
Tiling development progress (September 2020)

Summary

Tiling has been implemented for most of the code in the “active tracers” part of the timestepping

subroutine (between trc_stp and tra_atf). In routines that could not be completely tiled, some

workarounds are necessary to preserve the results. Some of these workarounds function by

temporarily disabling the tiling so that work is instead done on the full domain.

timing.output results from a GYRE benchmark show a reduction in cost of 35-70% for tra_ldf, 35-50%

for tra_adv, ~65% for tra_zdf and ~35% for tra_sbc. For the parameters jpni, jpnj = (6, 3) and jpi, jpj =

(42, 122), the optimal tile size was found to be i, j = (40, 7). Tiling in i reduces the performance

improvements.

The next course of action is to determine whether this code can be prepared for the November

merge. The priority would be to remove workarounds where possible, as some of this code does not

benefit from the tiling. The code must also be tested with nn_hls = 2 and in SETTE.

Branch and wiki

http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/branches/2020/dev_r13383_HPC-02_Daley_Tiling

https://forge.ipsl.jussieu.fr/nemo/wiki/2020WP/HPC-02_Daley_Tiling

Code changes

The code changes can be split into:

1. New code that implements the tiling functionality

2. Code that is tiled

3. Code that is tiled, but contains workarounds that would be removed for the merge

4. Code that is tiled, but contains workarounds that would not be removed for the merge

5. Code that is not tiled and requires workarounds

6. Code that can’t be tiled without changing results

Changes #1 and #2 are described on the Wiki page.

Changes #3 - #6 are some of those described in a separate document on the issues encountered

during the development. These need to be considered before the merge and are highlighted here.

Workarounds that would be removed for the merge

• lbc_lnk calls

Code containing lbc_lnk calls requires that all tiles be processed prior to the call.

The workaround is to disable the tiling when calling these routines (but note that the tiling

changes are still implemented).

This is a particular problem for the tracer advection code, as tiling can only be used with

second order centred advection. The workaround in this case is a small block of code at the

start of tra_adv that disables the tiling so that the full domain is worked on, rather than the tile.

A similar workaround is implemented in tra_ldf.

It is hoped that all lbc_lnk workarounds would be removed before the merge. The lbc_lnk calls

used to set halo points for iom_put can already be removed as these are no longer output by

the diagnostics, so the workarounds can also be removed. Other lbc_lnk calls will remain in

http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/branches/2020/dev_r13383_HPC-02_Daley_Tiling
https://forge.ipsl.jussieu.fr/nemo/wiki/2020WP/HPC-02_Daley_Tiling
https://forge.ipsl.jussieu.fr/nemo/wiki/2020WP/HPC-02_Daley_Tiling#Implementation
https://forge.ipsl.jussieu.fr/nemo/attachment/wiki/2020WP/HPC-02_Daley_Tiling/Tiling_code_issues.pdf
http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/branches/2020/dev_r13383_HPC-02_Daley_Tiling/src/OCE/TRA/traadv.F90?rev=13516#L114

place while one-point haloes are still supported. The workarounds associated with these calls

can be removed by requiring that tiling be used with multi-point haloes (i.e. nn_hls > 1).

Workarounds that would not be removed for the merge

• iom_put calls

This is a similar issue to the lbc_lnk calls, in that all tiles must be processed prior to the call.

The workaround is to save the result of each tile in a working array of size (jpi, jpj), then send

this to XIOS. This allows the rest of the code in the routine to be tiled at the cost of increasing

memory usage.

This workaround can be removed when XIOS is able to receive data separately from each

tile. It is not expected that this will be available in time for the merge.

Workarounds for untiled code

• trd_tra calls

trd_tra has not yet been tiled and also contains iom_put calls. Since these calls appear in tiled

TRA code, a workaround is required to avoid spurious values in the trends diagnostics.

This workaround is the same as for iom_put calls; the result of each tile is saved in a working

array of size (jpi, jpj), which is passed to the trd_tra call.

This is implemented in every routine with a trd_tra call and the changes are therefore both

numerous and repetitive. They can be removed after trd_tra is tiled and the requisite XIOS

functionality is available, neither of which are expected in time for the merge.

Tiled code that changes results

• prt_ctl calls

As described in this document, the use of tiling currently changes the results of prtctl.

However, the results of other diagnostics including stpctl (run.stat) are unchanged by the

tiling.

This seems nontrivial to resolve. Provided that the tiling does not otherwise affect

reproducibility (i.e. a trunk and development branch should bit compare if the same tiling is

used in both), would this be considered acceptable for the merge?

Performance results

The following refers to the results in this document.

Tables 1-3 show timing.output results for a 180-day benchmark GYRE simulation with parameters

jpni, jpnj = (6, 3) and jpi, jpj = (42, 122). Elapsed times relative to the trunk (“REF”) are shown for

several tile decompositions, with the “0x0” decomposition indicating that tiling is not used.

Furthermore, iom_put timings have been implemented to account for the time spent waiting for XIOS.

Table 1 shows results for the standard GYRE configuration, except using the second order centred

advection scheme instead of the FCT scheme. This was chosen because tiling is currently disabled

for the FCT scheme due to lbc_lnk calls.

The tiling reduces the cost of tra_ldf by up to ~30%, tra_adv by ~35%, tra_zdf by ~65% and tra_sbc

by ~35%. The optimal tile size for the first three, most expensive sections is i, j = (40, 7). Tiling in the i

dimension results in reduced performance, consistent with preliminary tests by Maff Glover (Met

Office).

http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/branches/2020/dev_r13383_HPC-02_Daley_Tiling/src/OCE/TRA/tramle.F90?rev=13516#L215
https://forge.ipsl.jussieu.fr/nemo/attachment/wiki/2020WP/HPC-02_Daley_Tiling/Tiling_code_issues.pdf
https://forge.ipsl.jussieu.fr/nemo/attachment/wiki/2020WP/HPC-02_Daley_Tiling/timing_results.pdf

The cost of dia_ptr is reduced by up to ~20%, with only a weak dependence on tile size. This is

attributed to the restructuring of dia_ptr to accommodate tiling, which has reduced the number of

mpp_sum communications per timestep from 90 to 13.

The cost of dia_wri is reduced by ~40%, regardless of tile size. It is not clear why this is the case, as

this code has not been tiled at all. Similar results are shown for sections that take less than a second

to run, but these are not likely to be accurate.

Table 2 shows timing results for each combination of the tra_ldf namelist options and only for the

tra_ldf section. The cost of tra_ldf is reduced by 35-70%, depending on the choice of scheme. As

tiling is disabled for the bilaplacian operator (“blp_” jobs) due to lbc_lnk calls, none of these

simulations show any performance improvements from the tiling. Across all schemes, the optimal tile

size is i, j = (40, 7).

Table 3 shows the same results as table 2, except for the tra_adv namelist options and section. The

second order centred advection (“cen_h2” jobs) is the only scheme that benefits from the tiling, a

reduction in cost of 35-50%, as tiling is disabled for all other schemes due to lbc_lnk calls. Again, the

optimal tile size is i, j = (40, 7).

