
11 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

Contents
11.1 Old Model Output (default or key dimgout) 204
11.2 Standard model Output (IOM) 204

11.2.1 XIOS : the IO SERVER 206
11.2.2 Practical issues . 207
11.2.3 XML fundamentals 208
11.2.4 Detailed functionalities 211
11.2.5 XML reference tables 214

11.3 NetCDF4 Support (key netcdf4) 219
11.4 Tracer/Dynamics Trends (TRD) 220
11.5 On-line Floats trajectories (FLO) (key floats) 222
11.6 Harmonic analysis of tidal constituents (key diaharm) . . 224
11.7 Transports across sections (key diadct) 225
11.8 Other Diagnostics (key diahth, key diaar5) 227
11.9 Diagnosing the Steric effect in sea surface height 229

204 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

11.1 Old Model Output (default or key dimgout)

The model outputs are of three types : the restart file, the output listing, and the
diagnostic output file(s). The restart file is used internally by the code when the user
wants to start the model with initial conditions defined by a previous simulation.
It contains all the information that is necessary in order for there to be no changes
in the model results (even at the computer precision) between a run performed
with several restarts and the same run performed in one step. It should be noted
that this requires that the restart file contain two consecutive time steps for all the
prognostic variables, and that it is saved in the same binary format as the one used
by the computer that is to read it (in particular, 32 bits binary IEEE format must
not be used for this file).

The output listing and file(s) are predefined but should be checked and even-
tually adapted to the user’s needs. The output listing is stored in the ocean.output
file. The information is printed from within the code on the logical unit numout.
To locate these prints, use the UNIX command ”grep -i numout” in the source code
directory.

By default, diagnostic output files are written in NetCDF format but an IEEE
binary output format, called DIMG, can be choosen by defining key dimgout.

Since version 3.2, when defining key iomput, an I/O server has been added
which provides more flexibility in the choice of the fields to be written as well
as how the writing work is distributed over the processors in massively parallel
computing. The complete description of the use of this I/O server is presented in
next section.

By default, if neither key iomput nor key dimgout are defined, NEMO pro-
duces NetCDF with the old IOIPSL library which has been kept for compatibility
and its easy installation. However, the IOIPSL library is quite inefficient on parallel
machines and, since version 3.2, many diagnostic options have been added presu-
ming the use of key iomput. The usefulness of the default IOIPSL-based option
is expected to reduce with each new release. If key iomput is not defined, output
files and content are defined in the diawri.F90 module and contain mean (or ins-
tantaneous if key diainstant is defined) values over a period of nn write time-step
(namelist parameter).

11.2 Standard model Output (IOM)

Since version 3.2, iomput is the NEMO output interface of choice. It has been
designed to be simple to use, flexible and efficient. The two main purposes of iom-
put are :

11.2. Standard model Output (IOM) 205

1. The complete and flexible control of the output files through external XML
files adapted by the user from standard templates.

2. To achieve high performance and scalable output through the optional distri-
bution of all diagnostic output related tasks to dedicated processes.

The first functionality allows the user to specify, without code changes or recom-
pilation, aspects of the diagnostic output stream, such as :

– The choice of output frequencies that can be different for each file (including
real months and years).

– The choice of file contents ; includes complete flexibility over which data are
written in which files (the same data can be written in different files).

– The possibility to split output files at a choosen frequency.
– The possibility to extract a vertical or an horizontal subdomain.
– The choice of the temporal operation to perform, e.g. : average, accumulate,

instantaneous, min, max and once.
– Control over metadata via a large XML ”database” of possible output fields.

In addition, iomput allows the user to add the output of any new variable (scalar,
2D or 3D) in the code in a very easy way. All details of iomput functionalities
are listed in the following subsections. Examples of the XML files that control the
outputs can be found in :

NEMOGCM/CONFIG/ORCA2_LIM/EXP00/iodef.xml
NEMOGCM/CONFIG/SHARED/field_def.xml
and
NEMOGCM/CONFIG/SHARED/domain_def.xml.

The second functionality targets output performance when running in parallel
(key mpp mpi). Iomput provides the possibility to specify N dedicated I/O pro-
cesses (in addition to the NEMO processes) to collect and write the outputs. With
an appropriate choice of N by the user the bottleneck associated with the writing
of the output files can be greatly reduced.

