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Introduction

Historically, the NEMO system (Madeat al. 1998) was built for climate studies using strong hypothesishe
dynamics, such as the “rigid lid” approximation, which elirates the fast gravity waves. A first improvement
(Roullet and Madec 2000) was made by implementing a fre@asenivhile filtering the fast external gravity waves,
which allows one to keep a large time step. Roullet and Mad@0() compared a linear formulation (with fixed
volume) with a non-linear one (with a variable first leveldkmess), and concluded that the linear formulation was
the best compromise for climate (the linear formulationgioet strictly conserve the ocean salt content unlike the
non-linear formulation, but the differences were not laegeugh to play a large role in the experiments of Roullet
and Madec (2000)).

People interested in regional and/or coastal studies nmasiate rapidly phenomena with short spatial scales,
such as tidal waves. With the filtering scheme of Roullet aratidt (2000), these phenomena are very rapidly
damped, or not simulated at all (Taland&tral. 2003). That's why a time-splitting scheme has recently been
implemented, which allows the representation of the fastadyics, while keeping a large time step (Bessieres
2003). But this is not sufficient: although the free surfacieriplemented, the vertical grid of the model is fixed in
time. This fact does not allow a good representation of tigkates, and as mentioned above it precludes an exact
conservation of the salt content. This is why the decisions made, as part of the MERSEA european project, to
implement a variable volume in the NEMO system.

In this report, we first review the representation of the fseeface in the NEMO system, with the different
schemes available at the present time (chapterl). Then tnalice the equations of the free surface and the
implementations induced by the variable volume (chapter\® present two kind of experiments in order to
investigate the behavior of the model with the variable wodimplemented; chapter 3 focusses on the conservation
of salt content, and chapter 4 on the representation of atgragve.






Chapter 1

Kelvin waves in a channel

Before implementing a variable volume option, it is necessa understand how the free surface equation is
handled in the code. Three schemes are available: expiigted and time-splitting. The explicit scheme is the
simplest but the presence of fast barotropic waves reqaivesy small time step (of order of a few seconds). The
filtered free surface scheme (Roullet and Madec 2000) usadditionnal force directly in the primitive equations
to filter External Gravity Waves (EGW). This force cancels tiropagation of EGWs which have a frequency
higher than a cutoff frequency, allowing the possibilitykeep a relative large time step. The time-splitting scheme
Bessieres (2003) splits the fast barotropic part and the baroclinic part of the dynamics.

Talandieret al. (2003) studied the properties of the filtered scheme conatarthe explicit scheme. Bessiéeres
(2003) compared the filtered scheme and the time-splitithgme. These two studies considered an initial-value
problem: a Kelvin wave solution was initialized in a periodhannel and left to propagate without non linearities
nor friction, and the analytical solution was compared with numerical simulation. This case is not relevant
to tides in regional models, where the tidal waves are foatetie open boundaries. In this report, we perform
the Kelvin wave experiment with open boundary conditionse &0 reproduce the case of periodic boundary
conditions, to allow a direct comparison of the three scleme

1.1 The barotropic Kelvin wave

1.1.1 Analytical solution
This section is repeated for completeness from the repofalaindieret al. (2003). We detail here the analytical

solution for a non-dispersive Kelvin wave in a zonal chamielidth equal to b.

Considering the following hypotheses: homogeneous fluidrdstatic approximatiom < H, linearization,
flat bottom, f plan, no forcing and no dissipation; we haveftilewing shallow water equations:

ou B on

ov B on

a5 + fu = —ga—y (1.2)
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whereu = (u,v) is the barotropic velocity; f the Coriolis parametgithe gravity;n the free surface against a zero
reference level and H the total channel depth.

If we set{n,u,v}(x,y,t) = RE{(®,U,V)(x,y)e '™}, we can have the V expression accordinghaeplacing the
time derivative term of u in 1.1 with its expression obtainedaking the time derivative of 1.2. Doing the same
thing for U, we get the following expressions:

Uxy) = %(axmjugaycb) (1.4)
Vixy) = ”;_&Qﬂ)@ym—%a@) (1.5)

Moreover, eliminating u and v componants from equationsahd 1.2 with the continuity equation 1.3, we get the
EGWs propagation equation:

(2+f%)n = g0 (1.6)

with the phase velocitgo = /gH. As we are in a zonal channel, we can re-wetg, y) = E(y).€** and substitute
n in 1.6 with this writing. We obtain the following second ordsjuation for E(y):

2 —u?

2
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E'(y)—YVE() = 0 with y¥=K+ (1.7)
The real solution for this differential equation is:
E(y) = AeW+ B.e_W such as (D(X, y) — (AeW+ B.e—W) eikX

Applying the boundary condition of zero normal velocity mépthe North and South boundary (y=0 and y=b) of
the channel, whatever the time step; we have the followirstesy from the equation 1.5:

f f
A(y+ %HB(&_V):O (1.8)
AeP(y+ %) + B.e*V"(% —y)=0 (1.9)

The non-dispersive wave solution is obtained in settingrfstancey > = —co/ f = Ro the external Rossby radius
of deformation which implies B = 0. So the functignis writting as:

— R jkx
d(x,y) =Ae Foe (1.10)

Finally one deducts the analytical solution for a barotedq@lvin wave in a zonal channel:

y

nxyt) = Ae R cogkx—wt) (1.112)
ux,y,t) = % nxyt) (1.12)
v(x,y,t) = 0 (1.13)



1.1.2 The Kelvin amphidromy

In our periodic zonal channel configuration, we simulatedbminant semi-diurnal wave M2 (perid@d = 44700

s i.e 12h25’) using 2 barotropic Kelvin waves; one propagjatstward (K1) and one westward (K2) respectivly
along the South and North boundary. The channel, centerd&bN, has a zonal and meridional length of 1000
km and 600 km.

