- Major 3-day international meeting Sep 2018 in Paris organised by Burchard, Debreu, Klingbeil, Lemarie and Sainte-Marie
- Intention to meet biennially
- About numerical solution techniques for ocean circulation

Objectives

- share experience on model development
- share common test-cases to evaluate numerical models and emphasize merits and flaws
- share perspectives on future model evolutions on all aspects of dynamical core formulation
- establish a more systematic bridge between methods used and developed by the applied maths community and the ones used in realistic oceanic models

Topics discussed in strategy

- Vertical grid ALE coordinate
- Horizontal grid a watching brief (Chris Eldred has expertise here)
- Time-stepping schemes
 - Vertical advection schemes (partially implicit or compact & implicit)
 - Two-level schemes
- Additional issues
 - Non-hydrostatic no clear consortium need; CROCO is exploring
 - Shaved cells at lateral or bottom boundaries
 - Representation of advection of momentum (Dave Storkey poster)
 - Wetting & drying
 - Weaknesses of Lorenz grid (some work in Bell & White (2017); no clear need for any action)

Vertical grid

- Investigate performance of \tilde{z} scheme in climate model integrations
 - Jerome & Alex are doing this within Renumerate project
 - A first implementation of \tilde{z} is working in ORCA025 & ORCA0083
 - Initial analysis of 20 year simulation shows small reduction in diapycnal mix
- Design of target coordinate options no progress ?
- Choice of remapping scheme no progress ?
- Design of pressure forces analysis & proposal by Mike
- Staged adaptation of other schemes no progress ?
- Clarify approach to vanishingly thin layers (w&d & vertical advection schemes)
- Clarify likely costs and benefits
- There appear to be a lot of gaps here

Time-stepping schemes

- Gurvan and Andrew Coward are coding up ROMS vertical advection scheme (vertical advection surplus to CFL limit is implicit)
- Not sure what position is on compact, implicit vertical advection scheme (think there is a draft version in NEMO already)
- WP3 of IMMERSE will implement a 2-level time-step scheme
 - Plan to append a time-dimension to all time-dependent fields (Gurvan, Andrew, Dave) in 1st year of IMMERSE
 - Details of algorithm for 2-level schemes to be clarified in 1st year of IMMERSE
 - Analysis made of coupling between barotropic & baroclinic steps: Florian,
 Jerome, Gurvan
- This area is in relatively good shape

Advection of momentum

- Issue is should we discontinue the vector invariant form of the momentum equations
- Dave Storkey is exploring impact on bathymetric steering
- Impact on representation of moderately resolved mesoscale motions alread investigated by Bernard and others?

Wetting & drying

A version of the ROMS scheme has been introduced at version 4.0 (Enda O'Dea)

Summary

- Kernel working group and COMMODORE group were spun up in 2018
- Most issues identified in strategy are making progress
- ALE coordinates is the area with the largest gaps