Since version 3.5, the iom put interface depends on an external code called
XIOS. This new IO server can take advantage of the parallel I/O functionality
of NetCDF4 to create a single output file and therefore to bypass the rebuilding
phase. Note that writing in parallel into the same NetCDF files requires that your
NetCDF4 library is linked to an HDF5 library that has been correctly compiled (i.e.
with the configure option −−enable-parallel). Note that the files created by iomput
through XIOS are incompatible with NetCDF3. All post-processsing and visuali-
zation tools must therefore be compatible with NetCDF4 and not only NetCDF3.

Even if not using the parallel I/O functionality of NetCDF4, using N dedicated
I/O servers, where N is typically much less than the number of NEMO processors,
will reduce the number of output files created. This can greatly reduce the post-
processing burden usually associated with using large numbers of NEMO proces-
sors. Note that for smaller configurations, the rebuilding phase can be avoided,
even without a parallel-enabled NetCDF4 library, simply by employing only one
dedicated I/O server.

206 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

11.2.1 XIOS : the IO SERVER

Attached or detached mode ?

Iomput is based on XIOS, the io server developed by Yann Meurdesoif from
IPSL. The behaviour of the io subsystem is controlled by settings in the external
XML files listed above. Key settings in the iodef.xml file are using server and
the type tag associated with each defined file. The using server setting de-
termines whether or not the server will be used in ”attached mode” (as a library)
[false] or in ”detached mode” (as an external executable on N additional, dedica-
ted cpus) [true]. The ”attached mode” is simpler to use but much less efficient for
massively parallel applications. The type of each file can be either ”multiple file”
or ”one file”.

In attached mode and if the type of file is ”multiple file”, then each NEMO
process will also act as an IO server and produce its own set of output files. Su-
perficially, this emulates the standard behaviour in previous versions, However, the
subdomain written out by each process does not correspond to the jpi x jpj
x jpk domain actually computed by the process (although it may if jpni=1).
Instead each process will have collected and written out a number of complete lon-
gitudinal strips. If the ”one file” option is chosen then all processes will collect
their longitudinal strips and write (in parallel) to a single output file.

In detached mode and if the type of file is ”multiple file”, then each stand-
alone XIOS process will collect data for a range of complete longitudinal strips
and write to its own set of output files. If the ”one file” option is chosen then all
XIOS processes will collect their longitudinal strips and write (in parallel) to a
single output file. Note running in detached mode requires launching a Multiple
Process Multiple Data (MPMD) parallel job. The following subsection provides a
typical example but the syntax will vary in different MPP environments.

Number of cpu used by XIOS in detached mode

The number of cores used by the XIOS is specified when launching the model.
The number of cores dedicated to XIOS should be from 1/10 to 1/50 of the number
or cores dedicated to NEMO. Some manufacturers suggest using O(

√
N) dedica-

ted IO processors for N processors but this is a general recommendation and not
specific to NEMO. It is difficult to provide precise recommendations because the
optimal choice will depend on the particular hardware properties of the target sys-
tem (parallel filesystem performance, available memory, memory bandwidth etc.)
and the volume and frequency of data to be created. Here is an example of 2 cpus
for the io server and 62 cpu for nemo using mpirun :

mpirun -np 62 ./nemo.exe : -np 2 ./xios server.exe

11.2. Standard model Output (IOM) 207

Control of XIOS : the XIOS context in iodef.xml

As well as the using server flag, other controls on the use of XIOS are
set in the XIOS context in iodef.xml. See the XML basics section below for more
details on XML syntax and rules.

variable name description example
buffer size buffer size used by XIOS to send data

from NEMO to XIOS. Larger is more
efficient. Note that needed/used buffer
sizes are summarized at the end of the
job

25000000

buffer server factor size ratio between NEMO and XIOS buffer
size. Should be 2.

2

info level verbosity level (0 to 100) 0
using server activate attached(false) or deta-

ched(true) mode
true

using oasis XIOS is used with OASIS(true) or not
(false)

false

oasis codes id when using oasis, define the identifier
of NEMO in the namcouple. Note that
the identifier of XIOS is xios.x

oceanx

11.2.2 Practical issues

Installation

As mentioned, XIOS is supported separately and must be downloaded and
compiled before it can be used with NEMO. See the installation guide on the XIOS
wiki for help and guidance. NEMO will need to link to the compiled XIOS library.
The XIOS with NEMO guide provides an example illustration of how this can be
achieved.

