
Trial tiling implementation using tra_ldf_iso

Last edited: 20/04/20

Overview

A trial approach to 2D tiling (over i and j) is implemented for the tra_ldf_iso subroutine.

This document describes an implementation using public variables and an alternative approach using

derived types. A number of potential issues are then described.

Test configuration

A 1 configuration of GYRE is used with 1 CPU. XIOS is not used.

Branches

• Public variables

• Derived types

Variables

• Global variables

o ntsi, ntsj- start index of tile

o ntei, ntej- end index of tile

o ntsim1, ntsjm1- start index of tile, minus 1

o nteip1, ntejp1- end index of tile, plus 1

o ntile- tile number

• Parameters

o jpnitile, jpnjtile, jpnijtile- number of tiles

• Loop indices

o jtile- loop over tiles

• Namelist

o ln_tile- Logical control on use of tiling

o nn_tile_i, nn_tile_j- tile length

• Pre-processor macros

o IND_2D- substitution for ALLOCATE or DIMENSION arguments

• Working variables

o iitile, ijtile- tile number

• Dummy arguments

o kntile (ntile)

Namelist and tiling decomposition

The tiling decomposition is defined by parameters jpnitile, jpnjtile and jpnijtile, which are analogous to

the MPP decomposition parameters jpni, jpnj and jpnij.

These parameters are declared in par_oce and set using a new namelist section, namtile.

 !---

 &namtile ! parameters of the tiling

 !---

http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/branches/UKMO/dev_r12745_HPC-02_Daley_Tiling_trial_public
http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/branches/UKMO/dev_r12745_HPC-02_Daley_Tiling_trial_structure

 ln_tile = .false. ! Use tiling (T) or not (F)

 nn_tile_i = 10 ! Length of tiles in i

 nn_tile_j = 10 ! Length of tiles in j

 /

The decomposition parameters are then calculated in dom_nam.

 IF(ln_tile) THEN

 jpnitile = (jpi - 2) / nn_tile_i

 jpnjtile = (jpj - 2) / nn_tile_j

 IF(MOD(jpi - 2, nn_tile_i) /= 0) jpnitile = jpnitile + 1

 IF(MOD(jpj - 2, nn_tile_j) /= 0) jpnjtile = jpnjtile + 1

 ELSE

 jpnitile = 1

 jpnjtile = 1

 ENDIF

 jpnijtile = jpnitile * jpnjtile

Implementation of tile subdomains

The DO loop macros in do_loop_substitute.h90 are modified to refer to a set of domain indices,

instead of those for the full domain. A macro is added for ALLOCATE and DIMENSION arguments.

 #define __kIs_ 2

 #define __kJs_ 2

 #define __kIsm1_ 1

 #define __kJsm1_ 1

 #define __kIs_ ntsi

 #define __kJs_ ntsj

 #define __kIsm1_ ntsim1

 #define __kJsm1_ ntsjm1

 #define __kIe_ jpim1

 #define __kJe_ jpjm1

 #define __kIep1_ jpi

 #define __kJep1_ jpj

 #define __kIe_ ntei

 #define __kJe_ ntej

 #define __kIep1_ nteip1

 #define __kJep1_ ntejp1

 #define IND_2D __kIsm1_:__kIep1_,__kJsm1_:__kJep1_

These domain indices are declared as public variables in par_oce. Their values are set by a new

subroutine, dom_tile, which takes a tile number as its argument. A negative or zero tile number is

used to set the domain indices to the full domain. This is used to initialise the indices in dom_init.

 SUBROUTINE dom_tile(kntile)

 INTEGER , INTENT(in) :: kntile

 INTEGER :: iitile, ijtile

 IF(ln_tile .AND. kntile > 0) THEN

 iitile = 1 + MOD(kntile - 1, jpnitile)

 ijtile = 1 + (kntile - 1) / jpnitile

 ntile = kntile

 ntsi = 2 + (iitile - 1) * nn_tile_i

 ntsj = 2 + (ijtile - 1) * nn_tile_j

 ntei = MIN(ntsi + nn_tile_i - 1, jpim1)

 ntej = MIN(ntsj + nn_tile_j - 1, jpjm1)

 ntsim1 = ntsi - 1

 ntsjm1 = ntsj - 1

 nteip1 = ntei + 1

 ntejp1 = ntej + 1

 ELSE

 ntile = 1

 ntsi = 2

 ntsj = 2

 ntei = jpim1

 ntej = jpjm1

 ntsim1 = 1

 ntsjm1 = 1

 nteip1 = jpi

 ntejp1 = jpj

 ENDIF

 END SUBROUTINE dom_tile

The tiling is implemented by looping over each tile at the time-stepping level (in stp) and calling

dom_tile to set the domain indices for the present tile subdomain. The indices are restored to the full

domain after exiting the tiling loop.