Using equations 1.11 and 1.12 we form the following solution

nxyt) = A [e*‘% cogkox — uot) +e'% cogkox+ ot)] (1.14)
ux,y,t) = A.\/g [e*% cogkox — txt) — e cogkox+ tt)] (1.15)
vix,y,t) = 0 (1.16)

whereky = i—’: W = %—‘: M = +OH. Ty andRg = @ are respectively the wavenumber, the pulsation, the wave-
length and the external Rossby radius for the Kelvin waves dignal and domain characteristics are summarized
in Table 1.1.

‘ M2 wave ‘Channeldomaid Parameters

Tk =44700s| L,=1000km | Q=7.2910°s1

Ak=1000km| Lp=600km =45 N
A=05m H=51.03m f =2.Qsing

Ro~ 217 km g=9.81ms?

Table 1.1: Characteristics of the M2 wave and the geometry of the cHanne

We notice that the depth H of the channel was calculated Vilxileg the wavelength\x and the wave periodi
repectively to 1000 km and 44700 seconds.

For these characteristics, Figures 1.1 and 1.2 show ragelydhe Kelvin amphidromy and the analytical solution
for the SSH at four time steps.
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Figure 1.1: Co-ranges lines and amphydromic points for the propagatfichKelvin waves in a zonal channel.

1.2 Numerical simulations with NEMO

1.2.1 The free surface treatment

For the filtered free surface, an additional force is addesh@mentum equations of the model. This force only
dissipates phenomena with timescale lower thaf 2vith T, the cutoff time parameter set tdRafter a stability
analysis {t is the time step model) and normally does not influence largescales.

The time-splitting scheme exploits the time scale differsbetween barotropic and baroclinic gravity waves.
It is possible to approximate the fast mode by fluctuationthefdepth averaged fluid, and the slow modes by
deviations from the depth average (Griffietsal. 2000). Barotropic equations are integrated with gravityes
resolved using small time steps. The barotropic sub-cgdierie averaged.

Our analytical solution being quite linear, we have deletidissipation and advective terms in OPA momen-
tum equations so they are reduced to (without any forcing):

atu+f/\u:—%DPh—gDr]—TCDatr] (1.17)
whereR;, is the hydrostatic pressure and the last term in the righdIsée is the additional force. The free surface
equation is (no forcing here):

on =-0.(HU) (1.18)

with U the vertically integrated velocity. We notice that the feeaface is linear in OPA (cf. Roullet and Madec
(2000))
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1.2.2 Model configuration

Our configuration is a periodic zonal channel with the folilegnumber of pointsNy=52, Ny=33 andN,=2. The
horizontal resolution in both direction is equal to 20 km kattthe domain dimensions are 1000 x 600 km. The
wavelength\, and the meridional characteristic lend® are quite well sampled with this spatial step.

The homogeneous fluid is set to a temperature 6f@nd a salinity of 35.5 p.s.u. The initial dynamical state
is setting with the analytical equations (14)-(16) at tim® tnd the parameters defined in Table 1.1. We must
emphasize that after this time, all simulations are freswith no forcing.

1.2.3 Simulations

We tested the behavior of the filtering force and time-dplitscheme for two values of the time-step.
To compare numerical simulations to their analog analysolution, we have calculated the root mean square
errors (RMS errors) over all the domain with the following tmed:

Zdom{ns_ ﬂa}z) Y2

Zdomng
wherens andn, are respectively the numerical and analytical SSH,m represent the summation over all the
domain, i.e over i=Ny and j=1Ny.

The Figure 1.3(a) shows the rms error calculated in peribdimmdary conditions for the explicit scheme with
At =74.5 s, for the filtered scheme witkt = 74.5 s and\Mt = 745 s, and for the time-splitting scheme with=
74.5 s and\t = 745 s (with a barotropic time step Af,; = 74.5 s). The Kelvin waves are completly canceled over
the 10 periods of the run for the simulation with the filteretieme and\t = 745 s, while the rms error reached
70% with the time-splitting scheme ald = 745 s. WithAt = 74.5 s, the rms error was 50% for the filtered
scheme, 10% for the time-splitting scheme and 6% for thei@kptheme.

According to Talandieet al. (2003) the loss of the tidal signal is strongly related to &dklitional force,
because of there is non linear advective terms in the NEMO emtom equations and the setting of the horizontal
and vertical diffusion coefficients are set to zero in bothaiyical and tracer equations. The simulation with the
explicit scheme is indeed the less diffusive (errors areeggied by the spatial resolution, a more accurate spatial
discretization will decrease them). The time-splittingeaverages the values calculated in the barotropic loop;
the tidal signal is therefore damped.

With the open boundary conditions, the rms error for theritescheme varies between 10% and 40% With
=74.5 s, between 35% and 65% with= 745 s. The rms error for the time-splitting scheme varigs/ben 3%
and 6% withAt = 74.5 s, and between 8% and 11% wiih= 745 s.

RMS= (

We conclude that the time-splitting scheme is well adapiesimulate forced tidal waves. The additional force
is too diffusive, even with a periodic forcing at the open hdaries.