Add your own outputs

It is very easy to add your own outputs with iomput. Many standard fields
and diagnostics are already prepared (i.e., steps 1 to 3 below have been done) and
simply need to be activated by including the required output in a file definition in
iodef.xml (step 4). To add new output variables, all 4 of the following steps must
be taken.
1. in NEMO code, add a

CALL iom put(’identifier’, array)
where you want to output a 2D or 3D array.

2. If necessary, add
USE iom ! I/O manager library
to the list of used modules in the upper part of your module.

208 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

3. in the field def.xml file, add the definition of your variable using the same iden-
tifier you used in the f90 code (see subsequent sections for a details of the
XML syntax and rules). For example :

<field_definition>
<!-- T grid -->

<field_group id="grid_T" grid_ref="grid_T_3D">
...
<field id="identifier" long_name="blabla" ... />
...

</field_definition>

Note your definition must be added to the field group whose reference grid
is consistent with the size of the array passed to iomput. The grid ref attri-
bute refers to definitions set in iodef.xml which, in turn, reference grids and
axes either defined in the code (iom set domain attr and iom set axis attr in
iom.F90) or defined in the domain def.xml file. E.g. :

<grid id="grid_T_3D" domain_ref="grid_T" axis_ref="deptht"/>

Note, if your array is computed within the surface module each nn fsbc
time step, add the field definition within the field group defined with the id
”SBC” : <field group id=”SBC”...> which has been defined with the correct
frequency of operations (iom set field attr in iom.F90)

4. add your field in one of the output files defined in iodef.xml (again see sub-
sequent sections for syntax and rules)

<file id="file1" .../>
...
<field field_ref="identifier" />
...

</file>

11.2.3 XML fundamentals

XML basic rules

XML tags begin with the less-than character (”<”) and end with the greater-
than character (”>”). You use tags to mark the start and end of elements, which are
the logical units of information in an XML document. In addition to marking the
beginning of an element, XML start tags also provide a place to specify attributes.
An attribute specifies a single property for an element, using a name/value pair, for
example : See here for more details.

11.2. Standard model Output (IOM) 209

Structure of the xml file used in NEMO

The XML file used in XIOS is structured by 7 families of tags : context, axis,
domain, grid, field, file and variable. Each tag family has hierarchy of three flavors
(except for context) :

flavor description example
root declaration of the root ele-

ment that can contain ele-
ment groups or elements

< file_definition ... >

group declaration of a group ele-
ment that can contain ele-
ment groups or elements

< file_group ... >

element declaration of an element that
can contain elements

< file ... >

Each element may have several attributes. Some attributes are mandatory, other
are optional but have a default value and other are are completely optional. Id is
a special attribute used to identify an element or a group of elements. It must be
unique for a kind of element. It is optional, but no reference to the corresponding
element can be done if it is not defined.

The XML file is split into context tags that are used to isolate IO definition from
different codes or different parts of a code. No interference is possible between 2
different contexts. Each context has its own calendar and an associated timestep.
In NEMO, we used the following contexts (that can be defined in any order) :

context description example
context xios context containing informa-

tion for XIOS
<context id="xios" ...

context nemo context containing IO infor-
mation for NEMO (mother
grid when using AGRIF)

<context id="nemo" ...

context 1 nemo context containing IO infor-
mation for NEMO child grid
1 (when using AGRIF)

<context id="1_nemo" ...

context n nemo context containing IO infor-
mation for NEMO child grid
n (when using AGRIF)

<context id="n_nemo" ...

The xios context contains only 1 tag :
context tag description example
variable definition define variables needed by

XIOS. This can be seen as a
kind of namelist for XIOS.

<variable_definition ...

Each context tag related to NEMO (mother or child grids) is divided into 5 parts

210 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

(that can be defined in any order) :

context tag description example
field definition define all variables that can

potentially be outputted
<field_definition ...

file definition define the netcdf files to be
created and the variables they
will contain

<file_definition ...

axis definition define vertical axis <axis_definition ...

domain definition define the horizontal grids <domain_definition ...

grid definition define the 2D and 3D grids
(association of an axis and a
domain)

<grid_definition ...

