
Open development
Experiences with MOM6

[Shared|Open] [source|development]

● Many science codes in earth system community are “shared source”
○ Occasionally release code
○ Controlled evolution of code

● “Open source” (not what many of us were really doing this)
○ Decentralized
○ Freely available
○ Encourage collaborative development

● “Open development”
○ Same ambitions as “open source”
○ All development is visible

■ deemphasizes the release process

Topics

1. Attitude
○ Why are you doing this?

2. Organization
○ How to work with others?

3. Testing
○ How to make it work?

4. Intellectual property concerns
○ What is the risk?

Attitudes

For original/main developers:

● The main/original/your code is imperfect
○ Code is always guaranteed to have

bugs
○ Style may be wrong or non-uniform
○ Documentation might be

wrong/missing/incomplete
● Contributed code might be even less perfect

○ Better that contributions arrive rather
than model be stagnant

● Motivated by desire to collaborate
○ Not to dominate

For contributors:

● Try to understand what the main developers
are looking for

○ Read the documentation
○ Look at code examples (especially the recent

code changes)
● Main developers will help via feedback

○ You might get it wrong the first time
○ There are no judgements being made

● Consider other users point of view
● Documentation needs contributions too!

MOM6
organization

● Each fork develops on its own
branches

● Coordinate via a “master” and
“dev/master” branch

○ Always in sync
○ Exact same history

● “dev/master” updated via pull
requests

○ Evaluated by all partners
○ Orgs define their own

tests
● Hierarchical

○ Users fork from/request
to organization forks

○ Organizations

● Coordination branches (master and dev/master) make all
major forks equal

● Due to the parent/child nature of GitHub forks
NOAA-GFDL/MOM6 currently appears as the center hub

○ Not where we want to be
○ Would like to follow NEMO in forming consortium to

govern
● Divergence is always a possibility

○ IMHO, it would not be a failure if forks diverge
○ Currently we are all motivated to avoid divergence

All development
managed through
pull requests

● Core developers are not
privileged

● Everyone works on user forks
● dev/gfdl evolves only through

pull requests
● Pull requests to dev/gfdl

○ Reviewed
○ Tested heavily at GFDL
○ Daily

● Pull requests made to
dev/master only from dev/org

○ Reviewed by all orgs
○ Tested heavily by all orgs
○ Monthly to bi-monthly

● All users work on their own forks
○ When devs were making branches on the main repo

the branches become a mess
○ User forks are under user control

■ No rules - let people work their own way
■ We do provide recommendations for their sake

(people learn best the hard way)
● Pull requests to dev/master and master restricted

○ Keeps evolution hierarchical
○ Lowers frequency/burden of managing master

SIS2
(GFDL)

Version control
everything

Layered repositories using sub-modules

● Regression results

○ Output from regression tests

■ Platform dependent

○ Records specific version of
configurations

● Configurations

○ Input files (parameters)

○ Records specific versions of source

○ Including URLs (for forks)

● Source for MOM6, FMS, SIS2, …

○ Pure source code (+ packages)

Version controlling everything takes you
a long way towards reproducible science

FMS
(GFDL) MOM6

(GFDL)
MOM6
(ESMG)

MOM6
(NCAR)

MOM6-examples ESMG-configs NCAR-cases

Fork Fork

GFDL Gaea
regressions

Ubuntu AMD64
regressions

NCAR
Cheyenne

regressions

MCT
(NCAR)

https://github.com/NOAA-GFDL/MOM6-examples
https://github.com/NOAA-GFDL/MOM6-examples
https://github.com/ESMG/ESMG-configs/tree/user/ksh/open_bc
https://github.com/ESMG/ESMG-configs/tree/user/ksh/open_bc
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo

Continuous
integration (1/2)

• User can test/develop as
they see fit with their
resources

• All pushes to GitHub
undergo “light” testing using
Travis-CI

– Tests fit on single core
– Must be fast

• 10-15 mins
– Cannot test fully

deployed models with
data etc…

• Early feedback to users
– Including style!

Continuous
integration (2/2)

• When a pull request arrives
to dev/gfdl

– Review
– Submit branch to

internal gitlab repo
(behind firewall)

• Invokes job on
pipeline

• Extensive testing
• Post results to GitHub

– Merge via GitHub

Heavy test harness at GFDL (1/2)
• Regression tests

– Continuity of solutions using
• 3x different compilers

– Gnu, Intel , PGI
• 3x different memory models

– Dynamic non-symmetric
(traditional)

– Dynamic symmetric
– Static (either symmetric

or non-symmetric)
• All with 40-50 test cases

• Reproducibility
– Across parallel decompositions
– Across restart boundaries
– Thread safety

• Compatibility/code quality
– Compiles & runs in debug mode
– Code coverage analysis
– Code style (white space checker!)

To be added:
– Dimensional analysis
– Symmetry under logical rotations

Heavy test harness at GFDL (2/2)

Testing requires significant resources
● Compilation (full coupled model)

○ ~20 mins/32 cores
● Running optimized executable

○ ~30 mins/1000 cores
● Running debug executable

○ ~2 hr/1000 cores
● Code coverage

○ ~4 hrs/1000 cores

● Documentation generation via doxygen
○ ~40 mins on readthedocs.org

● Heavy harness is too large to
expect external users to use
○ Likely working on laptop

● Collaborators run different tests
for us:
○ Valgrind

■ checks for memory leaks
■ 12 hours/1000 cores
■ (Valgrind doesn’t work on our system)

○ Tests of diagnostics

What doesn’t work: testing new
contributions

● Our testing insulates us from code
changes/contributions that break
our configurations

○ If a new piece of code is not
triggered then it does not get tested

● Need to figure out how to let a
contributor also provide tests

○ Regression tests are platform
dependent

■ A user cannot submit correct
answers without access to
each platform?

○ White paper approach?

● Unit tests are one solution

● ...but a lot of code does not fit a unit test
approach

● Checking of doxygen-based
documentation in new code

Intellectual property

● Users can still work in private
○ I’ve no idea how many do

● Is there a risk?
○ Who has time to monitor your contributions, understand your code, implement their own

version, write a paper about?
■ And who would be stupid enough to steal when there is a record of the idea on

GitHub?
○ … but yes, there is a risk. I don’t think it has happened to us yet.

● A better solution?
○ Return to old way of doing things, i.e. release code after publication :(
○ Or change the “career system” to reward development as well as papers… :)

Final remarks

● MOM6 has definitely benefited from open development
○ Significant improvements via new code / numerous bug fixes / analysis of configurations

● Automated testing and continuous integration is essential
○ As number of external contributors grew, burden on core developers grew
○ Automated testing has removed the time-consuming aspects

■ Only remaining burden is social
● Some issues need delicate handling

○ AT+CI has also improved developer workflow
■ Core developers follow same procedures as everyone else
■ Better communication
■ Inhibits bad habits, stops shortcuts, fewer mistakes