However, even with the time-splitting scheme, a large emitiresult if the domain is large and the tidal wave
has to travel many wavelenght away from its forcing regiaslaown in the periodic case.
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Figure 1.3: RMS error of the sea surface height for two baroclinic tieps At = 74.5 s and\t = 745 s) and three time-stepping schemes.
The time-splitting scheme is better than the filtered sché@eriodic channel explicit scheme withAt = 74.5 s, filtered scheme witht
=74.5 s and\t = 745 s; time-splitting scheme witlt = 74.5 s and\t = 745 s (the barotropic time sty is 74.5 s)(b) open boundary
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Aty is 74.5 s)
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Chapter 2

Method, equations

The representation of nonlinearities in the free surfacgaéqn requires the vertical grid to change with time
(variable volume). The discretization of the variable wokiis determined by volume and energy constraints
(Griffies 2004). The variable volume computed from a nordirfece surface equation ensures perfect conservation
of ocean salt content. The fresh water flux modifies the sefamielevation and the thicknesses of the model
layers, and consequently the model volume.

The improvement involves two major modifications by allog/layer thicknesses to be time-varying and by
computing a nonlinear free surface equation.

2.1 Equations

Figure 2.1: The free surfacer is the deviation of the sea surface from réstis the depth of the bottonu,, is the freshwater forcing (positive
if evaporation is greater than precipitation, otherwisgai®e).

Notations:

e U(X,Y,2),V(x,Y,2): horizontal components of the velocity, u,

e W(X,Y,2): vertical com,ponent of the velocity,

13



e 1(x,y): deviation of the sea surface from rest (sea surface height)
e H(x,y): depth of the bottom,

e qu: fresh water forcing, in units of velocity (volume per uriihe per unit area), crossing the ocean surface.

The kinematic boundary conditions define the ocean domairdascribe its volume budget. The sea floor is
described by specifying a surface with no normal flow.

The bottom of the ocean is a material surface and the kinerbatindary condition is the no-normal flow
condition, wich implies

W= —Up.0OnH = —u—X —v— at z=-H(xy)

The sea surface is defined by means of an equation of motidredea surface height, and the ocean surface

is generally permeable to fresh water fluxes.
ccii_rt] =W—0Qw = W= aa—? +upOhn—agw at z=nxy)

The surface height = n has a time tendency determined by an advective flux of hetiglt:ulerian vertical
velocity and the fresh water velocity (Pacanowski and @s$ff2000). The presence of horizontal advection of the
free surface height makes this equation nonlinear.

Knowledge of the surface currents and fresh waterdjuallow one to time step the free surface height through
use of the surface kinematic boundary condition. Howewerahse the motion of the free surface height is asso-
ciated with fast barotropic motions, it is more useful algonically to determina) within the barotropic system.
Additionally, a direct discretization of the surface kinatic boundary condition would require a discretization of
the advective term.

Instead of directly discretizing the kinematic boundamdition, perform a vertical integral of the continuity
equation over the full depth of the ocean to find

n — n n n
/ divudz:/ w @Jr/ A
H _H 0Z —H 0X _H 0y

N w(z:n)—W(Z:_H):/_H&JF/_HW

Using the surface and bottom boundaries conditions, oredrobt

on 0 M o M
o —0OpU +gw| where OnU = 07(/44 udz+®[H vdz

The time tendency of the free surface height is determinethbyconvergence of the vertically integrated
transport plus the fresh water flux through the sea surface.

In thefixed volume casethe sea surface heightis supposed to be small relative to the total ddpthThis
hypothesis leads to the definition of the approximated natiegl transportyy. The upper boundary condition is
applied az= —H andz= 0. The time tendency of the free surface height is written

0 0
Mo _ —0OhUo+aqw where Ug = / undz
ot _H
In thevariable volume case, the integrated transport is calculated on the fukmailumn:

n
U= / undz
“H

14



2.2 Implementation

In Roullet and Madec (2000) only the first level thicknessegr This limits the applications, because with strong
tidal amplitude the tidal elevation can be larger that tHemence thickness of the first level equations. In our case,
all the levels vary. The sea surface elevation amplitudésisiduted at each vertical level, at each time step (see
A.1 for the algorithm and the new module added to the code).

Because of the variations of the grid in time, the expressidhe vertical velocity is changed (see A.8).

With the variable volume, the cell grid of a given level arelonger at the same depth, even in z-coordinates.
So the calculation of the hydrostatic pressure gradient miwsys include a correction, as in s-coordinates (see
A.4). Moreover, this calculation is not the same as in fixellinee case, due to simplifications that do not occur
in the variable volume case. The hydrostatic pressure gnad now calculated from the bottom to the surface
(and no longer to the surface of the ocean at rest), so thattiece pressure gradient is also included in this cal-
culation. Therefore the surface pressure gradient no lomgeds to be calculated in a separate manner. With the
time-splitting scheme, this implies to remove the surfaesgure gradient (implicitly calculated in the baroclinic
part) before estimating the barotropic part; the surfa@sgure gradient is calculated in the barotropic part, as in
the fixed volume case.

In order to implement variable volume, we time-step the laaatsalt content instead of temperature and salin-
ity (see A.5 and A.6). We also modify (A.7) the time steppifignmmentum (like the ROMS model (Schetpet.....)
for consistency). This was not done by Roullet and Madec @200 implies to multiply the components of the
tracers and momentum equations by the vertical scale f&ttuckness of the level) just before the time-stepping.
Once the time-stepping is performed, the new variables bmigivided by the scale factors.

Tracer equation:

di(hc) = hx [advective and diffusive terms

wherec is a tracer concentration (temperature, salinity) hislthe thickness of a layer.
Momentum equation:

ot(huy) = hx [advective, diffusive, ... termis

whereuy, is the horizontal component of the velocitygndv), andh is the thickness of a layer.

