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Introduction

Historically, the NEMO system (Madecet al. 1998) was built for climate studies using strong hypothesison the

dynamics, such as the “rigid lid” approximation, which eliminates the fast gravity waves. A first improvement

(Roullet and Madec 2000) was made by implementing a free surface while filtering the fast external gravity waves,

which allows one to keep a large time step. Roullet and Madec (2000) compared a linear formulation (with fixed

volume) with a non-linear one (with a variable first level thickness), and concluded that the linear formulation was

the best compromise for climate (the linear formulation does not strictly conserve the ocean salt content unlike the

non-linear formulation, but the differences were not largeenough to play a large role in the experiments of Roullet

and Madec (2000)).

People interested in regional and/or coastal studies must simulate rapidly phenomena with short spatial scales,

such as tidal waves. With the filtering scheme of Roullet and Madec (2000), these phenomena are very rapidly

damped, or not simulated at all (Talandieret al. 2003). That’s why a time-splitting scheme has recently been

implemented, which allows the representation of the fast dynamics, while keeping a large time step (Bessières

2003). But this is not sufficient: although the free surface is implemented, the vertical grid of the model is fixed in

time. This fact does not allow a good representation of tidalwaves, and as mentioned above it precludes an exact

conservation of the salt content. This is why the decision was made, as part of the MERSEA european project, to

implement a variable volume in the NEMO system.

In this report, we first review the representation of the freesurface in the NEMO system, with the different

schemes available at the present time (chapter1). Then we introduce the equations of the free surface and the

implementations induced by the variable volume (chapter 2). We present two kind of experiments in order to

investigate the behavior of the model with the variable volume implemented; chapter 3 focusses on the conservation

of salt content, and chapter 4 on the representation of a gravity wave.
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Chapter 1

Kelvin waves in a channel

Before implementing a variable volume option, it is necessary to understand how the free surface equation is

handled in the code. Three schemes are available: explicit,filtered and time-splitting. The explicit scheme is the

simplest but the presence of fast barotropic waves requiresa very small time step (of order of a few seconds). The

filtered free surface scheme (Roullet and Madec 2000) uses anadditionnal force directly in the primitive equations

to filter External Gravity Waves (EGW). This force cancels the propagation of EGWs which have a frequency

higher than a cutoff frequency, allowing the possibility tokeep a relative large time step. The time-splitting scheme

Bessières (2003) splits the fast barotropic part and the slow baroclinic part of the dynamics.

Talandieret al. (2003) studied the properties of the filtered scheme compared to the explicit scheme. Bessières

(2003) compared the filtered scheme and the time-splitting scheme. These two studies considered an initial-value

problem: a Kelvin wave solution was initialized in a periodic channel and left to propagate without non linearities

nor friction, and the analytical solution was compared withthe numerical simulation. This case is not relevant

to tides in regional models, where the tidal waves are forcedat the open boundaries. In this report, we perform

the Kelvin wave experiment with open boundary conditions. We also reproduce the case of periodic boundary

conditions, to allow a direct comparison of the three schemes.

1.1 The barotropic Kelvin wave

1.1.1 Analytical solution

This section is repeated for completeness from the report ofTalandieret al. (2003). We detail here the analytical

solution for a non-dispersive Kelvin wave in a zonal channelof width equal to b.

Considering the following hypotheses: homogeneous fluid, hydrostatic approximation,η ≪ H, linearization,

flat bottom, f plan, no forcing and no dissipation; we have thefollowing shallow water equations:

∂u
∂t

− f v = −g
∂η
∂x

(1.1)

∂v
∂t

+ f u = −g
∂η
∂y

(1.2)

∂η
∂t

+H∇.u = 0 (1.3)
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whereu = (u,v) is the barotropic velocity; f the Coriolis parameter; g the gravity;η the free surface against a zero

reference level and H the total channel depth.

If we set{η,u,v}(x,y,t) = RE{(Φ,U,V)(x,y)e−iωt}, we can have the V expression according toΦ, replacing the

time derivative term of u in 1.1 with its expression obtainedin taking the time derivative of 1.2. Doing the same

thing for U, we get the following expressions:

U(x,y) =
iωg

( f 2−ω2)

(

∂xΦ+
i f
ω

∂yΦ
)

(1.4)

V(x,y) =
iωg

( f 2−ω2)

(

∂yΦ− i f
ω

∂xΦ
)

(1.5)

Moreover, eliminating u and v componants from equations 1.1and 1.2 with the continuity equation 1.3, we get the

EGWs propagation equation:

(

∂2
t + f 2)η = c2

0∇2η (1.6)

with the phase velocityc0 =
√

gH. As we are in a zonal channel, we can re-writeΦ(x,y) = E(y).eikx and substitute

η in 1.6 with this writing. We obtain the following second order equation for E(y):

E′′(y)− γ2E(y) = 0 with γ2 = k2 +
f 2−ω2

c2
0

(1.7)

The real solution for this differential equation is:

E(y) = A.eγy +B.e−γy such as Φ(x,y) =
(

A.eγy +B.e−γy)eikx

Applying the boundary condition of zero normal velocity along the North and South boundary (y=0 and y=b) of

the channel, whatever the time step; we have the following system from the equation 1.5:

A(γ+
f

c0
)+B(

f
c0

− γ) = 0 (1.8)

A.eγb(γ+
f

c0
)+B.e−γb(

f
c0

− γ) = 0 (1.9)

The non-dispersive wave solution is obtained in setting forinstanceγ−1 = −c0/ f = RO the external Rossby radius

of deformation which implies B = 0. So the functionΦ is writting as:

Φ(x,y) = A.e
− y

R0 eikx (1.10)

Finally one deducts the analytical solution for a barotropic kelvin wave in a zonal channel:

η(x,y,t) = A.e
− y

R0 cos(kx−ωt) (1.11)

u(x,y,t) =

√

g
H

η(x,y,t) (1.12)

v(x,y,t) = 0 (1.13)
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1.1.2 The Kelvin amphidromy

In our periodic zonal channel configuration, we simulate thedominant semi-diurnal wave M2 (periodTk = 44700

s i.e 12h25’) using 2 barotropic Kelvin waves; one propagates eastward (K1) and one westward (K2) respectivly

along the South and North boundary. The channel, centered on45◦ N, has a zonal and meridional length of 1000

km and 600 km.

Using equations 1.11 and 1.12 we form the following solution:

η(x,y,t) = A.[e
− y

R0 cos(k0x−ω0t)+e
y

R0 cos(k0x+ ω0t)] (1.14)

u(x,y,t) = A.