Nesting XML files

The XML file can be split in different parts to improve its readability and fa-
cilitate its use. The inclusion of XML files into the main XML file can be done
through the attribute src :
<context src="./nemo_def.xml" />

In NEMO, by default, the field and domain definition is done in 2 separate files :
NEMOGCM/CONFIG/SHARED/field_def.xml
and
NEMOGCM/CONFIG/SHARED/domain_def.xml

that are included in the main iodef.xml file through the following commands :
<field_definition src="./field_def.xml" />

<domain_definition src="./domain_def.xml" />

Use of inheritance

XML extensively uses the concept of inheritance. XML has a tree based struc-
ture with a parent-child oriented relation : all children inherit attributes from parent,
but an attribute defined in a child replace the inherited attribute value. Note that the
special attribute ”id” is never inherited.

example 1 : Direct inheritance.

<field_definition operation="average" >
<field id="sst" /> <!-- averaged sst -->
<field id="sss" operation="instant"/> <!-- instantaneous sss -->

</field_definition>

The field ”sst” which is part (or a child) of the field definition will inherit the
value ”average” of the attribute ”operation” from its parent. Note that a child can
overwrite the attribute definition inherited from its parents. In the example above,

11.2. Standard model Output (IOM) 211

the field ”sss” will for example output instantaneous values instead of average va-
lues.

example 2 : Inheritance by reference.
<field_definition>
<field id="sst" long_name="sea surface temperature" />
<field id="sss" long_name="sea surface salinity" />

</field_definition>

<file_definition>
<file id="myfile" output_freq="1d" />
<field field_ref="sst" /> <!-- default def -->
<field field_ref="sss" long_name="my description" /> <!-- overwrite -->

</file>
</file_definition>

Inherit (and overwrite, if needed) the attributes of a tag you are refering to.

Use of Groups

Groups can be used for 2 purposes. Firstly, the group can be used to define com-
mon attributes to be shared by the elements of the group through the inheritance.
In the following example, we define a group of field that will share a common
grid ”grid T 2D”. Note that for the field ”toce”, we overwrite the grid definition
inherited from the group by ”grid T 3D”.

<field_group id="grid_T" grid_ref="grid_T_2D">
<field id="toce" long_name="temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="sst" long_name="sea surface temperature" unit="degC" />
<field id="sss" long_name="sea surface salinity" unit="psu" />
<field id="ssh" long_name="sea surface height" unit="m" />

...

Secondly, the group can be used to replace a list of elements. Several examples
of groups of fields are proposed at the end of the file CONFIG/SHARED/field def.xml.
For example, a short list of the usual variables related to the U grid :

<field_group id="groupU" >
<field field_ref="uoce" />
<field field_ref="suoce" />
<field field_ref="utau" />
</field_group>

that can be directly include in a file through the following syntax :
<file id="myfile_U" output_freq="1d" />
<field_group group_ref="groupU"/>
<field field_ref="uocetr_eff" /> <!-- add another field -->
</file>

11.2.4 Detailed functionalities

The file NEMOGCM/CONFIG/ORCA2 LIM/iodef demo.xml provides se-
veral examples of the use of the new functionalities offered by the XML interface
of XIOS.

212 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

Define horizontal subdomains

Horizontal subdomains are defined through the attributs zoom ibegin, zoom jbegin,
zoom ni, zoom nj of the tag family domain. It must therefore be done in the domain
part of the XML file. For example, in CONFIG/SHARED/domain def.xml, we
provide the following example of a definition of a 5 by 5 box with the bottom left
corner at point (10,10).

<domain_group id="grid_T">
<domain id="myzoom" zoom_ibegin="10" zoom_jbegin="10" zoom_ni="5" zoom_nj="5" />

The use of this subdomain is done through the redefinition of the attribute do-
main ref of the tag family field. For example :

<file id="myfile_vzoom" output_freq="1d" >
<field field_ref="toce" domain_ref="myzoom"/>

</file>

Moorings are seen as an extrem case corresponding to a 1 by 1 subdomain. The
Equatorial section, the TAO, RAMA and PIRATA moorings are alredy registered
in the code and can therefore be outputted without taking care of their (i,j) posi-
tion in the grid. These predefined domains can be activated by the use of specific
domain ref : ”EqT”, ”EqU” or ”EqW” for the equatorial sections and the mooring
position for TAO, RAMA and PIRATA followed by ”T” (for example : ”8s137eT”,
”1.5s80.5eT” ...)

