
Issues with the NEMO tiling implementation

Resolved issues

• Overlapping assignments

Issue

Each tile has an internal area and overlapping halo, as in the MPP and global domains. The

internal part of a tile may therefore be partly overwritten by the halo of an adjacent tile, which

will change results.

Solution

This must be handled on a case-by-case basis. For example, in tra_ldf the global arrays

akz and ah_wslp2 are zeroed at the start of several subroutines. To preserve the result, this

must be done for the internal part of the tile only

! Changes result

DO_3D_11_11(1, jpk)

 akz(ji,jj,jk) = 0._wp

END_3D

! Does not change result

DO_3D_00_00(1, jpk)

 akz(ji,jj,jk) = 0._wp

END_3D

• Aggregation operations

Issue

The aggregation must also be applied over tiles.

Workaround

Use a SAVE, ALLOCATABLE array to store the aggregation result for the processor domain.

E.g. for zonal integrals in diaptr

1. Integrate over the tile domain

2. Add this result to the SAVE, ALLOCATABLE array for each tile

3. Call mpp_sum on this array after all tiles are finished

Solution

Use XIOS to perform the aggregation, once support for tile subdomains is available.

• iom_put calls

Issue

All tiles must be complete at the time of the call.

Workaround

Use a SAVE, ALLOCATABLE array to store each tile’s data, then call using this array after all

tiles are finished.

Solution

Use XIOS once support for tile subdomains is available.

• lbc_lnk calls

Issue

All tiles must have been processed at the time of the call.

Workaround

Disable tiling for the entire subroutine.

This is achieved by setting ntile to 0, indicating the full domain is to be used

IF(ntile == 1) CALL dom_tile(ntsi, ntsj, ntei, ntej, ktile=0)

 CALL xxx

IF(ln_tile .AND. ntile == 0) CALL dom_tile(ntsi, ntsj, ntei, ntej,

ktile=1)

Solution

Remove lbc_lnk calls from routines called within the tiling loop.

Calls used only for iom_put can be removed now. Others will remain in place while one-point

haloes are still supported, but the associated workarounds can be removed by requiring that

tiling only be used with multi-point haloes (nn_hls > 1).

• fld_read calls

Issue

Must be called only once per timestep.

Solution

Disable tiling for the call (as above, for lbc_lnk calls) and call only for the first tile.

• trd_tra calls

Issue

Is not currently tiled and contains iom_put calls.

Workaround

Use a SAVE, ALLOCATABLE array to store each tile’s data, then call using this array after all

tiles are finished.

Solution

Implement tiling in other trd_tra routines. XIOS support for tile subdomains is required.

• Declaration of dummy array argument dimensions

Issue

Consider the following subroutine

SUBROUTINE eos_insitu(pts, prd, pdep)

 REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in) :: pts

 REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(out) :: prd

 REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(in) :: pdep

and the following two calls (via an INTERFACE) in step.F90 and zpshde.F90 respectively

CALL eos(ts(:,:,:,:,Nbb), rhd, gdept_0(:,:,:))

CALL eos(zti, zhi, zri)

In the first call, the actual arguments are global arrays allocated in nemogcm.F90 with the

dimensions of the full domain (jpi, jpj). In the second call, they are local working arrays in

zps_hde declared with the dimensions of the tile (ntsi:ntsj, ntei:ntej) to minimise

memory consumption.

The explicit shape declarations for the dummy arguments in eos_insitu will not conform with

the actual arguments in both eos calls.

Solution

Use a wrapper routine to pass in the shape of the actual array arguments.