√

g
H

[e
− y

R0 cos(k0x−ω0t)−e
y

R0 cos(k0x+ ω0t)] (1.15)

v(x,y,t) = 0 (1.16)

wherek0 = 2π
λk

, ω0 = 2π
Tk

, λk =
√

gH.Tk andR0 =
√

gH
f are respectively the wavenumber, the pulsation, the wave-

length and the external Rossby radius for the Kelvin wave. The signal and domain characteristics are summarized

in Table 1.1.

M2 wave Channel domain Parameters

Tk = 44700 s Lz = 1000 km Ω = 7.2910−5 s−1

λk = 1000 km Lm = 600 km φ = 45◦ N

A = 0.5 m H = 51.03 m f = 2.Ωsinφ
R0 ≈ 217 km g = 9.81 m.s−2

Table 1.1: Characteristics of the M2 wave and the geometry of the channel.

We notice that the depth H of the channel was calculated whilefixing the wavelengthλk and the wave periodTk

repectively to 1000 km and 44700 seconds.

For these characteristics, Figures 1.1 and 1.2 show respectively the Kelvin amphidromy and the analytical solution

for the SSH at four time steps.
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Figure 1.1: Co-ranges lines and amphydromic points for the propagationof 2 Kelvin waves in a zonal channel.

1.2 Numerical simulations with NEMO

1.2.1 The free surface treatment

For the filtered free surface, an additional force is added inmomentum equations of the model. This force only

dissipates phenomena with timescale lower than 2πTc with Tc the cutoff time parameter set to 2∆t after a stability

analysis (∆t is the time step model) and normally does not influence largertimescales.

The time-splitting scheme exploits the time scale difference between barotropic and baroclinic gravity waves.

It is possible to approximate the fast mode by fluctuations ofthe depth averaged fluid, and the slow modes by

deviations from the depth average (Griffieset al. 2000). Barotropic equations are integrated with gravity waves

resolved using small time steps. The barotropic sub-cycle is time averaged.

Our analytical solution being quite linear, we have deletedall dissipation and advective terms in OPA momen-

tum equations so they are reduced to (without any forcing):

∂tu+ f ∧u = −1
ρ

∇Ph−g∇η−Tc∇∂tη (1.17)

wherePh is the hydrostatic pressure and the last term in the right hand side is the additional force. The free surface

equation is (no forcing here):

∂tη = −∇.(HU) (1.18)

with U the vertically integrated velocity. We notice that the freesurface is linear in OPA (cf. Roullet and Madec

(2000))
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Figure 1.2: Analytical SSH (m) for the barotropic Kelvin waves propagation during one periodTk.
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1.2.2 Model configuration

Our configuration is a periodic zonal channel with the following number of points,Nx=52,Ny=33 andNz=2. The

horizontal resolution in both direction is equal to 20 km so that the domain dimensions are 1000 x 600 km. The

wavelengthλk and the meridional characteristic lengthR0 are quite well sampled with this spatial step.

The homogeneous fluid is set to a temperature of 10◦ C and a salinity of 35.5 p.s.u. The initial dynamical state

is setting with the analytical equations (14)-(16) at time t=0 and the parameters defined in Table 1.1. We must

emphasize that after this time, all simulations are free, i.e with no forcing.

1.2.3 Simulations

We tested the behavior of the filtering force and time-splitting scheme for two values of the time-step.

To compare numerical simulations to their analog analytical solution, we have calculated the root mean square

errors (RMS errors) over all the domain with the following method:

RMS=

(

∑dom{ηs−ηa}2

∑domη2
a

)1/2

whereηs andηa are respectively the numerical and analytical SSH,∑dom represent the summation over all the

domain, i.e over i=1,Nx and j=1,Ny.

The Figure 1.3(a) shows the rms error calculated in periodicboundary conditions for the explicit scheme with

∆t = 74.5 s, for the filtered scheme with∆t = 74.5 s and∆t = 745 s, and for the time-splitting scheme with∆t =

74.5 s and∆t = 745 s (with a barotropic time step of∆tbt = 74.5 s). The Kelvin waves are completly canceled over

the 10 periods of the run for the simulation with the filtered scheme and∆t = 745 s, while the rms error reached

70% with the time-splitting scheme and∆t = 745 s. With∆t = 74.5 s, the rms error was 50% for the filtered

scheme, 10% for the time-splitting scheme and 6% for the explicit scheme.

According to Talandieret al. (2003) the loss of the tidal signal is strongly related to theadditional force,

because of there is non linear advective terms in the NEMO momentum equations and the setting of the horizontal

and vertical diffusion coefficients are set to zero in both dynamical and tracer equations. The simulation with the

explicit scheme is indeed the less diffusive (errors are generated by the spatial resolution, a more accurate spatial

discretization will decrease them). The time-splitting case averages the values calculated in the barotropic loop;

the tidal signal is therefore damped.

With the open boundary conditions, the rms error for the filtered scheme varies between 10% and 40% with∆t

= 74.5 s, between 35% and 65% with∆t = 745 s. The rms error for the time-splitting scheme varies between 3%

and 6% with∆t = 74.5 s, and between 8% and 11% with∆t = 745 s.

We conclude that the time-splitting scheme is well adapted to simulate forced tidal waves. The additional force

is too diffusive, even with a periodic forcing at the open boundaries.

However, even with the time-splitting scheme, a large errorwill result if the domain is large and the tidal wave

has to travel many wavelenght away from its forcing region, as shown in the periodic case.
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Figure 1.3: RMS error of the sea surface height for two baroclinic time-steps (∆t = 74.5 s and∆t = 745 s) and three time-stepping schemes.

The time-splitting scheme is better than the filtered scheme(a) periodic channel: explicit scheme with∆t = 74.5 s, filtered scheme with∆t

= 74.5 s and∆t = 745 s; time-splitting scheme with∆t = 74.5 s and∆t = 745 s (the barotropic time step∆tbt is 74.5 s)(b) open boundary
conditions: filtered scheme with∆t = 74.5 s and∆t = 745 s; time-splitting scheme with∆t = 74.5 s and∆t = 745 s (the barotropic time step

∆tbt is 74.5 s)
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Chapter 2

Method, equations

The representation of nonlinearities in the free surface equation requires the vertical grid to change with time

(variable volume). The discretization of the variable volume is determined by volume and energy constraints

(Griffies 2004). The variable volume computed from a nonlinear free surface equation ensures perfect conservation

of ocean salt content. The fresh water flux modifies the sea surface elevation and the thicknesses of the model

layers, and consequently the model volume.

