

Impact of uncertainties from 7 atmospheric reanalysis surface conditions on Arctic Ocean freshwater budget

C. Bricaud, O. Hernandez, G. Garric, J. Chanut, G. Ruggiero, CE. Testut

Motivation of the study

- <u>The question</u>: our sea ice biases can be related to the atmospheric forcing?...
- Lindsay et al. (2014)'s paper: evaluation of 7 atmospheric reanalysis dataset in the Arctic (NCEP-R1, NCEP-R2, CFSR, 20CR, MERRA, ERA-Interim & JRA-25) for the 1980-2009 period & forcing PIOMAS with four of them (NCEP-R1, CFSR, MERRA & ERA-I) & evaluation of the trend of the sea ice volume with CDR dataset. Albedo and drag coefficient bias-corrected.
- Our study: Use available reanalysis/operational atmospheric forcing over the 2007-2014 periods to drive the CREG configuration in our NRT protocol context with none assimilation and at ¼° resolution to perform numerous sensitivities tests. No bias correction.

Experimental 2007-2015 set up with the CREG Configuration

- Modelling Experimental set up (none assimilation)
- Same NRT protocol (2007-2015) of global operational systems with an updated modelling platform.
- NEMO 3.6
- LIM3 sea ice model (multi category)
- CREG configuration (1/4°)
- Start run in 10/2006
- T&S initial conditions from WOA13
- Sea ice concentration initial conditions from OSI-SAF
- Sea Ice thickness Initial conditions from ICESat (October 2006)
- Seasonal climatology Runoff (+ Greenland and nordic glaciers)
- none restoring
- Boundaries conditions from operational system

CREG025 Bathymetry

Evaluation of 7 state-of-the-art atmospheric reanalysis in the Arctic Ocean

Selection Criteria: Period, Global domain, with assimilation, « High Resolution », no correction.

Name	Source	Domain	Period of Record	Available timestep(s)	Available resolution lonXlat
IFS	ECMWF	Global	1985 to present	Sub-daily	0.35°,0.22°, 0.1° 50km,25km,16km
ERA-Interim	ECMWF	Global	1979/01 to 2016/01	Sub-daily	0.75°x0.75°
JRA-55	Japanese Meteorological Agency	Global	1958/01 to 2016/01	Sub-daily	0.56x0.56
NASA MERRA-2	NASA	Global	1979/01 to 2015/11	Sub-daily	0.667° x0.5°
NCEP Reanalysis (R2)	NCEP,DOE	Global	1979/01 to 2015/07	Sub-daily	2.5°x2.5°
Climate Forecast System Reanalysis (CFSR) and Version 2 (CFSv2)	NCEP	Global	1979 to 2010 2011 to 2015/09	Sub-daily	0.5°x0.5° & 2.5°x2.5°
CGRF	ECCC	Global	2002-2015	Sub-daily	0.3°x0.3°

Seasonnal cycle

	150		0°
	100		— IFS — ERAI — JRA55 — NCEP2 — MERRA2 — CFSR — CGRF
42)	50		Ensemble mean
QNET (W.M2)	0		Qnet
	-50		Que
	-100	INT FEB WEL WEL WEAT INT. INT WIND PER OF WOAT DE	ç

Ensemble runs built with 7 CREG025's experiments driven by the 7 atmospheric "reanalysis" forcing.

2007-20 14	LW	SW	Tair	qair	Qnet	Surf. Temp.
σ	9 W.M ²	12 W.M ²	0.7°C	8.25E-05 g/kg	8 W.M ²	0.7°C
Max σ Period	12 W.M² June	33 W.M ² June-July	1.12°C Febr.	1.37 E-04 g/Kg July	17 W.M ² June-July	1.1°C Febr.

- Ensemble Mean surface temperature = -10°C
- Mean Obs surface temperature = -13.1°C ± 0.52°C.

Obs = L3 Satellite data from DMI

Sea Ice Concentration September 2012

Mean CREG Ensemble Mean Observations (CERSAT, NSIDC, OSI SAF)

- General
 Underestimation in
 Eurasian Basin and
 overestimation in
 Canadian Basin.
- Large overestimation with MERRA-2

15% Ice Fraction

Changed Physics

Biases in ice volume (and liquid FW export at Fram Strait) → CREG New

	CREG Old	CREG New		
Initial conditions for (T, S)	WOA 13	EN.4		Impact on water
Horizontal Diffusion on tracers with GM (Gent,McWilliams, 1990)	ON	OFF		masses
2 nd bulk rheology parameter C*	20	5		
Number of ice categories	5	15		
Ridging	Ridging	Ridging changed		
Snow repartition on ice	66%	100%	}-	Weak impact

- P = P* * h * e^{-c*(1-A)} where P is the ice strength, h the ice thickness, A the ice concentration, P* and c* the first and 2nd rheology parameter. C*: "... no serious efforts have been published for their (his) quantification." "Range 1 << c* << ∞" (From Lepparänta (2011) !!)
- Ridging: Change in the fraction of shearing energy contributing to ridging and measure of ridging ice

Results with changed Physics: Old vs New CREG: Sea Ice extent

- Less sea ice extent with New CREG, particularly during summer
- Strong sea ice cover reduction in western basin
- New CREG compares better with mean observations