In the above example, eos_insitu is replaced by:

SUBROUTINE eos_insitu(pts, prd, pdep)

 REAL(wp), DIMENSION(:,:,:,:), INTENT(in) :: pts

 REAL(wp), DIMENSION(:,:,:) , INTENT(out) :: prd

 REAL(wp), DIMENSION(:,:,:) , INTENT(in) :: pdep

CALL eos_insitu_t(pts, is_tile(pts), prd, is_tile(prd), pdep,

is_tile(pdep))

END SUBROUTINE eos_insitu

SUBROUTINE eos_insitu_t(pts, ktts, prd, ktrd, pdep, ktdep)

 INTEGER, INTENT(in) :: ktts, ktrd, ktdep

 REAL(wp), DIMENSION(ST_2DT(ktts) ,jpk,jpts), INTENT(in) :: pts

 REAL(wp), DIMENSION(ST_2DT(ktrd) ,jpk), INTENT(out) :: prd

 REAL(wp), DIMENSION(ST_2DT(ktdep),jpk), INTENT(in) :: pdep

where is_tile is an INTERFACE of functions returning 0 or 1, e.g.:

PURE FUNCTION is_tile_2d(pt)

 REAL(wp), DIMENSION(:,:), INTENT(in) :: pt

 INTEGER :: is_tile_2d

 IF(ln_tile .AND. SIZE(pt, 1) < jpi) THEN

 is_tile_2d = 1

 ELSE

 is_tile_2d = 0

 ENDIF

 END FUNCTION is_tile_2d

and ST_2DT is a CPP macro returning “1:jpi,1:jpj“ or “ntsi:ntei,ntsj:ntej”:

#define ST_1DTi(T) (ntsi-nn_hls-1)*T+1:(ntei+nn_hls-jpi)*T+jpi

#define ST_1DTj(T) (ntsj-nn_hls-1)*T+1:(ntej+nn_hls-jpj)*T+jpj

#define ST_2DT(T) ST_1DTi(T),ST_1DTj(T)

In this example, the wrapper routine eos_insitu determines the shape of the input

arguments and passes this information to eos_insitu_t, the original eos_insitu routine.

The dummy array arguments are then dynamically declared with the correct explicit shape.

Other solutions

An ideal solution would be to use assumed-shape declarations, i.e. DIMENSION(:,:), but

these do not work in this case as they do not preserve the bounds of the actual array

argument. For example:

SUBROUTINE test(arg)

 REAL(wp), DIMENSION(:,:), INTENT(in) :: arg

 PRINT *,LBOUND(arg),UBOUND(arg)

REAL(wp), DIMENSION(3:7,5:9) :: arg

PRINT *,LBOUND(arg),UBOUND(arg) ! Prints “(3,5) (7,9)”

CALL test(arg) ! Prints “(1,1) (5,5)”

Declaring tile arrays with a lower bound starting from > 1 allows DO loops to access both the

tile and the equivalent part of the full domain. This is not possible if the bounds information is

lost.

Unresolved issues

• prt_ctl calls

Issue

The result is not preserved when tiling is used.

Solutions

prt_ctl essentially takes the global sum of an array and prints the result. This is used to

assess bit comparability and is similar to stpctl (which writes to the run.stat file), but is more

granular and called from various places within the timestep loop.

The same workaround as for other aggregation operations can be used, where the result is

stored and aggregated over tiles for the processor domain. However, this introduces an extra

step in the calculation and bit-level differences are introduced if more than one tile is used.

While the use of tiling preserves results for stpctl and other diagnostics, it does not do so

for prtctl diagnostics. Therefore, prtctl cannot be used to compare results with and

without tiling.

A further issue is that the sum result must be stored for each unique prt_ctl call. For

example, the following call is from eos_insitu:

IF(sn_cfctl%l_prtctl) CALL prt_ctl(tab3d_1=prd, clinfo1=' eos-insitu

: ', kdim=jpk)

The result could be stored in a variable declared locally in eos_insitu and passed to

prt_ctl. However, eos_insitu itself is called by more than one routine per timestep, so the

variable would contain the sum over several calls.

I have explored a solution that makes use of the descriptive information passed as part of the

call, i.e. clinfo1 in the above example, in order to identify unique prt_ctl calls. This is a

work in progress.

