Dynamic Memory in NEMO

Implications for developers

Andy Porter,
STFC Daresbury Laboratory,
UK

Overview

1. What's changed
2. Implications for coding a module

3. Implications for coding a subroutine
4. The wrk_nemo module

1. What's Changed

par_oce.F90: jpi, jpo/ and jpk are now variables
Module arrays that were previously declared with e.g.
DIMENSION(jpi,jpj,jpk)

are now declared with

SAVE, ALLOCATABLE, DIMENSION(:,:,:)

and are ALLOCATED in a new ... alloc() function that belongs
to the module.

1. What's Changed continued...

ALL of these module ..._alloc() functions are called from
nemo_alloc() in nemogcm.F90 once jpi and jpj are known.

If any of these calls fail then the program is halted.

2. Implications for coding a module

Any array involving jpi, jpj or jpk in one of its extents must be
allocatable.

Any module containing one or more allocatable arrays must
CONTAIN a PUBLIC ... _alloc() function that allocates them.

This function must be called from within nemo_alloc().

3. Implications for coding a subroutine

e All dynamic module arrays are now SAVE'd so be
aware of what an array contains before it is used
e \Work-space arrays must now be declared differently
o If extent of array <= (Jpi,jpj,jpk) then use new
wrk_nemo module
o Otherwise, use a module variable and ensure it is
allocated in the ... alloc() function

4. MODULE wrk nemo

e Contains arrays for use as temporary workspaces in
subroutines

e REAL(wp), INTEGER and LOGICAL.

e Removes need to ALLOCATE workspace arrays in each
subroutine

e Should reduce overall memory usage

e Arrays accessed using standard module 'use’ syntax:

o USE wrk nemo, ONLY: zwrk => wrk 3d 1
e Module contains helper routines that ensure requested

workspaces not already in use
o wrk use(ndims, array 1d 1, array i1d 2,...)

o wrk release(ndims, array id 1, array 1d 2,...)

4. Using the wrk_nemo module

USE wrk nemo, ONLY: wrk use, wrk release
USE wrk nemo, ONLY: ztempl => wrk 2d 1
USE wrk nemo, ONLY: ztemp2 => wrk 3d 2

IF((NOT. wrk use(2, 1)) .OR. &
(.NOT. wrk use(3, 2)))THEN
CALL ctl stop('sbc_fwb: workspace arrays in use.")
RETURN

END IF

ztempl(:,:) =

IF((NOT. wrk release(2, 1)) .OR. &

(.NOT. wrk release(3, 2)))THEN

CALL ctl_stop('sbc_fwb: failed to release..")
END IF

4. Workspaces with extent < (jpi,jpj,jpk)

1. Either, use explicit index range throughout
(e.g. zwrk(1:n,:,:) where n < jpi)
2. or, use a pointer to access a sub-array of the workspace:

USE wrk nemo, ONLY: wrk 3d 4

REAL(wp), POINTER, DIMENSION(:,:,:) :: zwrk
INTEGER, PARAMETER ::n=4

zwrk =>wrk 3d 4(1:mn,:,:)

and can then use zwrk(:,:,:) as usual.

Comments/discussion...