<file id="myfile_vzoom" output_freq="1d" >
<field field_ref="toce" domain_ref="0n180wT"/>

</file>

Note that if the domain decomposition used in XIOS cuts the subdomain in several
parts and if you use the ”multiple file” type for your output files, you will endup
with several files you will need to rebuild using unprovided tools (like ncpdq and
ncrcat, see nco manual). We are therefore advising to use the ”one file” type in this
case.

Define vertical zooms

Vertical zooms are defined through the attributs zoom begin and zoom end of
the tag family axis. It must therefore be done in the axis part of the XML file. For
example, in NEMOGCM/CONFIG/ORCA2 LIM/iodef demo.xml, we provide the
following example :

<axis_group id="deptht" long_name="Vertical T levels" unit="m" positive="down" >
<axis id="deptht" />
<axis id="deptht_myzoom" zoom_begin="1" zoom_end="10" />

The use of this vertical zoom is done through the redefinition of the attribute
axis ref of the tag family field. For example :

<file id="myfile_hzoom" output_freq="1d" >
<field field_ref="toce" axis_ref="deptht_myzoom"/>

</file>

11.2. Standard model Output (IOM) 213

Control of the output file names

The output file names are defined by the attributs ”name” and ”name suffix” of
the tag family file. for example :

<file_group id="1d" output_freq="1d" name="myfile_1d" >
<file id="myfileA" name_suffix="_AAA" > <!-- will create file "myfile_1d_AAA" -->

...
</file>
<file id="myfileB" name_suffix="_BBB" > <!-- will create file "myfile_1d_BBB" -->

...
</file>

</file_group>

However it is often very convienent to define the file name with the name of the
experience, the output file frequency and the date of the beginning and the end of
the simulation (which are informations stored either in the namelist or in the XML
file). To do so, we added the following rule : if the id of the tag file is ”fileN”(where
N = 1 to 99) or one of the predefined section or mooring (see next subsection), the
following part of the name and the name suffix (that can be inherited) will be au-
tomatically replaced by :

placeholder string automatically replaced by
@expname@ the experience name (from cn exp in the namelist)

@freq@ output frequency (from attribute output freq)
@startdate@ starting date of the simulation (from nn date0 in the

restart or the namelist). yyyymmdd format
@startdatefull@ starting date of the simulation (from nn date0 in the

restart or the namelist). yyyymmdd_hh:mm:ss
format

@enddate@ ending date of the simulation (from nn date0 and
nn itend in the namelist). yyyymmdd format

@enddatefull@ ending date of the simulation (from nn date0 and
nn itend in the namelist). yyyymmdd_hh:mm:ss
format

For example,

<file id="myfile_hzoom" name="myfile_@expname@_@startdate@_freq@freq@" output_freq="1d" >

with the namelist :

cn_exp = "ORCA2"
nn_date0 = 19891231
ln_rstart = .false.

will give the following file name radical :

myfile_ORCA2_19891231_freq1d

214 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

Other controls of the xml attributes from NEMO

The values of some attributes are defined by subroutine calls within NEMO
(calls to iom set domain attr, iom set axis attr and iom set field attr in iom.F90).
Any definition given in the xml file will be overwritten. By convention, these attri-
butes are defined to ”auto” (for string) or ”0000” (for integer) in the xml file (but
this is not necessary).