In the fixed volume case, the free surface condition is ag@ie = O (linearization) and there is a non-zero
vertical velocity atz= 0, which balances freshwater forcing and the variationsefftee surface elevation. In the
variable volume case, there is zero advective flux at thesarfand the concentration/dilution effect on salinity is

zero. The corresponding subroutines of the code must befimddi

The list of the modified modules of NEMO is in A.3.
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Chapter 3

Salt conservation with freshwater forcing

The first question that arises when you implement new cdpadit a code is, how to validate the modifications?
In our case a simple test is to check the conservation of sateat. In a nonlinear free surface code with varying
volume, the salt must be perfectly conserved, and the totahve variations must follow exactly the E-P forcing.
The conservation of salt is not exact with the linearize@ garface (Roullet and Madec (2000), their Fig. 5).

Our configuration is a periodic zonal channel with flat bottdtris designed after the baroclinic case of Ezer
et al. (2002). The number of points is 66 by 66 and 31 vertical le(®@RBCA2 grid). The horizontal resolution
in both direction is equal to 8 km so that the physical domaimeshsions are 512 x 512 km by 5000 m depth. It
is an f-plane fo = 1.0027410 *s1). The speed of linear gravity waves, which are the relevgnachics in the
model, isc = /gH ~ 220m.s™1, so that it takes 38 mn to travel the basin.

We want to test the salt conservation in the presence of lagecal diffusion, so we set the backgroukig
vertical diffusion coefficient to 10?m?.s™1 for tracer and momentum (variablastO andavmoin the namelist).
We also activate the TKE scheme, because it is used in mobtaipmns of NEMO; this means that the time-
stepping of the vertical diffusion is made with the implisitheme. We also use thezdfevdoption to increase the
mixing in the case of convectiomyevd= 1m?.s 1 in the namelist). We verify in the output files that the veatic
mixing coefficient is equal to the background over most ofdbmain, excepted in the three or four surface layers
where it is 1 due to convection of saline water.

The horizontal diffusion/viscosity is zero and the advettcheme is the centered one.

The baroclinic time-step is the same for all the simulatipresented in this chapter, and the barotropic time-
step is equal to the baroclinic time-step.

The fluid is stratified in temperature (analytic profile) withuniform salinity of 35.5 psu. The initial dynamical
state is set by a barotropic zonal velocity of Grls ! and the corresponding sea surface slope at tire0

(ny = —fu/9).

Ne [ Ny [ Nz [ A (km) | By (km) | Le (km) | Ly (km)
66| 66|31 8 8 512 512

Table 3.1: Domain characteristics

17



The total volume fluempand concentration/dilution effeetmpsare prescribed as periodic forcing with a
period of 5 hours 33 mn and 20 s, with alternance of evaparatim precipitation.

emp = 10 sin 2—nx sin( Zy) sin ﬂt +10 2sin ﬂt
P = o N N, Y ) 5"\ 2000 2000

emps = emp contribution to salinity

Fig. 3.1(a) shows the forcing at one time step and fig. 3.{byvs the forcing at one point of the domain over
one period. One can see that there is an alternance of gegmpiand evaporation. The time to travel along the
domain is 38 mn, so we take a short forcing period (less thaoués) and run the model for a duration of 6 hours
in most of the cases (60 hours in some cases in order to haveridilp). The amplitude of the forcing is very
large (maximum water flux of 0.3 Sv) to test the model in exeeronditions.
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56 ‘ 0.008 -
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45 0.004 -
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| 0.008
15 —-0.008 -
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5 16 25 35 45 55 65 Time (hours)

(@ (b)
Figure 3.1: E-P forcing.(a) Over the whole domain at a specific tin{p) At one point (i=j=33) for one period.

In the following figures, we present the “salt quantity anthaQs, which is the salt quantity minus its initial
value. IfSis the salinity andV the volume of an ocean grid cell,

AQs=Qs(t=0)—Qs with Qs= Z SOV
oceancells
This quantity is calculated explicitly in the code in douplecision.

In the fixed-volume version of NEMO, the maximum salt conteariation is 13102 percent of the initial
value (Fig. 3.2a). This is far from an exact conservationthtlie variable volume there is a large improvement,
which depends on the temporal scheme. The maximum variafisalt content is around 18 percent when we
use the time-splitting scheme (Fig.3.2a, b and d) . With #tpiet and filtered schemes, the conservation of salt
content is again improved with a maximum of 218% of the initial value (Fig.3.2c and d).
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Another diagnostic to consider is the volume conservatidhe volume variatioldV must be equal to the
amount of the freshwater forcings_p.

WV =V(t=0)-V with V=Y &

oceancells

Ve =3 | Y ¥ (P+R-E)
Xy

The same comments than with the salt conservation can be imatie volume conservation. The volume is
well conserved in the case of the explicit and filtered sche(Re. 3.3c and d). With the time-splitting scheme
(Fig. 3.3b and d) the conservation is worse but still good jgared to the reference simulation with fixed volume
(Fig. 3.3a).
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Figure 3.3: AV minusVe_p (a) time-splitting and fixed volumeb) filtered and time-splitting(c) explicit and filtered(d) the 3 schemes in %
of VE_p

A model with variable volume must conserve the salt contewn with freshwater loss or supply, because
those forcings do not carry salt. The volume must also bearwrd: the variation of the mesh grid must balance
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exactly the freshwater forcing. Verifying these two bastnis were essential in order to validate the variable
volume version of NEMO. The results are very good (dependirthe scheme used), so that we can say that the
new version of the code with variable volume works fine.
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Chapter 4

Gravity wave

We want to show the influence of variable volume on the dynamWhat is the behavior of a gravity wave in
shallow coastal area ?

