

High Performance Computing for

NEMO Developers Committee

January 2018

2017 Work done

Intra-node performance

- Real vs peak performance
 - Investigation of a benchmark configuration on different HPC systems (Silvia, Tim & Martin, Maff)
 - Vectorization improvement
 - Use of SIMD directives \rightarrow execution time gain ~3-4% (Cyril)
 - Improvement of memory allocation strategy → up to ~20% faster on high-resolution configurations on CRAY system (Tim)
- Hybrid parallelization
 - OpenMP shared memory approach (Silvia)
 - Fine grained (loop-level) approach \rightarrow execution time gain ~5-6%
 - Coarse grained approach (tested on vertical physics) → intranode parallel efficiency gain ~9% (Silvia & Gurvan)

I/O performance improvement

 Reading/writing restart files with XIOS is working but it is not fast → further development by XIOS team needed (Meric)

2018 Workplan

Intra-node performance

- Real vs peak performance (Silvia)
 - Memory access overhead
 - Cache blocking → need to automatically set the best cache block size
- Hybrid parallelization (Silvia)
 - OpenMP shared memory approach:
 - Comparison between the coarse-grained approach and the cache blocking technique
 - Investigation of the coarse-grained approach on kernels more affected by the communication overhead

Scalability improvement

- Reducing the communication overhead
 - Decreasing the communication frequency (Andrew)
 - Reducing collective communications (started by Tim, Silvia)
 - Overlapping inter-processes exchange (Silvia)

Other HPC activities

Performance portability on heterogeneous architectures

- Lightweight DSL approach (Andy, Silvia)
 - Parsing the NEMO code to make it PSyclone compliant
 - Automatic optimizations (also including OpenMP and OpenACC directives) to run the code on heterogeneous architectures

Reduced precision (Miguel, Oriol)

 Investigation on which parts of the code could be safely integrated in single precision without having an impact on the model accuracy