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The code

• Code
• NEMO version 4.0.2
• MPI

• Problem:
• Bench ORCA 1 like

• Traces: 
• Run @ MareNostrum, filling node (48 processes/core)
• 48, 96 and 384 processes
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Structure

Iterative structure

perturbation

384 cores Initialization
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Structure

Relative weight increase … will limit scalability 

48 cores

96 cores

384 cores



Structure
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384 cores

Too fine grain !! à hybrid



Scaling
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T(48) =465 ms

48

96

384



Hierarchical Performance Model

Efficiencies:  ~ (0,1]
Multiplicative model

FeffIPCeffIeffCompEff **=
TrfSerLB **=h
CommEff

M. Casas et al, “Automatic analysis of speedup of MPI applications”. ICS 2008.



Efficiency model
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48

96

384

Avg Useful IPC(48) =0.67 

Avg Useful Frequency(48) =2.061 GHz 



Efficiency model
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Transfer and Serialization
Transfer scaling worse

Very good IPC scaling 
à probably very bad starting value
à will not go on forever

Computation  
replication

Compensation effects
Parallel efficiency ↔ Computation scalability
Instruction scalability (replication)  ↔ IPC



Communication analysis
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MPI does not disappear …
Elapsed time for the region does not shrink

Actual 
run

Ideal 
Network

Fine granularity region 
sensitive to Interconnect 
latency and bandwidth

Transfer



• Focus on Inner fine 
grain communication 
phase
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Communication analysis



Communication analysis
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Actual 
run

Ideal 
Network

“Nominal” 
Network 

Difference à there was 
noise in the internals of 
MPI implementation

Noise in useful computation in fine grain phase



• Serialization caused 
by OS Noise
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Communication analysis

Actual run

Ideal 
Network 

Ideal Network
“Eliminating” OS noise 

Noise in useful

Transfer impact

Noise Serialization impact



Close look at noise
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In MPI

In Useful

“Preempted” time“Preemptions” 

Scattered in space and time
Both in MPI and useful Mode ~400 us

“Noise” cause ?
Cant fight noise, learn to live with it

Compared to  ~11 us 
(and less) computations

Hybrid MPI+OpenMP with relatively dynamic scheduling 
would be a way to reduce the impact of noise 



• MPI call durations 
affected & impacted by 
noise
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Close look at noise

Isend

Duration

Recv

Wait

Mode ~400 us

“Noise” cause ?

Noise within MPI
Requirement to vendor to implement noise 
toleration mechanisms within the node in
their MPI implementation



Transfer analysis
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Actual run

No Noise
Ideal

No Noise
L=2us

BW= 1GB/s

No Noise
L=2us

BW=256MB/s

No Noise
L=2us

BW=64MB/s

No Noise
L=8us

BW=1GB/s



• Pattern in fine grain communication 
phase
• Efficiency loss on 48 processes (0.66)
• Significant impact at 384

• Parallel efficiency  ~0.5
• Less overlap of computations & strong 

scaling   à better IPC
• Compensating effects
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The skew

IPC: 0.5  -- 3.5



Impact of latency and BW on the skew
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Genesis of the skew
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Genesis of the skew
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Larger number of communication of processes 
in the north domain



Genesis of the skew
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Compensate skew à Assign less load to last processes ??

Reorder communication from below and computation may “alleviate” propagation ??

North 
domains

so
ut

hw
ar

ds

East -w
est

all isends before any receive ? Just on the pole?



Overlap communication - computation?
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“Physical/algorithmic” structure
“computational” structure

Can be reordered? 
Source code reordering (irecv, wait)
tasks and dependences 

(more dynamic, adaptive, overhead?)



Reorder computation ?
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“Physical/algorithmic” structure
“computational” structure

Can be reordered?  Dependences?
Source code reordering
tasks and dependences 

(more dynamic, adaptive, overhead?)



Genesis of the skew
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North fold ?



North fold
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Substructure: 
are the two phases dependent (potential to overlap)?

North fold local exchange



Detailed MPI call sequence
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Dependences ?    
Can postpone out of critical path?

Can merge 
into one 
waitall
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Delay propagation



Detailed MPI call sequence
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Can be postponed ?

Actual compute ?

Can be advanced ?
before other isends??

Could reorder receptions to avoid 
some long receives delaying others

Irecv + waitall

Reorder MPI calls? 
Decouple isends from recvs?
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Potential of imbalance?
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Skew appear and propagates    

Simulation of much faster 
north row of processors
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Skew “disappears”

Latency still in the critical path …
… may be overlapped ?

Local communication 
not advanced ! 
à Dependence



Dependence chain
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Dependence chain?
Mostly communications?
What computation? 

Can be embedded within less processes ?

Can reorder north computations/communications ?

Can  reduce #north processes? Only one?



Computation scaling
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Yellow Instructions
“strong scaled”

Yellow IPC

Compensating effects. 
Interesting to understand individually why !

Caused by 
locality at 
L1, L2, L3 

level !



Computation Scaling
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L1 MPKI

L2 MPKI

L3 MPKI

IPC
48

96

384
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Computation Scaling
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L1 MPKI

L2 MPKI

L3 MPKI

IPC
48

96

384
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Sampled traces
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Regions with poor IPC

Very poor IPC sub regions within 
region of moderate average IPC Limited 

benefit of L3

Cache miss ratios 
“explaining” IPC



Sampled traces
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Computation behavior
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Working out of L3 in fine grain phase Node BW limit

L3 not useful elsewhere ?

48 processes

Can refactor code to improve L3 use? Blocking?

Co-design: no need of L3 ?



Computation behavior
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Synchronized BW demands.

48 processes

Sub substructure

Possibility to unsynchronize?



Comparative Computation behavior
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48 vs 384 processes
IPC - BW

Data fits in L2!

Loss of substructure?

Data fits in L3!



Comparative Computation behavior
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*Same scales for all miss ratios, same scales for all IPCs

160

48 vs 384 processes
IPC – Miss Ratios

Overall 
improvement 
in Miss ratios

2.8



Link to Source
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Solver Computational Scaling
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48

96

384

Duration Histogram Instructions Histogram

Same time scale
~same duration L

Strange  
scaling

Strange  
scaling

Poor  scaling

<~ fair burst 
duration scaling

~ poor/strange
instruction scaling

Poor  scaling



Increasing accuracy ?
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Folding SamplingAggregated Sampling



Increasing accuracy ?
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Folding Sampling

Cluster 1
Aggregated Sampling



• Merge sequence of waits for Isends to waitall
• Reorder north: advance isends postpone recs   (if possible)
• Assign less load to north fold to take internal communication out of 

the critical path   (combined with reordering of comms)
• Reduce #north processes? 

• à only one ?
• Increase granularity in solver

• Gather to single rank per node à Solve  à Scatter
• OpenMP in solver

• à Tasks with dependences between communications and computations for 
out of order execution and noise tolerance
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Recommendations

Possibility for a 

Mockup POC



• Try to improve locality à better IPC
• L3 usage: Blocking?

• Convergence of numerical method: Jacobi vs. Gauss-Seidel ?
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Recommendations
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