The improvement involves two major modifications by allowing layer thicknesses to be time-varying and by

computing a nonlinear free surface equation.

2.1 Equations

H

η

q qq w w w

z

x
0

u
v

w

Figure 2.1: The free surface.η is the deviation of the sea surface from rest.H is the depth of the bottom.qw is the freshwater forcing (positive

if evaporation is greater than precipitation, otherwise negative).

Notations:

• u(x,y,z) ,v(x,y,z): horizontal components of the velocity,= uh,

• w(x,y,z): vertical com,ponent of the velocity,
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• η(x,y): deviation of the sea surface from rest (sea surface height),

• H(x,y): depth of the bottom,

• qw: fresh water forcing, in units of velocity (volume per unit time per unit area), crossing the ocean surface.

The kinematic boundary conditions define the ocean domain and describe its volume budget. The sea floor is

described by specifying a surface with no normal flow.

The bottom of the ocean is a material surface and the kinematic boundary condition is the no-normal flow

condition, wich implies

w = −uh.∇hH = −u
∂H
∂x

− v
∂H
∂y

at z = −H(x,y)

The sea surface is defined by means of an equation of motion of the sea surface height, and the ocean surface

is generally permeable to fresh water fluxes.

dη
d t

= w− qw ⇒ w =
∂η
∂ t

+ uh.∇h η − qw at z = η(x,y)

The surface heightz= η has a time tendency determined by an advective flux of height,the Eulerian vertical

velocity and the fresh water velocity (Pacanowski and Griffies 2000). The presence of horizontal advection of the

free surface height makes this equation nonlinear.

Knowledge of the surface currents and fresh water fluxqw allow one to time step the free surface height through

use of the surface kinematic boundary condition. However, because the motion of the free surface height is asso-

ciated with fast barotropic motions, it is more useful algorithmically to determineη within the barotropic system.

Additionally, a direct discretization of the surface kinematic boundary condition would require a discretization of

the advective term.

Instead of directly discretizing the kinematic boundary condition, perform a vertical integral of the continuity

equation over the full depth of the ocean to find

Z η

−H
div

→
u dz=

Z η

−H

∂w
∂z

+

Z η

−H

∂u
∂x

+

Z η

−H

∂v
∂y

= 0

⇒ w(z= η) − w(z= −H) =

Z η

−H

∂u
∂x

+

Z η

−H

∂v
∂y

Using the surface and bottom boundaries conditions, one obtain

∂η
∂ t

= −∇hU +qw where ∇hU =
∂

∂x

Z η

−H
udz+

∂
∂y

Z η

−H
vdz

The time tendency of the free surface height is determined bythe convergence of the vertically integrated

transport plus the fresh water flux through the sea surface.

In thefixed volume case, the sea surface heightη is supposed to be small relative to the total depthH. This

hypothesis leads to the definition of the approximated integrated transportU0. The upper boundary condition is

applied atz= −H andz= 0. The time tendency of the free surface height is written

∂η0

∂ t
= −∇hU0 +qw where U0 =

Z 0

−H
uhdz

In thevariable volumecase, the integrated transport is calculated on the full water column:

U =
Z η

−H
uhdz
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2.2 Implementation

In Roullet and Madec (2000) only the first level thickness varied. This limits the applications, because with strong

tidal amplitude the tidal elevation can be larger that the reference thickness of the first level equations. In our case,

all the levels vary. The sea surface elevation amplitude is distributed at each vertical level, at each time step (see

A.1 for the algorithm and the new module added to the code).

Because of the variations of the grid in time, the expressionof the vertical velocity is changed (see A.8).

With the variable volume, the cell grid of a given level are nolonger at the same depth, even in z-coordinates.

So the calculation of the hydrostatic pressure gradient must always include a correction, as in s-coordinates (see

A.4). Moreover, this calculation is not the same as in fixed volume case, due to simplifications that do not occur

in the variable volume case. The hydrostatic pressure gradient is now calculated from the bottom to the surface

(and no longer to the surface of the ocean at rest), so that thesurface pressure gradient is also included in this cal-

culation. Therefore the surface pressure gradient no longer needs to be calculated in a separate manner. With the

time-splitting scheme, this implies to remove the surface pressure gradient (implicitly calculated in the baroclinic

part) before estimating the barotropic part; the surface pressure gradient is calculated in the barotropic part, as in

the fixed volume case.

In order to implement variable volume, we time-step the heatand salt content instead of temperature and salin-

ity (see A.5 and A.6). We also modify (A.7) the time stepping of momentum (like the ROMS model (Schetpet.....)

for consistency). This was not done by Roullet and Madec (2000). It implies to multiply the components of the

tracers and momentum equations by the vertical scale factors (thickness of the level) just before the time-stepping.

Once the time-stepping is performed, the new variables mustbe divided by the scale factors.

Tracer equation:

∂t(hc) = h∗ [advective and diffusive terms]

wherec is a tracer concentration (temperature, salinity) andh is the thickness of a layer.

Momentum equation:

∂t(huh) = h∗ [advective, diffusive, ... terms]

whereuh is the horizontal component of the velocity (u andv), andh is the thickness of a layer.

In the fixed volume case, the free surface condition is applied atz= 0 (linearization) and there is a non-zero

vertical velocity atz= 0, which balances freshwater forcing and the variations of the free surface elevation. In the

variable volume case, there is zero advective flux at the surface, and the concentration/dilution effect on salinity is

zero. The corresponding subroutines of the code must be modified.

The list of the modified modules of NEMO is in A.3.
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Chapter 3

Salt conservation with freshwater forcing

The first question that arises when you implement new capacities to a code is, how to validate the modifications?

In our case a simple test is to check the conservation of salt content. In a nonlinear free surface code with varying

volume, the salt must be perfectly conserved, and the total volume variations must follow exactly the E-P forcing.

The conservation of salt is not exact with the linearized free surface (Roullet and Madec (2000), their Fig. 5).

Our configuration is a periodic zonal channel with flat bottom. It is designed after the baroclinic case of Ezer

et al. (2002). The number of points is 66 by 66 and 31 vertical levels(ORCA2 grid). The horizontal resolution

in both direction is equal to 8 km so that the physical domain dimensions are 512 x 512 km by 5000 m depth. It

is an f -plane (f0 = 1.00274.10−4s−1). The speed of linear gravity waves, which are the relevant dynamics in the

model, isc =
√

gH ≃ 220m.s−1, so that it takes 38 mn to travel the basin.

