
Nemo analyses
POP_AR_078

Jesus Labarta, Marta Garcia, Joan Vinyals (BSC)

November 4th 2020
EU H2020 Center of Excellence (CoE)

The code

• Code
• NEMO version 4.0.2
• MPI

• Problem:
• Bench ORCA 1 like

• Traces:
• Run @ MareNostrum, filling node (48 processes/core)
• 48, 96 and 384 processes

2

3

Structure

Iterative structure

perturbation

384 cores Initialization

4

Structure

Relative weight increase … will limit scalability

48 cores

96 cores

384 cores

Structure

5

384 cores

Too fine grain !! à hybrid

Scaling

6

T(48) =465 ms

48

96

384

Hierarchical Performance Model

Efficiencies: ~ (0,1]
Multiplicative model

FeffIPCeffIeffCompEff **=
TrfSerLB **=h
CommEff

M. Casas et al, “Automatic analysis of speedup of MPI applications”. ICS 2008.

Efficiency model

8

48

96

384

Avg Useful IPC(48) =0.67

Avg Useful Frequency(48) =2.061 GHz

Efficiency model

9

Transfer and Serialization
Transfer scaling worse

Very good IPC scaling
à probably very bad starting value
à will not go on forever

Computation
replication

Compensation effects
Parallel efficiency ↔ Computation scalability
Instruction scalability (replication) ↔ IPC

Communication analysis

10

MPI does not disappear …
Elapsed time for the region does not shrink

Actual
run

Ideal
Network

Fine granularity region
sensitive to Interconnect
latency and bandwidth

Transfer

• Focus on Inner fine
grain communication
phase

11

Communication analysis

Communication analysis

12

Actual
run

Ideal
Network

“Nominal”
Network

Difference à there was
noise in the internals of
MPI implementation

Noise in useful computation in fine grain phase

• Serialization caused
by OS Noise

13

Communication analysis

Actual run

Ideal
Network

Ideal Network
“Eliminating” OS noise

Noise in useful

Transfer impact

Noise Serialization impact

Close look at noise

14

In MPI

In Useful

“Preempted” time“Preemptions”

Scattered in space and time
Both in MPI and useful Mode ~400 us

“Noise” cause ?
Cant fight noise, learn to live with it

Compared to ~11 us
(and less) computations

Hybrid MPI+OpenMP with relatively dynamic scheduling
would be a way to reduce the impact of noise

• MPI call durations
affected & impacted by
noise

15

Close look at noise

Isend

Duration

Recv

Wait

Mode ~400 us

“Noise” cause ?

Noise within MPI
Requirement to vendor to implement noise
toleration mechanisms within the node in
their MPI implementation

Transfer analysis

16

Actual run

No Noise
Ideal

No Noise
L=2us

BW= 1GB/s

No Noise
L=2us

BW=256MB/s

No Noise
L=2us

BW=64MB/s

No Noise
L=8us

BW=1GB/s

• Pattern in fine grain communication
phase
• Efficiency loss on 48 processes (0.66)
• Significant impact at 384

• Parallel efficiency ~0.5
• Less overlap of computations & strong

scaling à better IPC
• Compensating effects

17

The skew

IPC: 0.5 -- 3.5

Impact of latency and BW on the skew

18

Genesis of the skew

19

Genesis of the skew

20

Larger number of communication of processes
in the north domain

Genesis of the skew

21

Compensate skew à Assign less load to last processes ??

Reorder communication from below and computation may “alleviate” propagation ??

North
domains

so
ut

hw
ar

ds

East -w
est

all isends before any receive ? Just on the pole?

Overlap communication - computation?

22

“Physical/algorithmic” structure
“computational” structure

Can be reordered?
Source code reordering (irecv, wait)
tasks and dependences

(more dynamic, adaptive, overhead?)

Reorder computation ?

23

“Physical/algorithmic” structure
“computational” structure

Can be reordered? Dependences?
Source code reordering
tasks and dependences

(more dynamic, adaptive, overhead?)

