
www.metoffice.gov.uk © Crown Copyright 2021, Met Office

Tiling performance in NEMO
D. Calvert, M. Bell, M. Glover (Met Office)
S. Masson, G. Madec (IPSL)
I. Epicoco, F. Mele (CMCC)

Performance in ORCA025
• GO8 (eORCA025), NEMO4.2

- 30d runs
- Ni_0, Nj_0 = (52, 71)
- nn_hls = 2, no QCO, no loop fusion

• timing.output sections vs tile size
(“ixj”), as a fraction of time without
tiling
- lbc_lnk and iom_put added
- zdf_phy split into closure scheme (zdf_clo)

and other called subroutines

• Top ~90% of time spent in:
- Tiled code (10%)
- Untiled code (19%)
- Code that can’t be tiled (62%)

• Tiling in i is always slower

• Tiling in j has very little impact on
overall times

Performance in ORCA025
• The impact of tiling varies with code

- tra_ldf and dyn_ldf scale poorly with tile size
compared to ORCA2

- zdf_clo, zdf_phy and dyn_ldf slow down at
small tile sizes, but dyn_zdf and tra_zdf
speed up

- Some other inexpensive code (e.g. tra_qsr) is
slowed down by the tiling

• Tiling isn’t fully implemented
- The FCT scheme (tra_adv) requires nn_hls=3
- VVL will be replaced by QCO (tiled & cheaper)
- Much of the remaining code is unlikely to benefit

from the tiling (SI3 is mostly 2D)
- However, using QCO and turning off much of

this code (ICB, dia_hsb, SI3) has little impact

• There are performance issues
unrelated to the tiling
- Severe load imbalance (lbc_lnk)
- Halo data is sent to XIOS (iom_put)
- These times are reduced in more recent

versions of NEMO (by ~90s and ~400s)

Performance in ORCA025

• Times as a fraction of the time with nn_hls = 1 and no tiling (“Reference”)

• Tiling has to work against the cost of nn_hls = 2

Halo calculations & tiling
• For a 2D loop over an MPI domain with internal size (X, Y), halo width H and tile size (x, y), the total number of loop iterations N scales

as:
𝑁
𝑋𝑌

= 1 + 2 H
𝑥 + 𝑦
𝑥𝑦

+
4𝐻!

𝑥𝑦

• Local working arrays: not preserved in memory, so must calculate all points on a tile
- Calculations depend on tile and halo size

• Module / allocatable arrays: preserved in memory, so no need to repeat calculations done by other tiles (DO_?D_OVR macros)
- Calculations depend only on halo size

1 2

3 4

DO_2D(1, 1, 1, 1)
zwrk(ji,jj) = 0.

END_2D

Undefined

1 calculation

2 calculations

3 calculations

4 calculations

Remove unnecessary halo calculations

• The 4th order UBS scheme uses interp_4th_cpt from tra_adv_fct

• Removing the unnecessary halo calculations from this subroutine:
- Improves time without tiling
- Improves scaling with tile size

Replace halo calculations with lbc_lnk

• Using less CPUs per node socket increases the effective memory bandwidth per CPU
- The time penalty of cache misses is reduced; rough estimate of potential tiling impact
- Tiling in zdf_tke and zdf_gls should be able to perform better

• ZDF closures are purely 1D, but avm is needed on haloes to calculate shear (zdf_sh2) and for dyn_zdf

• Reverting to using lbc_lnk instead of halo calculations:
- Slightly improves zdf_tke scaling (30% faster vs 20%)
- Improves zdf_gls scaling (tiling no longer slows the code down)

• zdf_tke/zdf_gls times without tiling are slower/faster when including the cost of the lbc_lnk

Tiling in the k dimension
• tra_ldf & dyn_ldf scale poorly

in GO8 compared to ORCA2

• Larger domain size- more cache
misses
- 56i x 75j x 75k (GO8)
- 34i x 54j x 31k (ORCA2)

• Maff Glover’s work with a similar
configuration shows 3D tiling is
needed to realise the full potential
of tiling

• Tiling in k recovers the ORCA2
scaling (and improves on it)

• Fitting data in cache is more
important than ensuring
contiguous memory access

Maff Glover, Met Office

Summary

• Overall tiling performance is poor in an eORCA025 reference configuration (GO8)
- Time is mostly spent in code that can’t be tiled- separate issue (load imbalance, iom_put haloes)
- Tiling is not implemented everywhere- not much scope for improvement here (except FCT scheme)
- Some tiled code is underperforming- optimisation is possible

• Halo calculations reduce the performance of timestep-level tiling
- Remove unnecessary halo calculations
- Replace halo calculations with lbc_lnk calls (but which is worse for performance/scalability?)

• 2D tiling can limit performance
- Tiling in k is necessary to ensure consistent performance between configurations