We want to test the salt conservation in the presence of largevertical diffusion, so we set the backgroundKz

vertical diffusion coefficient to 10−2m2.s−1 for tracer and momentum (variablesavt0andavm0in the namelist).

We also activate the TKE scheme, because it is used in most applications of NEMO; this means that the time-

stepping of the vertical diffusion is made with the implicitscheme. We also use theln zdfevdoption to increase the

mixing in the case of convection (avevd= 1m2.s−1 in the namelist). We verify in the output files that the vertical

mixing coefficient is equal to the background over most of thedomain, excepted in the three or four surface layers

where it is 1 due to convection of saline water.

The horizontal diffusion/viscosity is zero and the advection scheme is the centered one.

The baroclinic time-step is the same for all the simulationspresented in this chapter, and the barotropic time-

step is equal to the baroclinic time-step.

The fluid is stratified in temperature (analytic profile) witha uniform salinity of 35.5 psu. The initial dynamical

state is set by a barotropic zonal velocity of 0.1m.s−1 and the corresponding sea surface slope at timet = 0

(ηy = − f u/g).

Nx Ny Nz ∆x (km) ∆y (km) Lx (km) Ly (km)

66 66 31 8 8 512 512

Table 3.1: Domain characteristics
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The total volume fluxempand concentration/dilution effectempsare prescribed as periodic forcing with a

period of 5 hours 33 mn and 20 s, with alternance of evaporation and precipitation.

emp =
109

Lx LY
sin

(

2π
Nx

x

)

sin

(

π
Ny

y

)

sin

(

2π
2000

t

)

+10−2sin

(

2π
2000

t

)

emps = emp, contribution to salinity

Fig. 3.1(a) shows the forcing at one time step and fig. 3.1(b) shows the forcing at one point of the domain over

one period. One can see that there is an alternance of precipitation and evaporation. The time to travel along the

domain is 38 mn, so we take a short forcing period (less than 6 hours) and run the model for a duration of 6 hours

in most of the cases (60 hours in some cases in order to have 10 periods). The amplitude of the forcing is very

large (maximum water flux of 0.3 Sv) to test the model in extreme conditions.

(a) (b)

Figure 3.1: E-P forcing.(a) Over the whole domain at a specific time,(b) At one point (i=j=33) for one period.

In the following figures, we present the “salt quantity anomaly” ∆Qs, which is the salt quantity minus its initial

value. IfS is the salinity andδV the volume of an ocean grid cell,

∆Qs = Qs(t = 0)−Qs with Qs = ∑
oceancells

SδV

This quantity is calculated explicitly in the code in doubleprecision.

In the fixed-volume version of NEMO, the maximum salt contentvariation is 1.310−3 percent of the initial

value (Fig. 3.2a). This is far from an exact conservation. With the variable volume there is a large improvement,

which depends on the temporal scheme. The maximum variationof salt content is around 10−9 percent when we

use the time-splitting scheme (Fig.3.2a, b and d) . With the explicit and filtered schemes, the conservation of salt

content is again improved with a maximum of 210−12% of the initial value (Fig.3.2c and d).
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Figure 3.2: ∆Qs (Variation of the salt content in percentage of the initial salt content)(a) time-splitting and fixed volume,(b) time-splitting

and filtered,(c) explicit and filtered,(d) the 3 schemes in % of∆Qs for the fixed volume simulation
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Another diagnostic to consider is the volume conservation.The volume variation∆V must be equal to the

amount of the freshwater forcingVE−P.

∆V = V(t = 0)−V with V = ∑
oceancells

δV

VE−P(t) = ∑
t

(

∑
x

∑
y

(P+R−E)

)

The same comments than with the salt conservation can be madefor the volume conservation. The volume is

well conserved in the case of the explicit and filtered schemes (Fig. 3.3c and d). With the time-splitting scheme

(Fig. 3.3b and d) the conservation is worse but still good compared to the reference simulation with fixed volume

(Fig. 3.3a).
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Figure 3.3: ∆V minusVE−P (a) time-splitting and fixed volume,(b) filtered and time-splitting,(c) explicit and filtered,(d) the 3 schemes in %

of VE−P

A model with variable volume must conserve the salt content,even with freshwater loss or supply, because

those forcings do not carry salt. The volume must also be conserved: the variation of the mesh grid must balance
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exactly the freshwater forcing. Verifying these two basic points were essential in order to validate the variable

volume version of NEMO. The results are very good (dependingof the scheme used), so that we can say that the

new version of the code with variable volume works fine.
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Chapter 4

Gravity wave

We want to show the influence of variable volume on the dynamics. What is the behavior of a gravity wave in

shallow coastal area ?

The model is initialized with a barotropic wave propagatingeastward (the Coriolis factorf is set to zero):



























η(x,y) = η0cos

(

2π
λ

x

)

u(x,y) = η0
g
cφ

cos

(

2π
λ

x

)

v(x,y) = 0

cφ =
√

gH is set to 10m.s−1 so thatH ≃ 10.2m (depth of the fluid in rest).λ the wavelength is set to 2000 m.

Our configuration is a periodic zonal channel with the following number of points,Nx=202,Ny=12 andNz=4.

The horizontal resolution in both direction is equal to 10 m so that the domain dimensions are 2000 x 100 m.

The homogeneous fluid is set to a temperature of 12◦ C and a salinity of 35.5 p.s.u. The simulations are free,

i.e. with no forcing. The horizontal eddy diffusivity for tracers and momentum is set to 50m.s−1. We run the

model for 1000 s.

Fig. 4a shows the behavior of the free surface in the fixed volume case, and Fig. 4b in the variable volume

case. With the variable volume we observe as expected the effect of the nonlinearity. The effect of the nonlinearity

is to steepen the leading edge of a wave profile and flatten the trailing edge (the increase of wave speed with am-

plitude causes the leading part of the profile to steepen withtime and the trailing part to flatten). This effect can be

balanced by the effect of dispersion (the wave does not breakbecause steepening is controlled by viscosity). We

found no analytical solution to compare to this case, and it would interesting to compare with other models like

ROMS (Shchepetkin and McWilliams 2005) or POLCOMS (Holt andJames 2001).