The model is initialized with a barotropic wave propagatagtward (the Coriolis factdiis set to zero):
21
n(xy) = ﬂoCOS(TX)

2
u(x,y) = no%COS(%TX>

V(Xv y) =0

Co=+/gH is set to 10m.s ! so thatH ~ 10.2m (depth of the fluid in rest)A the wavelength is set to 2000 m.

Our configuration is a periodic zonal channel with the foliogvnumber of pointsiNy=202,Ny=12 andN,=4.
The horizontal resolution in both direction is equal to 10onifsat the domain dimensions are 2000 x 100 m.

The homogeneous fluid is set to a temperature 6f@2nd a salinity of 35.5 p.s.u. The simulations are free,
i.e. with no forcing. The horizontal eddy diffusivity foracers and momentum is set to 05 1. We run the
model for 1000 s.

Fig. 4a shows the behavior of the free surface in the fixednaelease, and Fig. 4b in the variable volume
case. With the variable volume we observe as expected theteffthe nonlinearity. The effect of the nonlinearity
is to steepen the leading edge of a wave profile and flattenahieg) edge (the increase of wave speed with am-
plitude causes the leading part of the profile to steepentimith and the trailing part to flatten). This effect can be
balanced by the effect of dispersion (the wave does not Hyealiuse steepening is controlled by viscosity). We
found no analytical solution to compare to this case, anditld/ interesting to compare with other models like
ROMS (Shchepetkin and McWilliams 2005) or POLCOMS (Holt daches 2001).

Note: the fluid is homogeneous in salinity and temperature at it®irstate. This state must not change. There
is no forcing, so salinity and temperature must stay corstan
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Figure 4.1: Evolution in time of the sea surface height (1000 s betweeh earves) with the temporal explicit scheme. For visuateifthe
curves are shifted so that x = 0 corresponds to a minimum o&thglitude of the wave. The gravity wave is propagating eastwThe slope
forward the crest is steepening, while the amplitude of tlagens decreasing. The slope forward the crest is steepbéeindriable volume
case (b) than for the fixed volume case (a).
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Appendix A

Code

A.1 Algorithm of the variable grid

We want to distribute the variations of the thickness of thetew column (due to variations of the sea surface

elevationn) over all the layers of the model. The variations must affbetsurface layers more than the bottom
layers (and the last layer must be unchanged).

ijt ipk=1 . .
zk |Jn0 with V"J— IjkO zk |Jn0

We can venfy that the sum of the new vertical scale facfmgt 'is equal to the thickness of the whole water
column at resH" plus the sea surface eIevauqH

ikt i.j.k,0 kO ﬂ

ipk—=1 pk—-1 it ka—l o jpk=1
ikt i I’] i,i-k,0 i,j,n,0
Z T = Z % T Z €31 nz €31

k=1 k=1
Vil
_ Hlj+nljt __HIJ+nIJI
Vvl

Once the scale factors for the T points are known, we can dethescale factor for the W points and the
depth of the T and W points.

Scale factors:

ex(k) = &%(k)+e%(k)«n«cor(k)

ew(l) = ex(l)
~lealk—1) +ex(k)

—~
=
V
=

~—

|
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Depth at T and W points

ey = 0 _ &)
gdep(k>1) = gdep(k—1)+esuw(k)
k—1
P
gdepy(1) = O

gdepyk>1) = ;egt(n— 1)
n=
This is done in the new modut®mvvl .

A.2 Moduledonvvl . F90

This module contains three subroutines. The first domvvl _i ni is only called at the initialisation. The second
one,domvvl , is called at each time step, and updates the new grid. Thenasdomvvl _ssh, is called at each
time step, and computes the sea surface elevation at thatiere

A.2.1 subroutinedomvvl _i ni

We calculate the coefficient applied to each layer and whachat depend of time.

jpk—1 i,j,n,0
ik anes

B = pkl IjkO pklljnO
k &1 |

X
prk: | zrj1pkk 1%“0
ZIJ<')=k£l |jkOZka 1 |jn0
ik _ g]p_ki:ldi\J/mO

ka 1 IjkO ka 1 |Jn0
2n=

ka 1_.,j,n,0
ijk n—k S3F

He = jpk—1 IjkO jpklljnO

k=1 Dne

A.2.2 subroutinedomvvl

At each time step, we calculate the sea surface elevaticacatgrid point, the depth and total depth.

L imaskt o -

L _ ij oA i1, J+1j Ji41,

g =5 (€t esrn +eér e n )
€U S

i 1mask!t 101

L e

2 dle]
i1
n'FJ 4maslrg’ l( Ij_|_r]l+lj +n| J+l+nl+lj+l)
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Scale factors at T levels

fsd— (L
fsd) = ¢ B =°< 0y )
fody" = "k"( v i
fsdi" = e (14 ! ™)
Scale factors at W levels
surface for k>2

fsdiht = fsethll  fsdhK = 0.5(fsd* ™+ fsdi)
fsdlim = fsedu il fsdlik =05 (fsdl T+ fsd)
fsdlih = fseviil  fsdl = 0.5(fsd T+ fsd)

T and W points depth

surface for k>2
fsdeptil =05« fsdl!  fsdef* = fsdefy**+ fsdk
fsdepdt =0  fsdef® = fsdef)* *+ fsd**
fsd@w 1= fsdet —n}  fsddlf = fsdef* —n}!

Ocean depth at U- and V-points
hu'l = Z fsd; K mask/
I = Z fsdy K mask!