Here is the list of these attributes :

tag ids affected by automatic name attribute value
definition of some of their attributes attribute

field definition freq op rn rdt
SBC freq op rn rdt × nn fsbc

ptrc T freq op rn rdt × nn dttrc
diad T freq op rn rdt × nn dttrc

EqT, EqU, EqW jbegin, ni, according to the grid
name suffix

TAO, RAMA and PIRATA moorings zoom ibegin, zoom jbegin, according to the grid
name suffix

11.2.5 XML reference tables

Tag list

tag name description accepted attribute child of parent of
simulation this tag is the

root tag which
encapsulates all
the content of
the xml file

none none context

context encapsulates
parts of the xml
file dedicated to
different codes
or different
parts of a code

id (”xios”, ”nemo” or
”n nemo” for the nth
AGRIF zoom), src,
time origin

simulation all root
tags : ...
definition

field definition encapsulates the
definition of all
the fields that
can potentially
be outputted

axis ref, default value,
domain ref, enabled,
grid ref, level, opera-
tion, prec, src

context field or
field group

11.2. Standard model Output (IOM) 215

tag name description accepted attribute child of parent of
field group encapsulates a

group of fields
axis ref, default value,
domain ref, enabled,
group ref, grid ref, id,
level, operation, prec,
src

field definition,
field group,
file

field or
field group

field define a specific
field

axis ref, default value,
domain ref, enabled,
field ref, grid ref,
id, level, long name,
name, operation, prec,
standard name, unit

field definition,
field group,
file

none

file definition encapsulates
the definition
of all the files
that will be
outputted

enabled, min digits,
name, name suffix,
output level,
split format,
split freq, sync freq,
type, src

context file or
file group

file group encapsulates a
group of files
that will be
outputted

enabled, descrip-
tion, id, min digits,
name, name suffix,
output freq, out-
put level, split format,
split freq, sync freq,
type, src

file definition,
file group

file or
file group

file define the
contents of
a file to be
outputted

enabled, descrip-
tion, id, min digits,
name, name suffix,
output freq, out-
put level, split format,
split freq, sync freq,
type, src

file definition,
file group

field

axis definition define all the
vertical axis
potentially used
by the variables

src context axis group,
axis

axis group encapsulates
a group of
vertical axis

id, lon name, positive,
src, standard name,
unit, zoom begin,
zoom end, zoom size

axis definition,
axis group

axis group,
axis

216 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

tag name description accepted attribute child of parent of
axis define a vertical

axis
id, lon name, positive,
src, standard name,
unit, zoom begin,
zoom end, zoom size

axis definition,
axis group

none

domain -
definition

define all the
horizontal
domains poten-
tially used by
the variables

src context domain -
group,
domain

domain group encapsulates
a group of
horizontal
domains

id, lon name,
src, zoom ibegin,
zoom jbegin,
zoom ni, zoom nj

domain -
definition,
domain group

domain -
group,
domain

domain define an hori-
zontal domain

id, lon name,
src, zoom ibegin,
zoom jbegin,
zoom ni, zoom nj

domain -
definition,
domain group

none

grid definition define all the
grid (associa-
tion of a domain
and/or an axis)
potentially used
by the variables

src context grid group,
grid

grid group encapsulates a
group of grids

id, domain ref,
axis ref

grid definition,
grid group

grid group,
grid

grid define a grid id, domain ref,
axis ref

grid definition,
grid group

none

Attributes list

attribute name description example accepted by
axis ref refers to the id of a verti-

cal axis
axis ref=”deptht” field, grid fa-

milies
enabled switch on/off the output

of a field or a file
enabled=”.TRUE.” field, file fa-

milies
default value missing value definition default value=”1.e20” field family
description just for information, not

used
description=”ocean T
grid variables”

all tags

domain ref refers to the id of a do-
main

domain ref=”grid T” field or grid
families

field ref id of the field we want to
add in a file

field ref=”toce” field

11.2. Standard model Output (IOM) 217

attribute name description example accepted by
grid ref refers to the id of a grid grid ref=”grid T 2D” field family
group ref refer to a group of va-

riables
group ref=”mooring” field group

id allow to identify a tag id=”nemo” accepted by
all tags ex-
cept simula-
tion

level output priority of a field :
0 (high) to 10 (low)

level=”1” field family

long name define the long name at-
tribute in the NetCDF file

long name=”Vertical T
levels”

field

min digits specify the minimum of
digits used in the core
number in the name of the
NetCDF file

min digits=”4” file family

name name of a variable or a
file. If the name of a file
is undefined, its id is used
as a name

name=”tos” field or file
families

name suffix suffix to be inserted after
the name and before the
cpu number and the ”.nc”
termination of a file

name suffix=” myzoom” file family

attribute name description example accepted by
operation type of temporal opera-

tion : average, accumu-
late, instantaneous, min,
max and once

operation=”average” field family

output freq operation frequency. units
can be ts (timestep), y,
mo, d, h, mi, s.

