

NEMO on ThunderX2

M. Glover February 7, 2018

Technical details

- Comparing Intel Broadwell with Cavium ThunderX2
- ThunderX2 currently single-socket only. (Used single-socket for **both** Broadwell and ThunderX2.)
- Cray compiler on both platforms. Broadwell: 8.5.8; ThunderX2: 8.6.4
- Hardware fault: ThunderX2 essentially without cache.
- Constrained to GYRE benchmark due to Cray compiler bug with ORCA1-LIM3.
- (Not yet tested with ARM compiler.)

Overall performance

Platform	HT or SMT	1/12 degree	1/24 degree
Broadwell	1,1	554	2300
ThunderX2	2,4	475	1699
Speedup		1.2x	1.4x

Routine-level breakdown

(1/24 degree)

Notable gains – the top four costs:

- tra_ldf_iso
- tra_adv_fct
- nonosc
- tra_adv

Notable losses:

- rab_3d
- p2z_opt

Separating memory and compute

 $T_1 = T_m + T_c$

 $T_2 = \frac{1}{2}T_m + T_c$

$$T_c = 2T_2 - T_1$$

 $T_m = 2(T_1 - T_2)$

 $T = 2T_{0} - T_{1}$

- *T*₁ : Fully committed
- *T*₂ : Half-committed

- T_c : Compute time
- T_m : Memory time

(Compute resources constant.)

Memory vs. compute time

Broadwell. Derived from single vs. dual socket.

Notably memorybound sections – the top four:

- tra_ldf_iso
- tra_adv_fct
- nonosc
- tra_adv

Notably computebound:

- rab_3d
- p2z_opt

Take-home messages

- ThunderX2 beats Broadwell. (Single-socket.)
- Best performance with over-decomposition + SMT.
- Asynchronicity smoothing out bandwidth demands? (Hardware fault: eliminates cache.)
- Compute-bound routines perform better on Broadwell. (Note: early hardware and compilers, however.)