Inverse of the local depth

i1
hurl = — mask, _ _
fsei! + Tier Fsd ¥ mask
Pl
hvrl = — maSK'J. . —
fsdit + Sien fséé{/kmasl'g,"k

A.2.3 subroutinedomvvl ssh
The sea surface elevation at the time a$@hiais needed at several moments:
e intra_nxt forthe flux form caculation,
e indyn_nxt for the flux form caculation,
e indynspg-exp, dynspg-f|It anddynspg-t s for the swap of the ssh arrays,

e inwzv for the calculation of the vertical velocity.
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The dynamics equation of the sea surface evolution can kewri

on

= -0
ot hU + Qw

For the explicit and filtered schemes, the expressicsshéis discretized like that:

ssha = sshb-2rdt (zhdiv+ _emp)
. o raw/ B
where zhdiv = e zurt) _elzaszurrl..J.’L.elé\J’ zvrl) — &5 tzvrl i1
die

and zul = Zfs%’kurﬁ’k, zvr1'~j:%fsé°:\j,’kvni’j~k

For the time-splitting scheme, the expressiosstiais discretized like that
. em
ssha = sshhb—2rdt (zhd|v+ _p)
e zurtl — &yt zud 1 - &5} zuvd — &)t zun i1
T
) o erey
and zudd = unb"ikK zvdl =vnp'ik

where zhdiv =

The variablesshhb, un_b anduv_b are calculated in theynspg_t s subroutine.
In thewzv, sshamust be calculated again.

Lthis is necessary to satisfy the conservation of tracerstifyabut the conservation of tracers is not satisfied. gsire same calculation
of sshaas in the explicit and filtered schemes for the flux form caltiah allows the conservation of tracers, but not the cogien of the
tracers quantity. The time-splitting algorithm must be ified to garantee botbxactconservation and constancy preservation properties for
tracers (Shchepetkin and McWilliams 2005).
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A.3 Modified routines

A.3.1 CPP and namelist variables

A new keyis introduced:keyvvl ; when this key is active the layer thicknesses depend onrdeesurface (and
thus depend otime).

Free surface: we need a free surfackey dynspdfit (filtered free surface, default) ey dynspgexp(explicit) or
key dynspgts (time splitting).

Vertical coordinates: In_zcq In_scoorIn_zps

keywvlis compatible withn_zco(z-coordinates, but providday zcois not active).

keywvlis compatible withn_sco(s coordinates)

key vl is incompatible withn_zps(partial steps) because it is complicated and not coded yet

key vl is incompatible withkey zco(because in that case scale factors are 1 dimensional).

keywvlis incompatible witrkey dynsparl (rigid lid) because we need a free surface

Hydrostatic pressure gradient option: at this time key.vvlis compatible only with the standard jacobian formu-
lation of the hydrostatic pressure gradient optibmi{pg.sco= .true.).

A.3.2 Modules
New moduledonmvvl . F90 in directory DOM, contains :

e domvvl _init stores previously calculategtlept e3t.. etc arrays int@deptj e3t, ... etc calculatemut,
muuy muy, muf (correction for each grid-points)

e domuvvl

— calculates nevgshnat other grid pointsgshnysshnv...)
— calculate®3t e3y e3y, using new sshsshr)
— calculatee3w

— uses the e3 to calculagelept(depth of t points relative to free surface)depw(depth of w points
relative to free surfaceydep3w= gdept- eta (depth of T points relative to a fixed (geopotential)
reference level for pressure gradient correction).

— updateshu, hv, hur, hvr used in time splitting and isol mat routine
e domvvl _ssh
— calculatessha

List of modified routines:

domai n. F90, domoce. F90, donst p. F90, donvvl . F90, domwr i . F90, donegr . F90, donzgr _subst i t ut e. h90,
dynhpg. F90, dynnxt . F90, dynspg_exp. F90, dynspg_f1t. F90, dynspg-t s. F90, dynspg_oce. F90, i st at e. F90,
oce. F90, oceshc. F90, par _EEL_R5. h90, st ep. F90, t raadv_cen2. F90, t raadv_nuscl 2. F90, t raadv_nuscl . F90,
traadv_tvd. F90, tranxt. F90, trasbc. F90, trazdf. F90, t razdf _i np. F90, wzvnod. F90
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OPA_SRC :

DOM :

i state. F90

— subrouting st at e_i ni t initialization of sshn sshh sshhb, sshblhun_b, vn_band call ofdom.vvl
at the end

— subrouting st at e_eel modifications to match Ezer et al
par _EEL_R5. h90 modifications to match Ezer et al
oce. F90 declaration osshy sshy sshbhssha

st ep. F90 subroutinest p call of domvvl at the end of the dynamics part (after the caltgfiLnxt

domai n. F90 subroutinedom.i ni call of domvvl _i ni after call ofdom.nsk

domoce. F90 declaration of logicakey Ikvvl grid variablesgdepti gdepwj gdep3w e3ti, e3ui, e3vi
e3fi e3uwj e3vwj e3w

donst p. F90 subroutinedomst p stop execution in the case where accelerating the convesgsn
activated

donzgr. F90 subroutinezgr _bat modifications to match Ezer et al (not zero at the equator)

donzgr _substit ut e. h90 definition of scale factors

DYN :

TRA

dynhpg. F90 subroutinehpg_sco problem working with density anomaly

dynnxt . F90 subroutinedyn_nxt time stepping in flux form: multiply u and v by scale factorddre
time stepping, and divide after. Keydynspdflt is true, the time stepping is done diyn_spg_flt
subroutine.

