
North Fold optimization 
I.Epicoco, S.Mocavero, G.Aloisio 

Scientific Computing and Operation (SCO) Division 
CMCC, Italy 

 
NEMO version: v3.5 
Date: May 2013 
 
Abstract 
In the following we report the optimization of the north-fold algorithm carried out at CMCC/SCO 
(Scientific Computing & Operations Division) with some preliminary insights on Vesta (BG/Q 
@ANL) and Athena (iDataplex system@CMCC). 
 
Introduction 
The folding of points at north of the domain handles the north boundary of a three-polar ORCA 
grid. Such a grid has two poles in the northern hemisphere (see Fig.1).  
 

 
Fig.1: tripolar ORCA grid 

 
The folding slightly differs depending on the nature of the points (T-, U-, V-, F-point) to be folded 
and on the pivoting point (T- or F-point pivot). More in general the folding is achieved considering 
only the last 4 rows on the top of the global domain and by applying a rotation pivoting on the point 
in the middle. During the folding, the point on the top left is updated with the value of the point on 
bottom right and so on (see Fig. 2). 
 

 
Fig. 2: north-fold algorithm 

 
If we consider jpiglo the total number of column in the global domain, the sequential time is 
proportional to jpiglo. 
The current version of the parallel algorithm is based on the domain decomposition. Each MPI 
process takes care of a block of points. Each process can update its points using values belonging to 
the symmetric process. An MPI_Sendrecv communication is used for sending jpi point to the 
corresponding process. jpi is exactly the number of column assigned to each process. If we consider 
the MPI processes disposed in a grid of jpni x jpnj, the following relation can be used to identify the 
pairs of processes that must exchange its north points for the north fold. 
 



P(i, jpnj)↔ P( jpni − i +1, jpnj)       ∀i,   1≤ i ≤ jpni  

 
Fig. 3: communication pattern for the north-fold 

 
In the current implementation, each received message is placed in a buffer with a number of 
element equal to the total dimension of the global domain (jpiglo elements). 
Each process sweeps the entire buffer, but only a part of that computation is really useful for the 
process’ sub-domain, resulting in a bunch of redundant operations that can be avoided. Since each 
process sweeps a buffer with jpiglo elements the parallel time of the algorithm is still proportional 
to the dimension of the global domain. 
 
Optimization 
In our optimization we reduced the buffer length only to the number of elements actually needed by 
the receiving process. The number of elements needed are exactly the dimension of the sub-domain. 
We avoid redundant operations and the parallel time is now proportional to the problem size and 
inverse proportional with the number of processes. 
 
Performance Evaluation 
We evaluated the benefit coming from the optimization, using a high resolution configuration 
named GLOB16 on two architecture: BG/Q named Vesta located at the ALCF – Argonne National 
Laboratory (ANL); iDataPlex with SandyBridge named Athena located at CMCC Supercomputing 
Center. 
 

MODEL SETUP GLOB16 

Resolution 1/16° ~7Km 

Grid dimension 5762 x 3133 x 100 

Number of grid points 1800M 

Time Step 2.5 min 

Memory usage ~ 1.2 TB 
 
 



 
Fig. 4: Execution time and SYPD of NEMO in configuration GLOB16 on BG/Q Vesta (ANL) 

 
On BG/Q, the optimization produced an improvement of 44.7% of in the execution time per step on 
16K cores. The code scales well up to 16K cores with a parallel efficiency of 70.9%. We could 
scale up to 32K cores.  
 
 



 

 
Fig. 5: Execution time and SYPD of NEMO in configuration GLOB16 on Athena (CMCC) 

 
On iDataPlex, the optimization produced an improvement of 22% in the execution time per step on 
more than 7K cores. The code scales well up to 7K cores with a parallel efficiency of 59.5%. The 
SYPD is still very low, half a year per day. 
A brief comparison between BG/Q and iDataPlex shows that on Athena we can simulate half year 
per day using 7Kcores while on Vesta we got a maximum of 0.25 years per day with 16K core. The 
main reason is due to the SMT exploitation: since the code is pure MPI, SMT is not exploited at all.  
A hybrid parallelization of NEMO will better suite on many core architectures. 


