Upper ocean sensitivity to atmospheric forcing, air-sea turbulent fluxes algorithms, and vertical turbulent mixing at Papa Station

Guillaume Samson¹, Théo Brivoal¹
Romain Bourdallé-Badie¹ & Hervé Giordani²

¹Mercator-Ocean, ²CNRM-GAME

Copernicus Marine Environment Monitoring Service

 Atmospheric & oceanic measurements from 1949 to 1981 by US and Canadian Coast Guard weather ships

Canadian Cost Guard Ship Vancouver 1969

- Atmospheric & oceanic measurements from 1949 to 1981 by US and Canadian Coast Guard weather ships
- Historical testbed to develop, calibrate, validate and compare turbulent vertical mixing parameterizations:
 - Mellor & Durbin 1975
 - Martin 1985
 - Gaspar et al. 1990
 - Large et al. 1994
 - Kantha & Clayson 1994
 - Burchard & Bolding 2001
 - ...
- Data from 1961 to 1974 (50-60 years ago)

Canadian Cost Guard Ship Vancouver 1969

- Atmospheric & oceanic measurements from 1949 to 1981 by US and Canadian Coast Guard weather ships
- Historical testbed to develop, calibrate, validate and compare turbulent vertical mixing parameterizations:
 - Mellor & Durbin 1975
 - Martin 1985
 - Gaspar et al. 1990
 - Large et al. 1994
 - Kantha & Clayson 1994
 - Burchard & Bolding 2001
 - ..
- Data from 1961 to 1974 (50-60 years ago)
- Opportunity to revisit the oceanic mixed layer sensitivity at Papa with modern measurements and NEMO model?

Canadian Cost Guard Ship Vancouver 1969

- long-term observational dataset (10 years)
- oceanic horizontal advection negligible (< 10 cm.s⁻¹)
- energy transfers mainly vertical (1D)
- hourly atmospheric measurements (forcing)
- hourly oceanic measurements (initial conditions)
- no direct turbulent fluxes measurements

degC

Data from NOAA/PMEL/OCS

- 1D vertical version of the 3D ocean model NEMO (Reffray et al. 2015)
 - (vertical mixing and Coriolis force only) with 75 levels
- simulation restarted each year (15th June) during 10 years
- no damping / nudging

- 1D vertical version of the 3D ocean model NEMO (Reffray et al. 2015)
 - (vertical mixing and Coriolis force only) with 75 levels
- simulation restarted each year (15th June) during 10 years
- no damping / nudging

ECMWF IFS model (with observed radiative fluxes and precipitation) MOORING observations

- 1D vertical version of the 3D ocean model NEMO (Reffray et al. 2015)
 - (vertical mixing and Coriolis force only) with 75 levels
- simulation restarted each year (15th June) during 10 years
- no damping / nudging

- 1D vertical version of the 3D ocean model NEMO (Reffray et al. 2015)
 - (vertical mixing and Coriolis force only) with 75 levels
- simulation restarted each year (15th June) during 10 years
- no damping / nudging

- 1D vertical version of the 3D ocean model NEMO (Reffray et al. 2015)
 - (vertical mixing and Coriolis force only) with 75 levels
- simulation restarted each year (15th June) during 10 years
- no damping / nudging

Papa Station daily seasonal cycle mean

Papa Station daily seasonal cycle mean

Full ensemble

mean bias

Papa Station daily seasonal cycle mean

Full ensemble mean bias

Mixed Layer Depth (m)

MLD range (m)

Full ensemble range (spread)

Papa Station daily seasonal cycle mean

Ensemble MLD (m)

-.6

Mixed Layer Depth (m)

Full ensemble mean bias

0

50

150

depth (m)

Full ensemble range (spread)

Relative contributions of:

- atmospheric forcing
 - bulk algorithms
 - vertical mixing in this spread?

IFS forcing ensemble - PAPA forcing ensemble

ECMWF IFS model (with observed radiative fluxes and precipitation) MOORING observations

IFS forcing ensemble - PAPA forcing ensemble

ECMWF atmospheric variables bias compared to hourly observations over the 2007-2017 period

Q_{2m} seasonal cycle

IFS forcing ensemble

PAPA forcing ensemble

IFS forcing + PAPA Q_{2m} ensemble

PAPA forcing ensemble

IFS Q_{2m} bias totally explains temperature differences between IFS and OBS forcing ensembles

Charnock parameters

(figure from *Brodeau et al. 2017*)

$$z_0 = \frac{0.11\nu}{u^*} + \frac{\alpha u^{*2}}{g}$$

$$C_D^{N10} = \frac{\kappa^2}{\left[\ln(10/\zeta_0)\right]^2}$$

ECMWF bulk ensemble

NCAR bulk ensemble

COARE3 bulk ensemble

COARE3.5 bulk ensemble

Jan Feb Mar

time (months)

Jul Aug Sep Oct Nov Dec

warmer mixed layer base = more mixing

ECMWF bulk ensemble

NCAR bulk ensemble

COARE3 bulk ensemble

COARE3.5 bulk ensemble

time (months)

Maximum T spread between NCAR and

Bulk Ensemble Range

COARE3.5 = **1.5**°**C**

Drag coefficient seasonal cycle

Wind stress seasonal cycle

Moisture transfer coefficient seasonal cycle

Latent heat flux seasonal cycle

3 - Sensitivity to vertical mixing

3 - Sensitivity to vertical mixing

Full ensemble range (spread)

Conclusions

1D ocean modeling combined with **Papa station observations** = simple, efficient and robust framework to understand and quantify upper ocean sensitivity to vertical processes

Conclusions

1D ocean modeling combined with **Papa station observations** = simple, efficient and robust framework to understand and quantify upper ocean sensitivity to vertical processes

1. Atmospheric forcing

ECMWF dry bias $(0.5 \text{ g.kg}^{-1} / 5 \%) \rightarrow \text{latent heat flux overestimation } (10 \text{ W.m}^{-2} / 25 \%)$

→ colder mixed layer (0.5°C / 60 % of the spread in the ML in spring)

2. Bulk algorithms

- Large spread between drag coefficients (0.2 / 15 %) and between wind stress (0.03 N.m⁻² / 20 %).
- → 1.5°C T spread at the ML base, 0.5° in the ML (50 % of the spread in summer, 30 % otherwise).
- NCAR and COARE3.5 algorithms produce the most different turbulent fluxes and oceanic responses.

3. Vertical mixing

- Vertical mixing schemes produce a large T spread (2°C / 60 %) at the ML base, but the spread is negligible inside the ML compared to bulk algorithms (30 %) and atmospheric forcings (60 %).