Note: the fluid is homogeneous in salinity and temperature at its initial state. This state must not change. There

is no forcing, so salinity and temperature must stay constant.
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(a) Fixed Volume

(b) Variable Volume

Figure 4.1: Evolution in time of the sea surface height (1000 s between each curves) with the temporal explicit scheme. For visual effect, the

curves are shifted so that x = 0 corresponds to a minimum of theamplitude of the wave. The gravity wave is propagating eastward. The slope

forward the crest is steepening, while the amplitude of the wave is decreasing. The slope forward the crest is steeper in the variable volume

case (b) than for the fixed volume case (a).
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Appendix A

Code

A.1 Algorithm of the variable grid

We want to distribute the variations of the thickness of the water column (due to variations of the sea surface

elevationη) over all the layers of the model. The variations must affectthe surface layers more than the bottom

layers (and the last layer must be unchanged).

ei, j ,k,t
3T = ei, j ,k,0

3T +ei, j ,k,0
3T ∗ ηi, j ,t

νi, j ∗
jpk−1

∑
n=k

ei, j ,n,0
3T with νi, j =

jpk−1

∑
k=1

[

ei, j ,k,0
3T

jpk−1

∑
n=k

ei, j ,n,0
3T

]

We can verify that the sum of the new vertical scale factorf se
i, j,k,t

3t
is equal to the thickness of the whole water

column at restH
i, j

plus the sea surface elevationηi, j,t
:

jpk−1

∑
k=1

ei, j ,k,t
3T =

jpk−1

∑
k=1

ei, j ,k,0
3T +

ηi, j ,t

νi, j ∗
jpk−1

∑
k=1

[

ei, j ,k,0
3T

jpk−1

∑
n=k

ei, j ,n,0
3T

]

= H i, j + ηi, j ,t ∗ νi, j

νi, j = H i, j + ηi, j ,t

Once the scale factors for the T points are known, we can deduce the scale factor for the W points and the

depth of the T and W points.

Scale factors:

e3t(k) = e0
3t(k)+e0

3t(k)∗η∗ cor(k)

e3w(1) = e3t(1)

e3w(k > 1) =
1
2

[e3t(k−1)+e3t(k)]
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Depth at T and W points

gdept(1) =
e3w(1)

2
=

e3t(1)

2
gdept(k > 1) = gdept(k−1)+e3w(k)

=
k−1

∑
n=1

e3t(n)+
e3t(n)

2

gdepw(1) = 0

gdepw(k > 1) =
k

∑
n=2

e3t(n−1)

This is done in the new moduledomvvl.

A.2 Module domvvl.F90

This module contains three subroutines. The first one,dom vvl ini is only called at the initialisation. The second

one,dom vvl, is called at each time step, and updates the new grid. The last one,dom vvl ssh, is called at each

time step, and computes the sea surface elevation at the timeafter.

A.2.1 subroutinedom vvl ini

We calculate the coefficient applied to each layer and which do not depend of time.

µi, j ,k
T =

∑ jpk−1
n=k ei, j ,n,0

3T

∑ jpk−1
k=1

[

ei, j ,k,0
3T ∑ jpk−1

n=k ei, j ,n,0
3T

]

µi, j ,k
U =

∑ jpk−1
n=k ei, j ,n,0

3U

∑ jpk−1
k=1

[

ei, j ,k,0
3U ∑ jpk−1

n=k ei, j ,n,0
3U

]

µi, j ,k
V =

∑ jpk−1
n=k ei, j ,n,0

3V

∑ jpk−1
k=1

[

ei, j ,k,0
3V ∑ jpk−1

n=k ei, j ,n,0
3V

]

µi, j ,k
F =

∑ jpk−1
n=k ei, j ,n,0

3F

∑ jpk−1
k=1

[

ei, j ,k,0
3F ∑ jpk−1

n=k ei, j ,n,0
3F

]

A.2.2 subroutinedom vvl

At each time step, we calculate the sea surface elevation at each grid point, the depth and total depth.

ηi, j
U =

1
2

maski, j ,1U

ei, j
1U ei, j

2U

(ei, j
1T ei, j

2T ηi, j +ei+1, j
1T ei+1, j

2T ηi+1, j)

ηi, j
V =

1
2

maski, j ,1V

ei, j
1V ei, j

2V

(ei, j
1T ei, j

2T ηi, j +ei, j+1
1T ei, j+1

2T ηi, j+1)

ηi, j
F =

1
4

maski, j ,1F (ηi, j + ηi+1, j + ηi, j+1+ ηi+1, j+1)
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Scale factors at T levels

f sei, j ,k
3T = ei, j ,k,0

3T (1+ ηi, j
T µi, j ,k

T )

f sei, j ,k
3U = ei, j ,k,0

3U (1+ ηi, j
U µi, j ,k

U )

f sei, j ,k
3V = ei, j ,k,0

3V (1+ ηi, j
V µi, j ,k

V )

f sei, j ,k
3F = ei, j ,k,0

3F (1+ ηi, j
F µi, j ,k

F )

Scale factors at W levels

surface for k≥ 2

f sei, j ,1
3W = f se3t i, j ,1 f sei, j ,k

3W = 0.5( f sei, j ,k−1
3T + f sei, j ,k

3T )

f sei, j ,1
3UW = f se3ui, j ,1 f sei, j ,k

3UW = 0.5( f sei, j ,k−1
3U + f sei, j ,k

3U )

f sei, j ,1
3VW = f se3vi, j ,1 f sei, j ,k

3VW = 0.5( f sei, j ,k−1
3V + f sei, j ,k

3V )

T and W points depth

surface for k≥ 2

f sdepti, j ,1 = 0.5∗ f sei, j ,1
3w f sdepi, j ,kT = f sdepi, j ,k−1

T + f sei, j ,k
3W

f sdepwi, j ,1 = 0 f sdepi, j ,kW = f sdepi, j ,k−1
W + f sei, j ,k−1

3T

f sde3wi, j ,1 = f sdepi, j ,1T −ηi, j
T f sdei, j ,k3W = f sdepi, j ,kT −ηi, j

T

Ocean depth at U- and V-points

hui, j = ∑
k

f sei, j ,k
3U maski, j ,kU

hvi, j = ∑
k

f sei, j ,k
3V maski, j ,kV

Inverse of the local depth

huri, j =
maski, j ,1U

f sei, j ,1
3U + ∑k≥2 f sei, j ,k

3U maski, j ,kU

hvri, j =
maski, j ,1V

f sei, j ,1
3V + ∑k≥2 f sei, j ,k

3V maski, j ,kV

A.2.3 subroutinedom vvl ssh

The sea surface elevation at the time aftersshais needed at several moments:

• in tra nxt for the flux form caculation,

• in dyn nxt for the flux form caculation,

• in dynspg exp, dynspg flt anddynspg ts for the swap of the ssh arrays,

• in wzv for the calculation of the vertical velocity.
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The dynamics equation of the sea surface evolution can be written:

∂η
∂ t

= −∇hU +qw

For the explicit and filtered schemes, the expression ofsshais discretized like that:

ssha = sshb−2rdt
(

zhdiv+
emp
rauw

)

where zhdiv =
ei, j

2U zuni, j −ei−1, j
2U zuni−1, j +ei, j

2V zvni, j −ei, j−1
2V zvni, j−1

ei, j
1T ei, j

2T

and zuni, j = ∑
k

f sei, j ,k
3U uni, j ,k, zvni, j = ∑

k

f sei, j ,k
3V vni, j ,k

For the time-splitting scheme, the expression ofsshais discretized like that1:

ssha = sshbb−2rdt
(

zhdiv+
emp
rauw

)

where zhdiv =
ei, j

2U zuni, j −ei−1, j
2U zuni−1, j +ei, j

2V zuvi, j −ei, j−1
2V zuvi, j−1

ei, j
1T ei, j

2T

and zuni, j = un bi, j ,k, zvni, j = vn bi, j ,k

The variablessshbb, un b anduv b are calculated in thedynspg ts subroutine.

In thewzv, sshamust be calculated again.

1this is necessary to satisfy the conservation of tracers quantity, but the conservation of tracers is not satisfied. Using the same calculation

of sshaas in the explicit and filtered schemes for the flux form calculation allows the conservation of tracers, but not the conservation of the

tracers quantity. The time-splitting algorithm must be modified to garantee bothexactconservation and constancy preservation properties for

tracers (Shchepetkin and McWilliams 2005).
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A.3 Modified routines

A.3.1 CPP and namelist variables

A new key is introduced:keyvvl ; when this key is active the layer thicknesses depend on the free surface (and

thus depend ontime).

Free surface: we need a free surface,keydynspgflt (filtered free surface, default) orkeydynspgexp(explicit) or

keydynspgts (time splitting).

Vertical coordinates: ln zco, ln scoor ln zps

• keyvvl is compatible withln zco(z-coordinates, but providedkey zcois not active).

• keyvvl is compatible withln sco(s coordinates)

• keyvvl is incompatible withln zps(partial steps) because it is complicated and not coded yet

• keyvvl is incompatible withkeyzco(because in that case scale factors are 1 dimensional).

• keyvvl is incompatible withkeydynspgrl (rigid lid) because we need a free surface

Hydrostatic pressure gradient option: at this time,keyvvl is compatible only with the standard jacobian formu-

lation of the hydrostatic pressure gradient option (ln hpg sco= .true.).

A.3.2 Modules

New module:domvvl.F90 in directory DOM, contains :

• dom vvl init stores previously calculatedgdept, e3t... etc arrays intogdepti, e3ti, ... etc calculatesmut,

muu, muv, muf (correction for each grid-points)

• dom vvl

– calculates newsshnat other grid points (sshnu, sshnv...)

– calculatese3t, e3u, e3v, using new ssh (sshn)

– calculatese3w

– uses the e3 to calculategdept(depth of t points relative to free surface),gdepw(depth of w points

relative to free surface),gdep3w= gdept- eta. (depth of T points relative to a fixed (geopotential)

reference level for pressure gradient correction).

– updateshu, hv, hur, hvr used in time splitting and insolmat routine

• dom vvl ssh

– calculatesssha

List of modified routines:

domain.F90, dom oce.F90, domstp.F90, domvvl.F90, domwri.F90, domzgr.F90, domzgr substitute.h90,

dynhpg.F90, dynnxt.F90, dynspg exp.F90, dynspg flt.F90, dynspg ts.F90, dynspg oce.F90, istate.F90,

oce.F90, ocesbc.F90, par EEL R5.h90, step.F90, traadv cen2.F90, traadv muscl2.F90, traadv muscl.F90,

traadv tvd.F90, tranxt.F90, trasbc.F90, trazdf.F90, trazdf imp.F90, wzvmod.F90
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OPA SRC :

• istate.F90

– subroutineistate init initialization ofsshn, sshb, sshbb, sshbb, un b, vn band call ofdomvvl

at the end

– subroutineistate eel modifications to match Ezer et al

• par EEL R5.h90 modifications to match Ezer et al

• oce.F90 declaration ofsshu, sshv, sshbb, ssha

• step.F90 subroutinestp call of domvvl at the end of the dynamics part (after the call ofdyn nxt

DOM :

• domain.F90 subroutinedom ini call of dom vvl ini after call ofdom msk

• dom oce.F90 declaration of logicalkey lkvvl grid variablesgdepti, gdepwi, gdep3w, e3ti, e3ui, e3vi,

e3fi, e3uwi, e3vwi, e3w

• domstp.F90 subroutinedom stp stop execution in the case where accelerating the convergence is

activated

• domzgr.F90 subroutinezgr bat modifications to match Ezer et al (not zero at the equator)

domzgr substitute.h90 definition of scale factors

DYN :

• dynhpg.F90 subroutinehpg sco problem working with density anomaly

• dynnxt.F90 subroutinedyn nxt time stepping in flux form: multiply u and v by scale factors before

time stepping, and divide after. Ifkeydynspgflt is true, the time stepping is done indyn spg flt

subroutine.

• dynspg exp.F90 subroutinedyn spg exp does not calculate surface pressure gradient (already done

in dynhpg) ; the ssh after used for the ssh swap has already been calculated indom vvl ssh

• dynspg flt.F90 subroutinedyn spg flt does not calculate surface pressure gradient (already done

in dynhpg). The time stepping is done in flux form: multiply u and v by scale factors before time

stepping, and divide after. Add a call to subroutinesol mat because it depends on scale factors. The

ssh after used for the ssh swap has already been calculated indom vvl ssh

• dynspg ts.F90 subroutinedyn spg ts subtract the surface pressure gradient (calculated in dynhpg)

before the barotropic part. The calculation of the surface pressure gradient in the barotropic part is

calculated using the productrhd*sshn(rho total = rhd+1). We takerhd at the top level.hu andhv are

calculated at each barotropic time steps (they are renamedhu e andhv e). The ssh after used for the

ssh swap has already been calculated indom vvl ssh.

• dynspg flt.F90 the declaration ofsshnb, sshbb, un b andvn b is needed even ifkeydynspgts is

not activated, in order to compile the code.