 DO jtile = 1, jpnijtile

 IF(ln_tile) CALL dom_tile(jtile)

 CALL tra_ldf(kstp, Nbb, Nnn, ts, Nrhs)

 END DO

 IF(ln_tile) CALL dom_tile(0)

tra_ldf_iso is then modified where necessary to work on the tile subdomain, e.g. local working arrays

 REAL(wp), DIMENSION(jpi,jpj) :: zdkt, zdk1t, z2d

 REAL(wp), DIMENSION(jpi,jpj,jpk) :: zdit, zdjt, zftu, zftv, ztfw

 REAL(wp), DIMENSION(IND_2D) :: zdkt, zdk1t, z2d

 REAL(wp), DIMENSION(IND_2D,jpk) :: zdit, zdjt, zftu, zftv, ztfw

and operations on global arrays.

 akz(:,:,:) = 0._wp

 ah_wslp2(:,:,:) = 0._wp

 DO_3D_11_11(1, jpk)

 akz (ji,jj,jk) = 0._wp

 ah_wslp2(ji,jj,jk) = 0._wp

 END_3D

Some code in tra_ldf and tra_ldf_iso, mainly calls to other subroutines, has not been tiled and the best

approach needs to be decided. This issue is summarised at the end of this document. At the moment

this code is limited to running on one tile only; either the first (e.g. WRITE statements) or last (e.g. the

dia_ptr_hst call) as appropriate.

Alternative implementation using derived types

In this implementation, the domain indices are contained within a derived type TILE, declared in

dom_oce.

 TYPE, PUBLIC :: TILE

 INTEGER :: ntsi, ntsj, ntei, ntej, ntsim1, ntsjm1, nteip1, ntejp1, ntile

 END TYPE TILE

dom_tile instead returns an instance of TILE

 SUBROUTINE dom_tile(kntile, ktile)

 INTEGER , INTENT(in) :: kntile

 TYPE(TILE), INTENT(out) :: ktile

 INTEGER :: iitile, ijtile

 IF(ln_tile .AND. kntile > 0) THEN

 iitile = 1 + MOD(kntile - 1, jpnitile)

 ijtile = 1 + (kntile - 1) / jpnitile

 ktile % ntile = kntile

 ...

which is passed to tra_ldf_iso via an additional positional argument in tra_ldf and tra_ldf_iso (shown

below for the call to tra_ldf in stp).

 DO jtile = 1, jpnijtile

 CALL dom_tile(jtile, stile)

 CALL tra_ldf(stile, kstp, Nbb, Nnn, ts, Nrhs)

 END DO

In do_loop_substitute.h90, duplicate DO loop macros have been added for tiled subroutines, e.g.

 #define __kIs_T ktile % ntsi

 #define __kIe_T ktile % ntei

 #define __kJs_T ktile % ntsj

 #define __kJe_T ktile % ntej

 #define DO_2D_00_00_T DO jj = __kJs_T, __kJe_T ; DO ji = __kIs_T, __kIe_T

There is no need to call dom_tile(0) to revert to the global domain or to initialise in dom_init; untiled

subroutines simply do not have the additional positional argument. However, each call to tra_ldf_iso

and its calling subroutines must have this additional argument, even if that subroutine has not yet

been tiled. This results in a more widespread set of code changes.

Because dom_tile returns an instance of TILE, rather than modifying public variables, the domain

indices should be thread-private. However, this can also be achieved for the other approach by using

an OMP PRIVATE directive.

Duplicate DO loop macros are needed in do_loop_substitute.h90, as not all subroutines will be tiled

and ktile (the instance of TILE passed in) will be undefined in these cases.

In summary, using a derived type to pass around the domain indices is less tidy, involves more code

changes and doesn’t appear to have much functional benefit when compared to the approach using

public variables.

Things to consider

Untiled code within the tiling loop

A number of operations within the tiling loop will not function correctly, as they will now be called

multiple times.

1. Operations that should only be performed once

• WRITE statements, e.g. lwp controlled writes to numout

• NEMO timer (timing_start)

2. Operations that should not proceed until all tiles are at the same point

• MPI operations (mpp_sum, etc)

• Halo exchanges (lbc_lnk)

• NEMO timer (timing_stop)

• XIOS diagnostics (iom_put)

In the trial implementation, operations under 1. and 2. are only performed for the first and last tiles

respectively. This clearly will not work if the tiles are to be run concurrently using e.g. OpenMP.

Some formal solutions are being developed (XIOS diagnostics) and some may be quite

straightforward (lwp can depend on the tile number, ntile, in addition to the processor number, narea).

Other issues require more thought, particularly with regards to MPP.

Extended haloes

The tiling implementation will be developed in tandem with the extended haloes development. There

are a few potential issues here.

1. Refactoring of loops

2. Movement of lbc_lnk calls

3. Use of extended haloes, nn_hls > 1

The trial implementation of tiling mainly involves higher level code changes via the DO loop macros

and only changes lower level code in a few cases, so 1. will hopefully not be too disruptive.

The tiling development should be able to proceed on 1 CPU, so 2. should not be an issue for the time

being. Do we expect any lbc_lnk calls to remain in the tiling loop after the extended halo

development? If so, how should we deal with this when using MPP?

Potentially, resolving 3. could be as simple as modifying the calculations where nn_hls = 1 is

assumed, e.g. the domain indices in dom_tile

 ntsi = 1 + nn_hls + (iitile - 1) * nn_tile_i

 ntei = MIN(ntsi + nn_tile_i - 1, jpi – nn_hls)

 ntsi_1 = ntsi – nn_hls

 ntei_1 = ntei + nn_hls

where ntsi_1 and ntei_1 have replaced ntsim1 and nteip1 as the indices for the full domain in this

example.

