

Saint Petersburg, Russia

Adaptation of NEMO-LIM3 model for multigrid high resolution Arctic simulation

> Alexander Hvatov, Nikolay Nikitin E-mail address: matematik@student.su

NEMO Users Meeting, 2018, Toulouse, France

Our project description

Initial setup:

- Mid-res to hi-res model of Russian Arctic
- Several models (Atmospheric, Spectral Wave, Ocean)
- 50 model years (1965-2015)
- Short time (initially, 1 year for entire project)

Our team: http://

en.escience.ifmo.ru

Goals:

- 50 year time series
- Detailed ice field
- Results then are used in statistical forecasting system

• WRF(15km scale, regular)

- NEMO(14km and 5km scale)
- WaveWatchIII (NEMO 14 km grid)
- Reanalyses\Datasets (various scales)

ITMO UNIVERSITY

All have different grids, coordinate systems and resolutions

Our model:

- NEMO 3.6+LIM3
- Curvilinear grid
- Two regional grids (mid-res for Arctic and hi-res for Russian seas of Arctic)
- Results from other models as forcing

Problems:

- Regional configuration vs Global with nesting
- Grid area size vs computation time
- Vertical grid chaging vs stability
- Coupling of mid-res and hi-res
- Boundary data and conditions type

Time and stability tests and resulting pipeline

Performance tests (200 test runs):

- Time step (for 14km)
- Vertical grid
- Horizontal grid
- Number of computational nodes

- Horizontal grid
- Stable vertical grid
- Optimal timestep
- Optimal number of nodes

Our NEMO pipeline

NEMO-LIM3 grids coupling

(IT;MOre than a UNIVERSITY) Grids:

NEMO large-scale (452x406, 14 km avg)

ITMO UNIVERSITY

- Possible AGRIF grid (that contains region of interest)
- NEMO small-scale (1100x400, 5km avg)

Online:

- + No problems with data transfer
- Increased integration time
- Restart problems

Offline:

- + Fast and fast restarts
- Boundary coupling problems
- Additional tuning of hi-res model
- Double data amount

Challenges within our setup

Expected:

- Due to coupling with other models different coordinate systems and grids
- Long open boundaries
- Long ice-covered open boundaries
- Data transfer mid-res -> hi-res
 Unexpected:
- Ice model instability at the long boundary

Grid Solution:

YAGO²: yet another grid operator (author

S.Kosukhin):

- WRF (regular, auto generated) -> NEMO (curvilinear)
- Minimal distortion (as close to regular grid as possible)

²Yago: Yet another gridded data operator (2018). doi:10.5281/ zenodo.1217892. URL https://github.com/skosukhin/yago

YAGO: yet another grid operator (author S.Kosukhin):

- WRF (regular, autogenerated) -> NEMO (curvilinear)
- Minimal distortion (used to be as close to regular grid as possible)

Rotation from E-N to the used in NEMO grid and vice versa to keep everything in one notation:

- Use ocean reanalyses and ice satellite databases as a boundary and initial conditions
- Rotate model data back from NEMO to E-N to compare with reanalyses

ITMO UNIVERSITY

Eastward-northward -> NEMO rotation

Long open boundaries: tracers I

ITMO UNIVERSITY

Long tracer open boundary:

- Inflow and outflow changes
- Reducing computation time and make grid as small as possible
- How to threat low-res boundary data for mid-res grid
- Artefacts
- Every long open boundary
 modelling case is unique?
 - Corner with Flather (from test runs)

Long open boundaries: tracers II

$\varphi(x,t\downarrow n+1) = \{\blacksquare \varphi(x,t\downarrow n) + FRS, \varphi \text{ inflow at } x @ \varphi(x,t\downarrow n) + ADV, \varphi \text{ outflow at } x$

¹Palma, E. D., & Matano, R. P. (2000). On the implementation of open boundary conditions for a general circulation model: The three-dimensional case. *Journal of Geophysical Research: Oceans*, *105*(C4), 8605-8627.

Long tracer open boundary:

- Inflow and outflow changes
- Artefacts
- Every long open boundary modelling case is unique?

This trick is used to compensate low-res boundary data with more physically correct boundary conditions

FRS – from NEMO ADV¹: $\partial \varphi / \partial t = (u + c \downarrow T) \partial \varphi / \partial n$, $c \downarrow T$ –phase velocity (from ORL)

For the wide open boundaries it is useful to separate inflow and outflow

Long open boundaries: ice

Ice tend to 'stack' at the boundary and show invalid behavior within the area

ITMO UNIVERSITY

Why ice can 'stack':

- LIM2 type boundary conditions
- Existing ice drift scheme is not full
- 'Non-classical' grid

Long open boundaries: ice

ITMO UNIVERSITY

Satellite NEMO+LIM3

Additional FRS conditions on the drift help ice to move out of the boundary and make ice drift field closer to real

Ice interaction between two grids

Is the interpolated termohaline field from the large scale is valid for the small scale?

Full spin-up time is different for different time-scales

5 year spin-up from scratch

There is no way to use data from external source (satellite, midres), so we introduce ice data assimilation

ITMO UNIVERSITY

After mid-res spin-up, additional hi-res spin-up is required

Rivers

a) Modified river conditions

Summer averaged surface temperature

ITMO UNIVERSITY

• Small rivers tend to freeze even with the introduced in NEMO fix

• River mask is required for the temperature fix in the river mouth

Conclusions:

- Two grids can be 'offline' coupled
- 'Offline' coupling allows one to select nested grid in a more flexible way, but flexibility introduces some challenges
- One could live with long open boundaries, without cutting them off, but special approach is required for every case
- Additional spin-up required when initial field is transferred between mid-res and hi-res

Future plans:

- Make NEMO4-based model
- Results discussion article
- Ice restoration article

Preprint: https://arxiv.org/abs/1810.03657

Thank you!

www.ifmo.ru

Alexander Hvatov matematik@student.su

