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Why the Papa Station ?

* Atmospheric & oceanic measurements from 1949 to
1981 by US and Canadian Coast Guard weather ships
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Why the Papa Station ?

* Atmospheric & oceanic measurements from 1949 to
1981 by US and Canadian Coast Guard weather ships

* Historical testbed to develop, calibrate, validate and

compare turbulent vertical mixing parameterizations:

Mellor & Durbin 1975
Martin 1985

Gaspar et al. 1990

Large et al. 1994

Kantha & Clayson 1994
Burchard & Bolding 2001

e Data from 1961 to 1974 (50-60 years ago)
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Why the Papa Station ?
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Mixed Layer Depth (m) degC

long-term observational dataset (10 years)
oceanic horizontal advection negligible (< 10 cm.s)
energy transfers mainly vertical (1D)
hourly atmospheric measurements (forcing)
hourly oceanic measurements (initial conditions)
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no direct turbulent fluxes measurements time (years)
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Modeling strategy

* 1D vertical version of the 3D ocean model NEMO (Reffray et al. 2015)
(vertical mixing and Coriolis force only) with 75 levels E
 simulation restarted each year (15" June) during 10 years

* no damping / nudging
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Modeling strategy

e 1D vertical version of the 3D ocean model NEMO (Reffray et al. 2015)
(vertical mixing and Coriolis force only) with 75 levels E
 simulation restarted each year (15" June) during 10 years R

* no damping / nudging

/ECMWF IFS model (with observed radiative fluxes and precipitation)
_ MOORING observations

ECMWEF (Beljaars 1994)

NCAR (Large & Yeager 2004, 2009) TOTAL: 24 x
COARE 3 (Fairall et al. 2003) . .
 COARE 3.5 (Edson et al. 2013) 10-years long 1D simulations

TKE (Blanke & Delecluse 1993)
k-epsilon (Rodi 1987) via GLS closure (Umlauf and Burchard 2003)
Mellor-Yamada (1982) via GLS closure
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Temperature & MLD seasonal cycle
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Temperature & MLD seasonal cycle
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Temperature & MLD seasonal cycle
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Relative contributions of :
- atmospheric forcing
- bulk algorithms
- vertical mixing
in this spread ?
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1 - Sensitivity to atmospheric forcing
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1 - Sensitivity to atmospheric forcing

<rECMWF IFS model (with observed radiative fluxes and precipitation)
MOORING observations
ATM FORCING o

2 x 12 simulations
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1 - Sensitivity to atmospheric forcing

IFS forcing ensemble

PAPA forcing ensemble
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2 - Sensitivity to bulk algorithms
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2 - Sensitivity to bulk algorithms
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3 - Sensitivity to vertical mixing
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3 - Sensitivity to vertical mixing
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Relative contributions to upper ocean spread
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Relative contributions to upper ocean spread
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Relative contributions to upper ocean spread
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Conclusions

1D ocean modeling combined with Papa station observations = simple, efficient and robust
framework to understand and quantify upper ocean sensitivity to vertical processes
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Conclusions

1D ocean modeling combined with Papa station observations = simple, efficient and robust
framework to understand and quantify upper ocean sensitivity to vertical processes

1. Atmospheric forcing

ECMWEF dry bias (0.5 g.kg' / 5 %) = latent heat flux overestimation (10 W.m™2 / 25 %)
-=> colder mixed layer (0.5°C / 60 % of the spread in the ML in spring)

2. Bulk algorithms

- Large spread between drag coefficients (0.2 / 15 %) and between wind stress (0.03 N.m2 / 20 %).
= 1.5°C T spread at the ML base, 0.5° in the ML (50 % of the spread in summer, 30 % otherwise).
- NCAR and COARE3.5 algorithms produce the most different turbulent fluxes and oceanic responses.

3. Vertical mixing

- Vertical mixing schemes produce a large T spread (2°C / 60 %) at the ML base, but the spread is negligible inside
the ML compared to bulk algorithms (30 %) and atmospheric forcings (60 %).
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