output freq=”1d12h” field family

output level output priority of va-
riables in a file : 0 (high)
to 10 (low). All variables
listed in the file with a
level smaller or equal
to output level will be
output. Other variables
won’t be output even if
they are listed in the file.

output level=”10” file family

218 Ouput and Diagnostics (IOM, DIA, TRD, FLO)

attribute name description example accepted by
positive convention used for the

orientation of vertival
axis (positive downward
in NEMO).

positive=”down” axis family

prec output precision : real 4 or
real 8

prec=”4” field family

split format date format used in the
name of splitted output
files. can be spcified using
the following syntaxe :
%y, %mo, %d, %h %mi
and %s

split format=
”%yy%mom%dd”

file family

split freq split output files fre-
quency. units can be ts
(timestep), y, mo, d, h,
mi, s.

split freq=”1mo” file family

src allow to include a file src=”./field def.xml” accepted by
all tags ex-
cept simula-
tion

standard name define the standard name
attribute in the NetCDF
file

standard name= ”East-
ward Sea Ice Transport”

field

sync freq NetCDF file synchroni-
zation frequency (update
of the time counter). units
can be ts (timestep), y,
mo, d, h, mi, s.

sync freq=”10d” file family

attribute name description example accepted by
time origin specify the origin of the

time counter
time origin=”1900-01-
01 00 :00 :00”

context

type (1) specify if the output
files must be split (mul-
tiple file) or not (one file)

type=”multiple file” file familly

type (2) define the type of a va-
riable tag

type=”boolean” variable

unit unit of a variable or the
vertical axis

unit=”m” field and
axis families

11.3. NetCDF4 Support (key netcdf4) 219

attribute name description example accepted by
zoom ibegin starting point along x

direction of the zoom.
Automatically defined
for TAO/RAMA/PIRATA
moorings

zoom ibegin=”1” domain
family

zoom jbegin starting point along y
direction of the zoom.
Automatically defined
for TAO/RAMA/PIRATA
moorings

zoom jbegin=”1” domain
family

zoom ni zoom extent along x di-
rection

zoom ni=”1” domain
family

zoom nj zoom extent along y di-
rection

zoom nj=”1” domain
family

11.3 NetCDF4 Support (key netcdf4)

Since version 3.3, support for NetCDF4 chunking and (loss-less) compression
has been included. These options build on the standard NetCDF output and allow
the user control over the size of the chunks via namelist settings. Chunking and
compression can lead to significant reductions in file sizes for a small runtime
overhead. For a fuller discussion on chunking and other performance issues the
reader is referred to the NetCDF4 documentation found here.

The new features are only available when the code has been linked with a
NetCDF4 library (version 4.1 onwards, recommended) which has been built with
HDF5 support (version 1.8.4 onwards, recommended). Datasets created with chun-
king and compression are not backwards compatible with NetCDF3 ”classic” for-
mat but most analysis codes can be relinked simply with the new libraries and
will then read both NetCDF3 and NetCDF4 files. NEMO executables linked with
NetCDF4 libraries can be made to produce NetCDF3 files by setting the ln nc4zip
logical to false in the namnc4 namelist :

!---
&namnc4 ! netcdf4 chunking and compression settings ("key_netcdf4")
!---

nn_nchunks_i= 4 ! number of chunks in i-dimension
nn_nchunks_j= 4 ! number of chunks in j-dimension
nn_nchunks_k= 31 ! number of chunks in k-dimension

! setting nn_nchunks_k = jpk will give a chunk size of 1 in the vertical which
! is optimal for postprocessing which works exclusively with horizontal slabs

ln_nc4zip = .true. ! (T) use netcdf4 chunking and compression
! (F) ignore chunking information and produce netcdf3-compatible files

/

If key netcdf4 has not been defined, these namelist parameters are not read.
In this case, ln nc4zip is set false and dummy routines for a few NetCDF4-specific
functions are defined. These functions will not be used but need to be included so
that compilation is possible with NetCDF3 libraries.