dynspg_exp. F90 subroutinedyn_spg_exp does not calculate surface pressure gradient (already done
in dynhpg) ; the ssh after used for the ssh swap has alreadydaéeulated irdomvvl _ssh

dynspg_flt.F90 subroutinedyn_spg_flt does not calculate surface pressure gradient (already done
in dynhpg). The time stepping is done in flux form: multiply ndav by scale factors before time
stepping, and divide after. Add a call to subroutsoé _nat because it depends on scale factors. The
ssh after used for the ssh swap has already been calculatediinvl _ssh

dynspg_ts. F90 subroutinedyn_spg_t s subtract the surface pressure gradient (calculated inmtynh
before the barotropic part. The calculation of the surfaesgure gradient in the barotropic part is
calculated using the produdid* sshn(rho total =rhd+1). We takerhd at the top levelhuandhv are
calculated at each barotropic time steps (they are rendmehndhv_e). The ssh after used for the
ssh swap has already been calculatedbimvv| _ssh.

dynspg_flt.F90 the declaration o§shnb, sshhb, un.b andvn.b is needed even Keydynspgts is
not activated, in order to compile the code.

wzvod. F90 subroutinenzv new definition of vertical velocity
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traadv_cen2. F90, traadv_nmuscl 2. F90, traadv_nuscl.F90, traadv_tvd.F90 zwx (for T) and
zwy (for S) set to zero (zero advective flux at surface). That fflex linked with the temperature of
evaporation/precipitation is taken care ot imrasbc. F90.

tranxt. F90 subroutine ra_nxt time stepping in flux form (for explicit vertical diffusion)ynultiply
T and S by scale factors before time stepping, and divide. aftee ssh after used has been calculated
in domvvl _ssh.

trasbc. F90 subroutind ra_shc add emp for T, zsa set to zero for S (the concentration/dihiffect
on salinity is zero)

trazdf. F90 subroutind r a_zdf call of domvvl _ssh

trazdf _i np. F90 subrouting r a_zdf _i np, time stepping in flux form for implicit vertical diffusion.
fse3th fse3taneeded in matrix calculation
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A.4 Hydrostatic pressure gradient: example with a first variable level

fse3w = e3w f
e3w fse3w
e3w

w w
T

T e

IR e Al
(a) Fixed volume n =0 (b) Variable volume

Vertical section of 2 grid cells is coordinates. (a) Fixed volume. (b) Variable volume.

The hydrostatic pressure gradient between 2 cells is equla¢tdifference of the water column weight between
T points of 2 cells, divided by the distance between the Tlpc(aﬁj’k or eiz’j’k).

In order to calculate the water column height at T pointstigal scale factors joining each T points are
summed. Irs coordinates, that height can vary from one cell to anothdrare must give a correction to obtain
the gradient at the right depth.

In OPA with fixed volume, the vertical scale factor for the first Ievd;xl) is equal to twice the real depth of

the first T point, and the hydrostatic pressure gradientgsmsurfaces is written:

B 1 i+1Lj1 Bl
th"J’l:—g*i—j* esw >klerl,J.l_%w >kpl,j.l
e} 2 2

The correction added to the pressure gradient is written:

i+1,),1 j1
1 URPUNRE RIS - €aw
zuap:g*Tj*(p'+ R )*5* (WT_T
Tu
In OPA with variable volume, the SSH is added to the first vertical sc&&igi(Jr_ r_]i’j), and the position of the
first T point on the vertical (taken from the sea surface) idleéined as the half af"" +n"’. This expression is
substituted to the fixed volume case in the hydrostatic presgradient computation, which is then written:
i+1,j,1 | il L, i
thi=j~l = —Qx i * (%W—_Fnlﬂ * pi+13j~l_ M * pi~jwl>

eli LJI 2 2

36



The calculation of the expression of the correction of thespure gradient is done in report of the surface of
the fluid at rest£= 0). In this case, the T point depth is equal to the true heifthewater above the T point

i,j,1 i,j . i,],l_ i,j
minus SSH: 2w ;n -n’' = Sau 5 1 Therefore the expression of the correction of the presgradient:
o . i+L1 i L i
zuap:g*%*(p'+1vl7l+plyl7l)*_* Caw n . € n
e 2 2 2
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A.5 Flux form time-stepping of tracer

For a traceiT at a given time-stefy the equation of evolution is written:

fSE(i,j,k) TH(,,k) — Fserr(ijk) TH(,j,k)
24t

whereRHScontains the advection and diffusion terms.

= fsér(ij,k) RHSIjK)

The 3 following steps are performed in thea_nxt subroutine (steps 1 and 2 are done only for the explicit diffu
sion case; see A.6 for the implicit diffusion case):

1) Thickness weighting

RHSijk) = RHSi,jk) * fsér(ij.k)
THijk) = TUjk) * fsésr(iik)
Tk = TUijk) « Fsérliik

2) Time stepping (Leap-frog scheme)

Tk = TUijk) + 2rdt RHSijK)

3) Time filter and swap of arrays

o [TH2(0,j,k) + TG k)] 4 ag s+ T, jk)
ok [ FSEr(1,0.K) + FSEr(,j,K)] + 01 * TSy (ijk)
Tt+1(i,j,k)
f et (i,i.k)

T ik =

THijk) =
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A.6 Flux form time-stepping of tracer: implicit case

The implicit treatment of the vertical diffusion terms isegisto accomodate the small vertical spacing required to
resolve the important top and bottom boundary layers witldoastically reducing the time step as would be the
case with the more usual explicit schemes (Blumberg anddvi#B87). The use of an implicit scheme results in

a tri-diagonal matrix which is solved by a Gaussian elimoamethod.