• wzvmod.F90 subroutinewzv new definition of vertical velocity

TRA :
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• traadv cen2.F90, traadv muscl2.F90, traadv muscl.F90, traadv tvd.F90 zwx (for T) and

zwy (for S) set to zero (zero advective flux at surface). The heat flux linked with the temperature of

evaporation/precipitation is taken care of intrasbc.F90.

• tranxt.F90 subroutinetra nxt time stepping in flux form (for explicit vertical diffusion): multiply

T and S by scale factors before time stepping, and divide after. The ssh after used has been calculated

in dom vvl ssh.

• trasbc.F90 subroutinetra sbc add emp for T, zsa set to zero for S (the concentration/dilution effect

on salinity is zero)

• trazdf.F90 subroutinetra zdf call of dom vvl ssh

• trazdf imp.F90 subroutinetra zdf imp, time stepping in flux form for implicit vertical diffusion.

fse3tb, fse3taneeded in matrix calculation
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A.4 Hydrostatic pressure gradient: example with a first variable level

x0

e3w

z

w

T

w

T

e3w

(a) Fixed volume :η = 0

z

x0

e3w

fse3w = e3w +

e3w

fse3w

η

T
T

w
w

η

(b) Variable volume

Vertical section of 2 grid cells inscoordinates. (a) Fixed volume. (b) Variable volume.

The hydrostatic pressure gradient between 2 cells is equal to the difference of the water column weight between

T points of 2 cells, divided by the distance between the T points (e
i, j,k

1
or e

i, j,k

2
).

In order to calculate the water column height at T points, vertical scale factors joining each T points are

summed. Ins coordinates, that height can vary from one cell to another and one must give a correction to obtain

the gradient at the right depth.

In OPA with fixed volume, the vertical scale factor for the first level (e
i, j,1

3w
) is equal to twice the real depth of

the first T point, and the hydrostatic pressure gradient along s surfaces is written:

zhpii, j ,1 = −g∗ 1

ei, j
1u

∗
(

ei+1, j ,1
3w

2
∗ρi+1, j ,1− ei, j ,1

3w

2
∗ρi, j ,1

)

The correction added to the pressure gradient is written:

zuap= g∗ 1

ei, j
1u

∗
(

ρi+1, j ,1+ ρi, j ,1)∗ 1
2
∗
(

ei+1, j ,1
3w

2
− ei, j ,1

3w

2

)

In OPA with variable volume, the SSH is added to the first vertical scale (e
i, j,1

3w
+ ηi, j

), and the position of the

first T point on the vertical (taken from the sea surface) is re-defined as the half ofe
i, j,1

3w
+ ηi, j

. This expression is

substituted to the fixed volume case in the hydrostatic pressure gradient computation, which is then written:

zhpii, j ,1 = −g∗ 1

ei, j
1u

∗
(

ei+1, j ,1
3w + ηi+1, j

2
∗ρi+1, j ,1− ei, j ,1

3w + ηi, j

2
∗ρi, j ,1

)
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The calculation of the expression of the correction of the pressure gradient is done in report of the surface of

the fluid at rest (z= 0). In this case, the T point depth is equal to the true height of the water above the T point

minus SSH:
e
i, j,1

3w
+η

i, j

2 −ηi, j
=

e
i, j,1

3w
−η

i, j

2 . Therefore the expression of the correction of the pressuregradient:

zuap= g∗ 1

ei, j
1u

∗
(

ρi+1, j ,1 + ρi, j ,1)∗ 1
2
∗
(

ei+1, j ,1
3w −ηi+1, j

2
− ei, j ,1

3w −ηi, j

2

)
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A.5 Flux form time-stepping of tracer

For a tracerT at a given time-stept, the equation of evolution is written:

f set+1
3T (i,j,k) Tt+1(i,j,k)− f set−1

3T (i,j,k) Tt−1(i,j,k)

2∆t
= f set3T (i,j,k) RHS(i,j,k)

whereRHScontains the advection and diffusion terms.

The 3 following steps are performed in thetra nxt subroutine (steps 1 and 2 are done only for the explicit diffu-

sion case; see A.6 for the implicit diffusion case):

1) Thickness weighting

RHS(i,j,k) = RHS(i,j,k) ∗ f set3T (i,j,k)

Tt (i,j,k) = Tt (i,j,k) ∗ f set3T (i,j,k)

Tt−1(i,j,k) = Tt−1(i,j,k) ∗ f set−1
3T (i,j,k)

2) Time stepping (Leap-frog scheme)

Tt+1(i,j,k) = Tt−1(i,j,k) + 2rdt RHS(i,j,k)

3) Time filter and swap of arrays

Tt−1(i,j,k) =
α∗ [Tt−1(i,j,k) +Tt+1(i,j,k)]+ α1∗Tt (i,j,k)

α∗ [ f set−1
3T (i,j,k) + f set+1

3T (i,j,k)]+ α1∗ f set3T (i,j,k)

Tt (i,j,k) =
Tt+1(i,j,k)

f set+1
3T (i,j,k)
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A.6 Flux form time-stepping of tracer: implicit case

The implicit treatment of the vertical diffusion terms is used to accomodate the small vertical spacing required to

resolve the important top and bottom boundary layers without drastically reducing the time step as would be the

case with the more usual explicit schemes (Blumberg and Mellor 1987). The use of an implicit scheme results in

a tri-diagonal matrix which is solved by a Gaussian elimination method.

The vertical diffusive operator for the tracer takes the following semi-discrete space form:

DνT
T ≡ 1

e3T
δk

[

AνT
w

e3w
δk+1/2[T]

]

whereAνT
w is the diffusivity coefficient.

First case: fixed volume

The tracer equation is written:

Tt+1(k)−Tt−1(k)
2∆t

= RHS(k)+DνT
T (k)

Tt+1(k)−Tt−1(k) = 2∆t RHS(k)+2∆t DνT
T (k)

= 2∆t RHS(k) +

2∆t
e3T (k)

[

AνT
w (k+1)

e3w(k+1)
[Tt+1(k+1)−Tt+1(k)]− AνT

w (k)

e3w(k)
[Tt+1(k)−Tt+1(k-1)]

]

= 2∆t RHS(k) +
2∆t AνT

w (k+1)

e3T (k)e3w(k+1)
Tt+1(k+1)−

2∆t
e3T (k)

(

AνT
w (k+1)

e3w(k+1)
+

AνT
w (k)

e3w(k)

)

Tt+1(k) +
2∆t AνT

w (k)

e3T (k)e3w(k)
Tt+1(k-1)

Tt−1(k) + 2∆t RHS(k) = Tt+1(k+1)

[−2∆t AνT
w (k+1)

e3T (k)e3w(k+1)

