MODULE wet_dry !!============================================================================== !! *** MODULE wet_dry *** !! Wetting and drying includes initialisation routine and routines to !! compute and apply flux limiters and preserve water depth positivity !! only effects if wetting/drying is on (ln_wd == .true.) !!============================================================================== !! History : !! NEMO 3.6 ! 2014-09 ((H.Liu) Original code !! ! will add the runoff and periodic BC case later !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! wad_lmt : Compute the horizontal flux limiter and the limited velocity !! when wetting and drying happens !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce, ONLY : ln_rnf ! surface boundary condition: ocean USE sbcrnf ! river runoff USE in_out_manager ! I/O manager USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! MPP library USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE !!---------------------------------------------------------------------- !! critical depths,filters, limiters,and masks for Wetting and Drying !! --------------------------------------------------------------------- REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: wdmask !: u- and v- limiter LOGICAL, PUBLIC :: ln_wd !: Wetting/drying activation switch (T:on,F:off) REAL(wp), PUBLIC :: rn_wdmin1 !: minimum water depth on dried cells REAL(wp), PUBLIC :: rn_wdmin2 !: tolerrance of minimum water depth on dried cells REAL(wp), PUBLIC :: rn_wdld !: land elevation below which wetting/drying !: will be considered INTEGER , PUBLIC :: nn_wdit !: maximum number of iteration for W/D limiter PUBLIC wad_init ! initialisation routine called by step.F90 PUBLIC wad_lmt ! routine called by sshwzv.F90 PUBLIC wad_lmt_bt ! routine called by dynspg_ts.F90 PUBLIC wad_istate ! routine called by istate.F90 and domvvl.F90 !! * Substitutions # include "vectopt_loop_substitute.h90" CONTAINS SUBROUTINE wad_init !!---------------------------------------------------------------------- !! *** ROUTINE wad_init *** !! !! ** Purpose : read wetting and drying namelist and print the variables. !! !! ** input : - namwad namelist !!---------------------------------------------------------------------- NAMELIST/namwad/ ln_wd, rn_wdmin1, rn_wdmin2, rn_wdld, nn_wdit INTEGER :: ios ! Local integer output status for namelist read INTEGER :: ierr ! Local integer status array allocation !!---------------------------------------------------------------------- REWIND( numnam_ref ) ! Namelist namwad in reference namelist ! : Parameters for Wetting/Drying READ ( numnam_ref, namwad, IOSTAT = ios, ERR = 905) 905 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namwad in reference namelist', .TRUE.) REWIND( numnam_cfg ) ! Namelist namwad in configuration namelist ! : Parameters for Wetting/Drying READ ( numnam_cfg, namwad, IOSTAT = ios, ERR = 906) 906 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namwad in configuration namelist', .TRUE. ) IF(lwm) WRITE ( numond, namwad ) IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'wad_init : Wetting and drying initialization through namelist read' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namwad' WRITE(numout,*) ' Logical activation ln_wd = ', ln_wd WRITE(numout,*) ' Minimum wet depth on dried cells rn_wdmin1 = ', rn_wdmin1 WRITE(numout,*) ' Tolerance of min wet depth rn_wdmin2 = ', rn_wdmin2 WRITE(numout,*) ' land elevation threshold rn_wdld = ', rn_wdld WRITE(numout,*) ' Max iteration for W/D limiter nn_wdit = ', nn_wdit ENDIF IF(ln_wd) THEN ALLOCATE( wdmask(jpi,jpj), STAT=ierr ) IF( ierr /= 0 ) CALL ctl_stop('STOP', 'wad_init : Array allocation error') ENDIF END SUBROUTINE wad_init SUBROUTINE wad_lmt( sshb1, sshemp, z2dt ) !!