The vertical diffusive operator for the tracer takes thédiwing semi-discrete space form:
1 (AT ]
DY = —3 [—6 T
T = e ki1/2[T]

whereAYT is the diffusivity coefficient.
First case: fixed volume
The tracer equation is written:

Tt+l(k) _ Tt—l(k)

_ vT
o = RHSK)+DY (k)
THIk) -THk) = 2AtRHSK) +24tDYT (k)
= 2MtRHSK) +

2t [ AT (k+1)

VT
S [TH k1) — THE()] — Ay () [Tk — T (k1))
.

ew(k+1) ew(k)

20EAYT (k+1)

= 2AtRHSk =
W+ @)

T Kk+1) —

vT vT vT
e (k) \ eaw(k+l)  esw(k) &3 (K) €3w(k)

T1(k) + 280t RHSK)

TH (k1) [7—2& A&T(kﬂ)}

€3t (k) €aw(k+1)

vT VT vT
T”l(k) [14— 2/t (AW (k+l)+ Ay (k))] n T”l(k-l) {_ 20t A, (K) }
esr(k) \ esw(k+l)  esw(k) €31 (k) esw(k)
Matrix construction:
— 20t AT () fork > 2

iy — ) STE0

0 fork =1 (surface boundary condition
208 AYT (k+1)

WK = T ekrD)

zwdk) = 1 — zwi(k) — zwgk)
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Second member construction:

zwyk) = TU1(k) + 2AtRHSK)
System to be solved:
ZwWil) T (k-1) + zwdk) TH(K) + zwgk) TH L (k+1) = zwyk)
zwd1l) zwg1) 0 0 O 0 TH(1) zwy(1)
Zwi(2) zwd2) zwg?2) o o0 - 0 TH1(2) zZwy(2)
0 zwi(3) zwd3) zwg3) 0O 0 THL(3) — zwy(3)
0 0 0 0 0 zwik) zwdk) T (k) zwy(k)

mx =y

wherem is a tri-diagonal matrix (jpk * jpk).m is decomposed in the product of an upper and lower triangular
matrix. The 3 diagonal terms are in arrasd zws zwi. The second member is in arrawy.

Second case: variable volume

The tracer equation is now written:
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fset() TH (k) — fsért () T (k)
2At

= fsdy(RHIK) + Fsdyr (k) DY (K)

fseft ) T (k) — fser (T k) = 24t fséyr (k) RHSK) + 24t fséyr (k) DY (K)
= 2Nt fsér(k)RHSK) +

VT
ont | A (D) [T (k+1) — TH )]
eqn(k+1)

vT
_ A\N (k) [TtJrl(k) _Tt+l(k_1)] :|

eaw(k)
- 20t AT (k+1) _iiq
= 2Ath%T(k)RHSIk)+mT (k+1) —

VT VT VT
Ew(k+1l)  eaw(k) &w(k)

fser () T (k) + 24t fsésr (k) RHSK) T (k+1) [

vT VT
T k) [fs k) + 24t (A’” (k+l)+ Av (k))] +

20 AT (k+1)
€aw(k+1)

ew(k+l)  esw(k)

vT
Tt [_ 20 A (k) ]
€aw(k)
Matrix construction:
— 20 AT (K) fork > 2
zwi(k) = Eaw(k)
0 fork =1 (surface boundary condition
vT
gk = - 20t AT (k+1)
Eaw(k+1)
zwdk) = fségl(k) — zwik) — zwgk)
Second member construction:
zwyk) = fsérr T LK) + 24t fséyr (RHIK)

The vertical diffusion is performed in the a_zdf _i np ort ra_zdf _exp routines, which are the last routines
called before thér a_nxt routine. In the implicit treatment, the time stepping isally done, and call tar a_nxt
iS not necessary.

Dynamics case
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The method is the same as for the tracers, but a normalizstimade to obtain the general momentum trend.
Whatever the treatment (explicit or implicit), the time gdéng is performed further (idyn_nxt routine, or in
dyn_spg-flt routine ifkey_dyn_spg_flt is defined).
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A.7 Flux form time-stepping of momentum

For the horizontal component of velocity (or V) at a given time-stefy the equation of evolution is written:

fse 1,0, k) Ui k) — stk Ut(i,k)
24t

fséy, (i,j,k) RHSij,k)
whereRHScontaints the advection and diffusion terms.

The 3 following steps are performed in thgn_nxt subroutine for the explicit and time-splitting schemes] an
in thedynspg_f1t subroutine for the filtered scheme (for the filtered schenparaof step 3 - division by scale

factors - is done inlynspg_f | t , and a second part - swap of arrays dym_nxt ):

1) Thickness weighting

RHSi,j,k) RHSi,j,k)  fséy (i,.k)
U'ij.k) U(i.j,k) + Fsey (i,j.K)
Uik = UGk * Fse k)

2) Time stepping (Leap-frog scheme)

Uik = UYLGjk) + 2rdt RHSi,jk)

3) Time filter and swap of arrays

o U 2,j,k) 4+ UG, K)] 4 ag + Ui, j,k)

Uik =
o0 [FsE,1,0,K) + FSEHG0K)] + o % Tséy (,j,K)
Ny Ut ij k)
Uik = —g—r
fse ) (i,i.k)
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A.8 \Vertical velocity

Using the incompressibility hypothesis, the vertical witipis computed by integrated the horizontal divergence
from the bottom to the surface. The boundary conditionsware O at the bottom (no flux) and, in the variable
volume casew = 0 at the surface. In the variable volume case, we must sub$tréhe vertical velocity of the
“fixed volume vertical velocity” the vertical velocity of nwing grid-box interfaces due to the motion of free surface

Fixed volume case:

ow
ok

where X

so that w1

Variable volume case:

ow

K —X€3—

w1k

—X€3

: <2[ezuesuu]+ 4 e1v93vV]>

errezrest \ 0i a[
i (fsd*ndivrf)

P

dest

ot
ssha! — sshiy! i,j.kmuf,j.k)

k -
fsdd*hdivr — == >
J%(( 2rdt

44