]

+

Tt+1(k)

[

1+
2∆t

e3T (k)

(

AνT
w (k+1)

e3w(k+1)
+

AνT
w (k)

e3w(k)

)]

+ Tt+1(k-1)

[

− 2∆t AνT
w (k)

e3T (k)e3w(k)

]

Matrix construction:

zwi(k) =



















−2∆t AνT
w (k) for k≥ 2

e3T (k)e3w(k)

0 for k = 1 (surface boundary condition)

zws(k) = − 2∆t AνT
w (k+1)

e3T (k)e3w(k+1)

zwd(k) = 1 − zwi(k) − zws(k)
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Second member construction:

zwy(k) = Tt−1(k) + 2∆t RHS(k)

System to be solved:

zwi(k)Tt+1(k-1) + zwd(k)Tt+1(k) + zws(k)Tt+1(k+1) = zwy(k)

















zwd(1) zws(1) 0 0 0 · · · 0

zwi(2) zwd(2) zws(2) 0 0 · · · 0

0 zwi(3) zwd(3) zws(3) 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 zwi(k) zwd(k)

































Tt+1(1)

Tt+1(2)

Tt+1(3)
...

Tt+1(k)

















=

















zwy(1)

zwy(2)

zwy(3)
...

zwy(k)

















m.x = y

wherem is a tri-diagonal matrix (jpk * jpk).m is decomposed in the product of an upper and lower triangular

matrix. The 3 diagonal terms are in arrayszwd, zws, zwi. The second member is in arrayzwy.

Second case: variable volume

The tracer equation is now written:
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f set+1
3T (k)Tt+1(k)− f set−1

3T (k)Tt−1(k)

2∆t
= f set3T (k)RHS(k)+ f set3T(k)DνT

T (k)

f set+1
3T (k)Tt+1(k)− f set−1

3T (k)Tt−1(k) = 2∆t f set3T (k)RHS(k)+2∆t f set3T(k)DνT
T (k)

= 2∆t f set3T (k)RHS(k) +

2∆t

[

AνT
w (k+1)

e3w(k+1)
[Tt+1(k+1)−Tt+1(k)]

− AνT
w (k)

e3w(k)
[Tt+1(k)−Tt+1(k-1)]

]

= 2∆t f set3T (k)RHS(k) +
2∆t AνT

w (k+1)

e3w(k+1)
Tt+1(k+1)−

2∆t

(

AνT
w (k+1)

e3w(k+1)
+

AνT
w (k)

e3w(k)

)

Tt+1(k) +
2∆t AνT

w (k)

e3w(k)
Tt+1(k-1)

f set−1
3T (k)Tt−1(k) + 2∆t f set3T (k)RHS(k) = Tt+1(k+1)

[−2∆t AνT
w (k+1)

e3w(k+1)

]

+

Tt+1(k)

[

f set+1
3T (k) +2∆t

(

AνT
w (k+1)

e3w(k+1)
+

AνT
w (k)

e3w(k)

)]

+

Tt+1(k-1)

[

−2∆t AνT
w (k)

e3w(k)

]

Matrix construction:

zwi(k) =



















−2∆t AνT
w (k) for k≥ 2

e3w(k)

0 for k = 1 (surface boundary condition)

zws(k) = − 2∆t AνT
w (k+1)

e3w(k+1)

zwd(k) = f set−1
3T (k) − zwi(k) − zws(k)

Second member construction:

zwy(k) = f set−1
3T (k)Tt−1(k) + 2∆t f set3T (k)RHS(k)

The vertical diffusion is performed in thetra zdf imp or tra zdf exp routines, which are the last routines

called before thetra nxt routine. In the implicit treatment, the time stepping is already done, and call totra nxt

is not necessary.

Dynamics case
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The method is the same as for the tracers, but a normalizationis made to obtain the general momentum trend.

Whatever the treatment (explicit or implicit), the time stepping is performed further (indyn nxt routine, or in

dyn spg flt routine ifkey dyn spg flt is defined).
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A.7 Flux form time-stepping of momentum

For the horizontal component of velocity (U or V) at a given time-stept, the equation of evolution is written:

f set+1
3U (i,j,k)U t+1(i,j,k)− f set−1

3U (i,j,k)U t−1(i,j,k)

2∆t
= f set3U (i,j,k) RHS(i,j,k)

whereRHScontaints the advection and diffusion terms.

The 3 following steps are performed in thedyn nxt subroutine for the explicit and time-splitting schemes, and

in thedynspg flt subroutine for the filtered scheme (for the filtered scheme, apart of step 3 - division by scale

factors - is done indynspg flt, and a second part - swap of arrays - indyn nxt):

1) Thickness weighting

RHS(i,j,k) = RHS(i,j,k) ∗ f set3U (i,j,k)

U t (i,j,k) = U t (i,j,k) ∗ f set3U (i,j,k)

U t−1(i,j,k) = U t−1(i,j,k) ∗ f set−1
3U (i,j,k)

2) Time stepping (Leap-frog scheme)

U t+1(i,j,k) = U t−1(i,j,k) + 2rdt RHS(i,j,k)

3) Time filter and swap of arrays

U t−1(i,j,k) =
α∗ [U t−1(i,j,k) +U t+1(i,j,k)]+ α1∗U t (i,j,k)

α∗ [ f set−1
3U (i,j,k) + f set+1

3U (i,j,k)]+ α1∗ f set3U (i,j,k)

U t (i,j,k) =
U t+1(i,j,k)

f set+1
3U (i,j,k)
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A.8 Vertical velocity

Using the incompressibility hypothesis, the vertical velocity is computed by integrated the horizontal divergence

from the bottom to the surface. The boundary conditions arew = 0 at the bottom (no flux) and, in the variable

volume case,w = 0 at the surface. In the variable volume case, we must substract to the vertical velocity of the

“fixed volume vertical velocity” the vertical velocity of moving grid-box interfaces due to the motion of free surface

Fixed volume case:

∂w
∂k

= −χe3

where χ =
1

e1Te2Te3T

(

∂
∂i

[e2Ue3Uu]+
∂
∂ j

[e1Ve3Vv]

)

so that wni, j ,k =
k

∑
jpk

(

f sei, j ,k
3T hdivnk

)

Variable volume case:

∂w
∂k

= −χe3−
∂e3T

∂ t

wni, j ,k =
k

∑
jpk

(

f sei, j ,k
3T hdivnk− sshai, j −sshbi, j

2rdt
ei, j ,k

3T muti, j ,k
)
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