Open development

Experiences with MOM®6

[Shared|Open] [source|development]

e Many science codes in earth system community are “shared source”
o Occasionally release code
o Controlled evolution of code
e “Open source” (not what many of us were really doing this)
o Decentralized
o Freely available
o Encourage collaborative development
e “Open development”
o Same ambitions as “open source”
o All development is visible
m deemphasizes the release process

Topics

1. Attitude 3. Testing
o Why are you doing this? o How to make it work?
2. Organization 4. Intellectual property concerns

o How to work with others? o What is the risk?

Attitudes

For original/main developers: For contributors:
® The main/original/your code is imperfect e Tryto understand what the main developers
o Code is always guaranteed to have are looking for
bugs o Read the documentation
. o Look at code examples (especially the recent
o Style may be wrong or non-uniform
i) code changes)
© DOBUMENRINET migitli e Main developers will help via feedback
wrong/missing/incomplete o You might get it wrong the first time
e Contributed code might be even less perfect o There are no judgements being made
o Better that contributions arrive rather e Consider other users point of view

than model be stagnant e Documentation needs contributions too!

® Motivated by desire to collaborate
o Not to dominate

MOM®6

dev/org-a dev/org-b

O rg a n i Z a-t i O n dev/master dev/master

dev/master
master

Each fork develops on its own
branches NOAA-GFDL
Coordinate via a “master” and N dev/gfdl

dev/master

“dev/master” branch A > Merge from ...
o Always in sync <= = = bpullrequestonto ...

o Exact same history
“dev/master” updated via pull o
requests Coordination branches (master and dev/master) make all
o Evaluated by all partners maijor forks equal
o Orgs define their own Due to the parent/child nature of GitHub forks
tests NOAA-GFDL/MOMG6 currently appears as the center hub
el o Not where we want to be
o Users fork from/request o Would like to follow NEMO in forming consortium to
to organization forks govern
o Organizations Divergence is always a possibility
o IMHO, it would not be a failure if forks diverge
o Currently we are all motivated to avoid divergence

All development
managed through
pull requests

Core developers are not
privileged
Everyone works on user forks
dev/gfdl evolves only through
pull requests
Pull requests to dev/gfdl
o Reviewed
o Tested heavily at GFDL
o Daily
Pull requests made to
dev/master only from dev/org
o Reviewed by all orgs
o Tested heavily by all orgs
o Monthly to bi-monthly

& Commits on feature branches

o * User testing (usually light)
el - - - +0--->0---~0--->0
’ ’

L 5 Pull request to dev/org-b

dev/org-b ,” ’)' + Reviewed
= F(—\ ------------------- * Heavy tests @org-b
N
. N Pull request to dev/master
user—z*.------b.- --------- / * Reviewed
* Heavy tests at all
organizations

dev/master

master

e All users work on their own forks
o When devs were making branches on the main repo
the branches become a mess
o User forks are under user control
m Norules - let people work their own way
m We do provide recommendations for their sake
(people learn best the hard way)
e Pull requests to dev/master and master restricted
o Keeps evolution hierarchical
o Lowers frequency/burden of managing master

Version control
everything

Layered repositories using sub-modules
® Regression results
o Output from regression tests
[] Platform dependent

) Records specific version of
configurations

e Configurations
o} Input files (parameters)
) Records specific versions of source
) Including URLSs (for forks)

e Source for MOMS6, FMS, SIS2, ...

) Pure source code (+ packages)

Version controlling everything takes you
a long way towards reproducible science

GFDL Gaea Ubuntu AMD64
regressions regressions

MOMG6-examples ESMG-configs

MOM6
(GFDL)

NCAR
Cheyenne
regressions

NCAR-cases

https://github.com/NOAA-GFDL/MOM6-examples
https://github.com/NOAA-GFDL/MOM6-examples
https://github.com/ESMG/ESMG-configs/tree/user/ksh/open_bc
https://github.com/ESMG/ESMG-configs/tree/user/ksh/open_bc
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo
https://github.com/adcroft/Gaea_c3-stats-MOM6-examples_demo

Continuous
integration (1/2)

User can test/develop as
they see fit with their
resources

All pushes to GitHub
undergo “light” testing using
Travis-ClI

— Tests fit on single core
— Must be fast
* 10-15 mins

— Cannot test fully
deployed models with
data etc...

Early feedback to users
— Including style!

Option for boundary extrapolation in main remapping
ashao committed on Dec 14, 2017

Commits on Dec 12, 2017

Added option for mean + oscillating flow .-
kshedstrom committed on Dec 12, 2017 +

Commits on Dec 6, 2017

Merge branch 'dyes’ into usg pen_bc

kshedstrom committed on Dec 6, 2|

Merge branch 'Hallberg-NOAZA 'orm_convert_thickness' into dev/gfdl

adcroft committed on Dec 6, 2017 «

Removed trailing white space in one line
Hallberg-NOAA committed on Dec 6, 2017 «

*Refactored convert_thickness ..
Hallberg-NOAA committed on Dec 6, 2017

Merge pull request #662 from ESMG/user/ksh/open_bc
Hallberg-NOAA committed on Dec 6, 2017

erified

718cela

badf248

5df7a3z

6elagod

f21d13e

491616d

5b76adb

<

<

<

<

L84

<

<

' PR#670 Updates to discontinuous neutral diffusion
@ Andrew Shao

/ PR#868 New dyed_channel OBC option
E} Kate Hedstrom

 PR#868 New dyed_channel OBC option
E. Kate Hedstrom
© Robert Hallberg
®© Robert Hallberg