Genesis of the skew

24

North fold ?

North fold

25

Substructure:
are the two phases dependent (potential to overlap)?

North fold local exchange

Detailed MPI call sequence

26

Dependences ?
Can postpone out of critical path?

Can merge
into one
waitall

To
 –

fo
rm

 ra
nk

 3
8

Ite
ra

tio
n

i
To

 –
fo

rm
 ra

nk
 3

8
Ite

ra
tio

n
i+

1

Delay propagation

Detailed MPI call sequence

28

Can be postponed ?

Actual compute ?

Can be advanced ?
before other isends??

Could reorder receptions to avoid
some long receives delaying others

Irecv + waitall

Reorder MPI calls?
Decouple isends from recvs?

To
 –

fo
rm

 ra
nk

 3
8

&
 4

6
Ite

ra
tio

n
i

“n
om

in
al

”
N

et
w

or
k

Potential of imbalance?

29

Skew appear and propagates

Simulation of much faster
north row of processors

Id
ea

l
N

et
w

or
k

Id
ea

l
N

et
w

or
k

Skew “disappears”

Latency still in the critical path …
… may be overlapped ?

Local communication
not advanced !
à Dependence

Dependence chain

30

Dependence chain?
Mostly communications?
What computation?

Can be embedded within less processes ?

Can reorder north computations/communications ?

Can reduce #north processes? Only one?

Computation scaling

31

Yellow Instructions
“strong scaled”

Yellow IPC

Compensating effects.
Interesting to understand individually why !

Caused by
locality at
L1, L2, L3

level !

Computation Scaling

32

L1 MPKI

L2 MPKI

L3 MPKI

IPC
48

96

384

In
st

ru
ct

io
ns

Computation Scaling

33

L1 MPKI

L2 MPKI

L3 MPKI

IPC
48

96

384

In
st

ru
ct

io
ns

Sampled traces

34

Regions with poor IPC

Very poor IPC sub regions within
region of moderate average IPC Limited

benefit of L3

Cache miss ratios
“explaining” IPC

Sampled traces

35

Computation behavior

36

Working out of L3 in fine grain phase Node BW limit

L3 not useful elsewhere ?

48 processes

Can refactor code to improve L3 use? Blocking?

Co-design: no need of L3 ?

Computation behavior

37

Synchronized BW demands.

48 processes

Sub substructure

Possibility to unsynchronize?

Comparative Computation behavior

38

48 vs 384 processes
IPC - BW

Data fits in L2!

Loss of substructure?

Data fits in L3!

Comparative Computation behavior

39

*Same scales for all miss ratios, same scales for all IPCs

160

48 vs 384 processes
IPC – Miss Ratios

Overall
improvement
in Miss ratios

2.8

Link to Source

40

Solver Computational Scaling

41

48

96

384

Duration Histogram Instructions Histogram

Same time scale
~same duration L

Strange
scaling

Strange
scaling

Poor scaling

<~ fair burst
duration scaling

~ poor/strange
instruction scaling

Poor scaling

Increasing accuracy ?

42
Folding SamplingAggregated Sampling

Increasing accuracy ?

43
Folding Sampling

Cluster 1
Aggregated Sampling

• Merge sequence of waits for Isends to waitall
• Reorder north: advance isends postpone recs (if possible)
• Assign less load to north fold to take internal communication out of

the critical path (combined with reordering of comms)
• Reduce #north processes?

• à only one ?
• Increase granularity in solver

• Gather to single rank per node à Solve à Scatter
• OpenMP in solver

• à Tasks with dependences between communications and computations for
out of order execution and noise tolerance

44

Recommendations

Possibility for a

Mockup POC

• Try to improve locality à better IPC
• L3 usage: Blocking?

• Convergence of numerical method: Jacobi vs. Gauss-Seidel ?

45

Recommendations

11/23/2016

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553.

Performance Optimisation and Productivity
A Centre of Excellence in Computing Applications

mailto:pop@bsc.es

