NEMO Benchmark configuration

Eric Maisonnave (CERFACS)
Sébastien Masson (LOCEAN)
April-June 2018

Questions

- Is scalability bounded by extra computations, MPI communications or load imbalance?
 - Model needs to be simplified to remove ice model, IO and MPI collective calls (~light e-ORCA)
 - NEMO is instrumented to measure separately the 3 effects
- Is the scalability limit the same at 1, 0.25 and 1/12 degree?
 - 3 namelists to reproduce realistic physics of 3 resolutions
- Can the result be reproduced on various machines?

"BENCH" implementation

Starting from branch dev_r9759_HPC09_ESIWACE

svn co http://forge.ipsl.jussieu.fr/nemo/svn/NEMO/branches/2018/dev_r9759_HPC09_ESIWACE

- "quiet" e-ORCA (no risk of numerical explosion)
- 1 timer (MPI_Wtime) between 2nd and n-1 time step
 - Removes init/end (contributes to save CPU during benchmarking)
- Add MPI_Wtime before and after halo exchanges
 - Inner timing: "waiting" time (MPI comm + load imbalance)
 - Outer timing: "computation" time (spread: ~ computational load imbalance)
- Modular frequency of halo exchange call (possibility to mimic double sized halos, to avoid any communication ...)
- Identify # and size of halo exchanges to possibly replace time steping by halo exchange only

First Results

First Results

First Results

Subdomain size

Discussion

- Much (!) more results (for 1, 1/12 and 12° configs)
- Is instrumentation able to guide future improvements?
- e.g. can we evaluate potential impact of double halo?
- Where should/could we reduce lbc_lnk calls?
- Can we reproduce the results on several machines?
- Can we extend the exercise to build a strategy for IO/ice model?
- instrumented code + namelists + launching scripts + gnuplot scripts available (branch dev_r9759_HPC09_ESIWACE)