I « PR#667 Reform convert thickness

© Robert Hallberg

 PR#666 Numerious changes to support rescaling thickn«

X PR #666 Numerious changes to support resealing thickne

11 #692 passed
© 05c8faf

'l #690 passed

120ee49 &

') #688 passed
3f75fa0

'l #686 passed
o T1f8229 ¢

1 #683 passed
o eD2ecb2 2

11 #682 failed
©- 2esbeel

© 12 min9sec

[iil abouta month ago

© 11min3sec

[iil abouta month ago

(15min 31 sec

i| abouta month ago

© 10 min 52 sec

[about a month ago

(© 15 min 37 sec

[l abouta month ago

© 10 min13sec

[l abouta month ago

Avoid conversion when conversion_factor = 1

For efficiency, avoid code to do a multiplicative conversion of diagnostics
when conversion_factor = 1. All answers are bitwise identical.

Continuous :
integration (2/2) o s

© 60999b14 .. Iy

Pipeline Jobs 19

« When a pull request arrives

Merge +setup Builds Run Tests Cleanup
to dev/gfdl
@ merge @ gnu:debug @ un @ gnu:layout @ cleanup

() setup () gnurepro (*) gnunon-symm...
— Su bmit branCh to @ intel:repro @ gnu:restart

internal gitlab repo (— T
(behind firewall)

C |nVOkeS jOb On @intel:layout
pipeline @ intel:non-symm...
 Extensive testing @ mestmmer
+ Post results to GitHub i

. . @ Painoname..
— Merge via GitHub

— Review

@ gnu:symmetric

@ pgizsymmetric

Heavy test harness at GFDL (1/2)

« Regression tests . Reproducibility
~ Continuity of solutions using — Across parallel decompositions
* 3x different compilers — Across restart boundaries
B ST (T, (el — Thread safety
L flf:)i/rsg:nr::enn;zrl,y?n?:z;c « Compatibility/code quality
(traditional) — Compiles & runs in debug mode
— Dynamic symmetric — Code coverage analysis
— Static (either symmetric — Code style (white space checker!)
or non-symmetric) To be added:

« All with 40-50 test cases _ Dimensional analysis

— Symmetry under logical rotations

Heavy test harness at GFDL (2/2)

Testing requires significant resources

Compilation (full coupled model)
o ~20 mins/32 cores
Running optimized executable
o ~30 mins/1000 cores
Running debug executable
o ~2hr/1000 cores
Code coverage
o ~4hrs/1000 cores

Documentation generation via doxygen
o ~40 mins on readthedocs.org

Heavy harness is too large to
expect external users to use

O

Likely working on laptop

Collaborators run different tests
for us:

O

O

Valgrind
m checks for memory leaks
m 12 hours/1000 cores
B (Valgrind doesn’t work on our system)

Tests of diagnostics

What doesn’t work: testing new

contributions

e Our testing insulates us from code e Unit tests are one solution
ChangeS/ContribUtionS that break) | Left column with unstable mixed layer
5 * 2175 call find_neutral_surface_positions_continuous(3, &
our Conf|gurat|0ns 2176 (/9.,19.,2@.,3:/), (/10.,14.,12.,4./), (/@.,0.,8.,8./), & | Left positions, T and S
o If a neW piece Of Code iS not 2177 (f-1ey=Tes=Rup 1)y (F0.58.,2.0); &E Left dRdT .and dRds
2178 (/@.,10.,20.,30./), (/14.,14.,10.,2./), (/@.,0.,0.,0./), & | Right positions, T and §
triggered then it does not get tested .. (/-1es1.4 10, -1.0), (/1.,1.,1.,1.7), & Right dRdT and dRds
. 2180 PilRo, PiRLo, KoL, KoR, hEff)
® Need to flgure OUt hOW to |et a 2181 ndiff_unit_tests_continuous = ndiff_unit_tests_continuous .or. test_nsp(v, 8, KoL, KoR, PilLRo, PiRLo, hEff, &
contributor also provide tests i o et
a 2184 (/0:,0.,06:;08.,0.,0.25,1.,1:/), & 1 pL
o Regression tests are platform A A A
dependent 2186 (/0.,0.,0.,0.,0.,7.5,8./), & | hEff
p . ‘Left column with unstable mixed layer')
| A user cannot submit correct
answers without access to e ..butalot of code does not fit a unit test
each platform? approach
o White paper approach? e Checking of doxygen-based

documentation in new code

Intellectual property

e Users can still work in private
o I've noidea how many do

e |Isthere arisk?
o Who has time to monitor your contributions, understand your code, implement their own
version, write a paper about?
m And who would be stupid enough to steal when there is a record of the idea on
GitHub?
o .. butyes,thereis arisk. | don't think it has happened to us yet.
e A better solution?

o Return to old way of doing things, i.e. release code after publication :(
o Or change the “career system” to reward development as well as papers... :)

Final remarks

e MOMBG has definitely benefited from open development
o Significant improvements via new code / numerous bug fixes / analysis of configurations

e Automated testing and continuous integration is essential
o As number of external contributors grew, burden on core developers grew
o Automated testing has removed the time-consuming aspects
m Only remaining burden is social
e Some issues need delicate handling
o AT+Cl has also improved developer workflow
m Core developers follow same procedures as everyone else
m Better communication
m Inhibits bad habits, stops shortcuts, fewer mistakes