Mean September 2007-2014 15% Ice fraction

Old CREG Mean Ensemble New CREG Mean Ensemble Mean Observations (CERSAT, NSIDC, OSI SAF)

Results with changed Physics: Old vs New CREG: Sea Ice extent

- No change in interannual variability
- Better representation of summers 2007 and 2012
- No change in uncertainties

Old CREG Mean Ensemble New CREG Mean Ensemble Mean Observations (CERSAT, NSIDC, OSI SAF)

Results with changed Physics: Old vs New CREG: Sea Ice Volume

- Less sea ice volume with New CREG (-4000 km³)
- « Low frequency » variability has changed
- Still largest uncertainties in summer ...
- ...But less uncertainties with New CREG

Sea Ice Volume

MERCATOR Results with changed Physics: Old vs New CREG: Sea Ice thickness

→ Large reduction of thickness in Canadian Basin; Better comparisons with ICESat and Cryosat.

Impact of atmospheric uncertainties Freshwater Content

Total precipitation / runoffs over the Arctic Domain (2011-2014)

Mean FWC (km3) over the Arctic Domain (2011-2014)

OBS= WOA13+ EN.4 + ISAS + PHC3.0 + Levitus09

- ☐ Large uncertainties in solid and liquid precipitations
 - Mean value MERRA-2 = 1086 km3/year
 - Mean value in CFSR/CFSv2 = 4321 km3/year.
- \Box σ FWC = 10000 km3

Impact of atmospheric uncertainties Freshwater Content

Ensemble runs built with 6 CREG025's experiments driven by 6 atmospheric "reanalysis" forcing: IFS, ERA-Interim, JRA55, NCPR-R2, CFSR/CFSv2 and MERRA-2

Mean FWC (km3) over the Arctic Domain (2011-2014)

- Good agreement between spatial distribution of Freshwater from the mean ensemble of CREG simulations and the mean ensemble of 6 climatologies (PHC3, EN4, ISAS, LEVITUS ...)
- Higher spread in the Beaufort gyre for the climotologies of observations
- Higher spread in the coast of Groenland for the different CREG simulations.

Mean FW (km3) (2011-2014)

Impact of atmospheric uncertainties Transport uncertainties

Ensemble mean tranport (2011-2015)

- 55% of the variability of the Freshwater Export at Fram strait is due to differences in atmospheric forcing.
- In terms of ice volume export and volume transport, the variability due to interannual and seasonal variability is higher than the differences in atmospheric forcing.
- Variability of atmospheric forcing has the major impact at Fram strait. In the other straits the interannual and seasonal variability dominate.

		Freshwater (km³/year	Ice Volume (km³/year)	Volume Transport (Sv)
	Mean Ensemble	-1318	-2030	-1,31
- 0. "	Std ensemble	+/-722	+/-224	+/-0,48
Fram Strait	Std seasonal + interannual	+/-538	+/-1002	+/-0,91
Fram +	Mean Ensemble	-2004	-2224	0,03
Bering + Nares +	Std ensemble	228	631	0,05
Lancaster + Barents + Jones	Std seasonal + interannual	985	1067	1,13

Impact of atmospheric uncertainties Sea Ice Thickness

Oct-Nov-Dec Mean SIT over AWI/LEGOS merged domain Jan-Feb-Mar-Apr Mean SIT over AWI/LEGOS merged domain

Uncertainties from 6 atmospheric reanalysis

- Proposed set of changed physics largely improves sea ice extent and thickness, particularly during summer and Canadian basin. Weak impact is obtained when only one unique paramater is modified.
- Impact of atmospheric uncertainties is reduced with a more realistic sea ice cover.
- The ensemble mean still shows better performance than individual member.
- The use of GM90 parameterisation largely degrades water masses properties.
- (The atmospheric forcing represents about 56 % of the uncertainties in the FW sink of the Arctic Ocean with this experimental methodology)

Plans:

- Paper in preparation
- Ensemble model using atmospheric perturbations built from these atmospheric reanalysis.

.

Surface Air Temperature at 2m heigh 2007-2014

Anomaly with ensemble mean

- Warmer icy surfaces with ECMWF's products
- Anomalies Up to 2°C
- In accordance with Jakobson (2012) and Lindsay(2014)
- Largest differences on ice covered areas
- Importance of horizontal resolution around Greenland (NCEP-R2 at 2.5°)

Downward SW at the surface 2007-2014

Anomaly with ensemble mean

- ERA-Interim and MERRA-2 the coldest (-15W.M²)
- NCEP-R2 far the warmest
- Anomalies up to 20W.M² in Arctic.
- In accordance with Lindsay(2014)

MERCATOR Results with changed Physics: Old vs New CREG: Sea Ice thickness

Comparisons with in situ data from « Unified Sea Ice Thickness Climate Data Record »

Old CREG Ensemble Mean

New CREG **Ensemble** Mean

observations

Results with changed Physics: Old vs New CREG: Sea Ice thickness distribution

- Under representation of thinner ice (<0.6m)
- Over representation of thicker ice
- Peculiar strong peak in the thickest category
- Similar distribution whatever the atmospheric forcing