

Nemo analyses POP_AR_078

Jesus Labarta, Marta Garcia, Joan Vinyals (BSC)

November 4th 2020

EU H2020 Center of Excellence (CoE)

The code

- Code
 - NEMO version 4.0.2
 - MPI
- Problem:
 - Bench ORCA 1 like
- Traces:
 - Run @ MareNostrum, filling node (48 processes/core)
 - 48, 96 and 384 processes

Structure

Structure

Structure

384 cores

Scaling

96 Number of Processes

--- measured

____ ideal

48

0.0

Hierarchical Performance Model

Efficiency model

Avg Useful IPC(48) =0.67 Avg Useful Frequency(48) =2.061 GHz

Percentage(%)

Efficiency model

 Focus on Inner fine grain communication phase

Close look at noise

Hybrid MPI+OpenMP with relatively dynamic scheduling would be a way to reduce the impact of noise

"Noise" cause ? Cant fight noise, learn to live with it

Close look at noise

Transfer analysis

The skew

- Pattern in fine grain communication phase
- Efficiency loss on 48 processes (0.66)
- Significant impact at 384
 - Parallel efficiency ~0.5
 - Less overlap of computations & strong scaling → better IPC
 - Compensating effects

Impact of latency and BW on the skew

in the north domain

Compensate skew \rightarrow Assign less load to last processes ??

Reorder communication from below and computation may "alleviate" propagation ??

all isends before any receive ? Just on the pole?

Overlap communication - computation?

*** * ***

Reorder computation ?

North fold

are the two phases dependent (potential to overlap)?

Detailed MPI call sequence

Detailed MPI call sequence

Potential of imbalance?

Dependence chain

Dependence chain? Mostly communications? What computation?

Can be embedded within less processes ?

Can reorder north computations/communications ?

Can reduce #north processes? Only one?

Computation scaling

Computation Scaling

Computation Scaling

Sampled traces

End	End	End	☐ End
<pre>domvvl_mnterpol_ [domvvl_mp_dom_vvl_interpol_]</pre>	<pre>dynzdf_mdyn_zdf_ [dynzdf_mp_dyn_zdf_]</pre>	<pre>lbclnk_m3d_ptr_ [lbclnk_mp_mpp_lnk_3d_ptr_]</pre>	Lind Libclnk m., 3d ptr [lbclnk mp mpp lnk 3d ptr]
eosbn2_mp_bn2_	sshwzv_mp_wzv_	<pre>ldftra_meiv_trp_ [ldftra_mp_ldf_eiv_trp_]</pre>	traadv fadv fct [traadv fct mp tra adv fct]
<pre>zdftke_mtke_tke_ [zdftke_mp_tke_tke_]</pre>	<pre>traqsr_mtra_qsr_ [traqsr_mp_tra_qsr_]</pre>	<pre>traadv_fadv_fct_ [traadv_fct_mp_tra_adv_fct_]</pre>	<pre>traldf_ildf_iso [traldf_iso_mp_tra_ldf_iso_]</pre>
<pre> zdftke_mtke_avn_ [zdftke_mp_tke_avn_]</pre>	<pre>traadv_mtra_adv_ [traadv_mp_tra_adv_]</pre>	<pre>traadv_fnonosc_ [traadv_fct_mp_nonosc_]</pre>	<pre>trazdf_mzdf_imp_ [trazdf_mp_tra_zdf_imp_]</pre>
<pre>zdfiwm_mzdf_iwm_ [zdfiwm_mp_zdf_iwm_]</pre>			tra_nxt_vvl

Computation behavior

Computation behavior

Comparative Computation behavior

Comparative Computation behavior

*Same scales for all miss ratios, same scales for all IPCs

Link to Source

lbclnk_m.._3d_ptr_ [lbclnk_mp_mpp_lnk_3d_ptr_] domvvl_m..nterpol_ [domvvl_mp_dom_vvl_interpol_] divhor_m..div_hor_ [divhor_mp_div_hor_] eosbn2_mp_bn2_ zdftke_m..tke_tke_ [zdftke_mp_tke_tke_] zdftke_m..tke_avn_ [zdftke_mp_tke_avn_] zdfevd_m..zdf_evd_ [zdfevd_mp_zdf_evd_] zdfddm_m..zdf_ddm_ [zdfddm_mp_zdf_ddm_] zdfiwm_m..zdf_iwm_ [zdfiwm_mp_zdf_iwm_] ldfslp_m..ldf_slp_ [ldfslp_mp_ldf_slp_] domvvl_m.._sf_nxt_ [domvvl_mp_dom_vvl_sf_nxt_] dynkeg_m..dyn_keg_ [dynkeg_mp_dyn_keg_] dynzad_m..dyn_zad_ [dynzad_mp_dyn_zad_] dynvor_m..vor_een_ [dynvor_mp_vor_een_] dynldf_l..ldf_lap_ [dynldf_lap_blp_mp_dyn_ldf_lap_] dynhpg m..hpg sco [dynhpg mp hpg sco] dynspg_t.._spg_ts_ [dynspg_ts_mp_dyn_spg_ts_] dynzdf_m..dyn_zdf_ [dynzdf_mp_dyn_zdf_] sshwzv_mp_wzv_ traqsr_m..tra_qsr_ [traqsr_mp_tra_qsr_] ldftra_m..eiv_trp_ [ldftra_mp_ldf_eiv_trp_] traadv_m..tra_adv_ [traadv_mp_tra_adv_] traadv_f..adv_fct_ [traadv_fct_mp_tra_adv_fct_] traadv_f.._nonosc_ [traadv_fct_mp_nonosc_] traldf_i..ldf_iso_ [traldf_iso_mp_tra_ldf_iso_] trazdf_m..zdf_imp_ [trazdf_mp_tra_zdf_imp_] dynnxt_m..dyn_nxt_ [dynnxt_mp_dyn_nxt_] domvvl_m.._sf_swp_ [domvvl_mp_dom_vvl_sf_swp_] stpctl m..stp_ctl [stpctl mp_stp_ctl] eosbn2_mp_rab_3d_ zdfsh2_m..zdf_sh2_ [zdfsh2_mp_zdf_sh2_] tra nxt vvl eosbn2_m.._insitu_ [eosbn2_mp_eos_insitu_] eosbn2_m..itu_pot_ [eosbn2_mp_eos_insitu_pot_]

Solver Computational Scaling

Increasing accuracy ?

Increasing accuracy ?

- Merge sequence of waits for Isends to waitall
- Reorder north: advance isends postpone recs (if possible)
- Assign less load to north fold to take internal communication out of the critical path (combined with reordering of comms)
- Reduce #north processes?
 - \rightarrow only one ?
- Increase granularity in solver
 - Gather to single rank per node \rightarrow Solve \rightarrow Scatter
- OpenMP in solver
 - → Tasks with dependences between communications and computations for out of order execution and noise tolerance

- Try to improve locality \rightarrow better IPC
 - L3 usage: Blocking?
- Convergence of numerical method: Jacobi vs. Gauss-Seidel?

Performance Optimisation and Productivity

A Centre of Excellence in Computing Applications

Contact: https://www.pop-coe.eu mailto:pop@bsc.es

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676553.