---------------------------------------------------------------------- !! *** ROUTINE wad_lmt *** !! !! ** Purpose : generate flux limiters for wetting/drying !! !! ** Method : - Prevent negative depth occurring (Not ready for Agrif) !! !! ** Action : - calculate flux limiter and W/D flag !!---------------------------------------------------------------------- REAL(wp), DIMENSION(:,:), INTENT(inout) :: sshb1 REAL(wp), DIMENSION(:,:), INTENT(in) :: sshemp REAL(wp), INTENT(in) :: z2dt ! INTEGER :: ji, jj, jk, jk1 ! dummy loop indices INTEGER :: zflag ! local scalar REAL(wp) :: zcoef, zdep1, zdep2 ! local scalars REAL(wp) :: zzflxp, zzflxn ! local scalars REAL(wp) :: zdepwd ! local scalar, always wet cell depth REAL(wp) :: ztmp ! local scalars REAL(wp), POINTER, DIMENSION(:,:) :: zwdlmtu, zwdlmtv !: W/D flux limiters REAL(wp), POINTER, DIMENSION(:,:) :: zflxp, zflxn ! local 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu, zflxv ! local 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu1, zflxv1 ! local 2D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('wad_lmt') IF(ln_wd) THEN CALL wrk_alloc( jpi, jpj, zflxp, zflxn, zflxu, zflxv, zflxu1, zflxv1 ) CALL wrk_alloc( jpi, jpj, zwdlmtu, zwdlmtv) ! !IF(lwp) WRITE(numout,*) !IF(lwp) WRITE(numout,*) 'wad_lmt : wetting/drying limiters and velocity limiting' zflag = 0 zdepwd = 50._wp !maximum depth on which that W/D could possibly happen zflxp(:,:) = 0._wp zflxn(:,:) = 0._wp zflxu(:,:) = 0._wp zflxv(:,:) = 0._wp zwdlmtu(:,:) = 1._wp zwdlmtv(:,:) = 1._wp ! Horizontal Flux in u and v direction DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zflxu(ji,jj) = zflxu(ji,jj) + e3u_n(ji,jj,jk) * un(ji,jj,jk) * umask(ji,jj,jk) zflxv(ji,jj) = zflxv(ji,jj) + e3v_n(ji,jj,jk) * vn(ji,jj,jk) * vmask(ji,jj,jk) END DO END DO END DO zflxu(:,:) = zflxu(:,:) * e2u(:,:) zflxv(:,:) = zflxv(:,:) * e1v(:,:) wdmask(:,:) = 1 DO jj = 2, jpj DO ji = 2, jpi IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE ! we don't care about land cells IF(bathy(ji,jj) > zdepwd) CYCLE ! and cells which will unlikely go dried out zflxp(ji,jj) = max(zflxu(ji,jj), 0._wp) - min(zflxu(ji-1,jj), 0._wp) + & & max(zflxv(ji,jj), 0._wp) - min(zflxv(ji, jj-1), 0._wp) zflxn(ji,jj) = min(zflxu(ji,jj), 0._wp) - max(zflxu(ji-1,jj), 0._wp) + & & min(zflxv(ji,jj), 0._wp) - max(zflxv(ji, jj-1), 0._wp) zdep2 = bathy(ji,jj) + sshb1(ji,jj) - rn_wdmin1 IF(zdep2 .le. 0._wp) THEN !add more safty, but not necessary !zdep2 = 0._wp sshb1(ji,jj) = rn_wdmin1 - bathy(ji,jj) wdmask(ji,jj) = 0._wp END IF ENDDO END DO !! start limiter iterations DO jk1 = 1, nn_wdit + 1 zflxu1(:,:) = zflxu(:,:) * zwdlmtu(:,:) zflxv1(:,:) = zflxv(:,:) * zwdlmtv(:,:) DO jj = 2, jpj DO ji = 2, jpi IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE IF(bathy(ji,jj) > zdepwd) CYCLE ztmp = e1e2t(ji,jj) zzflxp = max(zflxu1(ji,jj), 0._wp) - min(zflxu1(ji-1,jj), 0._wp) + & & max(zflxv1(ji,jj), 0._wp) - min(zflxv1(ji, jj-1), 0._wp) zzflxn = min(zflxu1(ji,jj), 0._wp) - max(zflxu1(ji-1,jj), 0._wp) + & & min(zflxv1(ji,jj), 0._wp) - max(zflxv1(ji, jj-1), 0._wp) zdep1 = (zzflxp + zzflxn) * z2dt / ztmp zdep2 = bathy(ji,jj) + sshb1(ji,jj) - rn_wdmin1 - z2dt * sshemp(ji,jj) ! this one can be moved out of the loop IF(zdep1 > zdep2) THEN zflag = 1 wdmask(ji, jj) = 0 zcoef = ( ( zdep2 - rn_wdmin2 ) * ztmp - zzflxn * z2dt ) / ( zflxp(ji,jj) * z2dt ) zcoef = max(zcoef, 0._wp) IF(jk1 > nn_wdit) zcoef = 0._wp IF(zflxu1(ji, jj) > 0._wp) zwdlmtu(ji ,jj) = zcoef IF(zflxu1(ji-1,jj) < 0._wp) zwdlmtu(ji-1,jj) = zcoef IF(zflxv1(ji, jj) > 0._wp) zwdlmtv(ji ,jj) = zcoef IF(zflxv1(ji,jj-1) < 0._wp) zwdlmtv(ji,jj-1) = zcoef END IF END DO ! ji loop END DO ! jj loop CALL lbc_lnk( zwdlmtu, 'U', 1. ) CALL lbc_lnk( zwdlmtv, 'V', 1. ) IF(lk_mpp) CALL mpp_max(zflag) !max over the global domain IF(zflag == 0) EXIT zflag = 0 ! flag indicating if any further iteration is needed? END DO ! jk1 loop DO jk = 1, jpkm1 un(:,:,jk) = un(:,:,jk) * zwdlmtu(:, :) vn(:,:,jk) = vn(:,:,jk) * zwdlmtv(:, :) END DO CALL lbc_lnk( un, 'U', -1. ) CALL lbc_lnk( vn, 'V', -1. ) ! un_b(:,:) = un_b(:,:) * zwdlmtu(:, :) vn_b(:,:) = vn_b(:,:) * zwdlmtv(:, :) CALL lbc_lnk( un_b, 'U', -1. ) CALL lbc_lnk( vn_b, 'V', -1. ) IF(zflag == 1 .AND. lwp) WRITE(numout,*) 'Need more iterations in wad_lmt!!!' !IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field) !IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (update hdivn field) ! ! CALL wrk_dealloc( jpi, jpj, zflxp, zflxn, zflxu, zflxv, zflxu1, zflxv1 ) CALL wrk_dealloc( jpi, jpj, zwdlmtu, zwdlmtv) ! END IF IF( nn_timing == 1 ) CALL timing_stop('wad_lmt') END SUBROUTINE wad_lmt SUBROUTINE wad_lmt_bt( zflxu, zflxv, sshn_e, zssh_frc, rdtbt ) !!---------------------------------------------------------------------- !! *** ROUTINE wad_lmt *** !! !! ** Purpose : limiting flux in the barotropic stepping (dynspg_ts) !! !! ** Method : - Prevent negative depth occurring (Not ready for Agrif) !! !! ** Action : - calculate flux limiter and W/D flag !!---------------------------------------------------------------------- REAL(wp), INTENT(in) :: rdtbt ! ocean time-step index REAL(wp), DIMENSION(:,:), INTENT(inout) :: zflxu, zflxv, sshn_e, zssh_frc ! INTEGER :: ji, jj, jk, jk1 ! dummy loop indices INTEGER :: zflag ! local scalar REAL(wp) :: z2dt REAL(wp) :: zcoef, zdep1, zdep2 ! local scalars REAL(wp) :: zzflxp, zzflxn ! local scalars REAL(wp) :: zdepwd ! local scalar, always wet cell depth REAL(wp) :: ztmp ! local scalars REAL(wp), POINTER, DIMENSION(:,:) :: zwdlmtu, zwdlmtv !: W/D flux limiters REAL(wp), POINTER, DIMENSION(:,:) :: zflxp, zflxn ! local 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu1, zflxv1 ! local 2D workspace !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('wad_lmt_bt') IF(ln_wd) THEN CALL wrk_alloc( jpi, jpj, zflxp, zflxn, zflxu1, zflxv1 ) CALL wrk_alloc( jpi, jpj, zwdlmtu, zwdlmtv) ! !IF(lwp) WRITE(numout,*) !IF(lwp) WRITE(numout,*) 'wad_lmt_bt : wetting/drying limiters and velocity limiting' zflag = 0 zdepwd = 50._wp !maximum depth that ocean cells can have W/D processes z2dt = rdtbt zflxp(:,:) = 0._wp zflxn(:,:) = 0._wp zwdlmtu(:,:) = 1._wp zwdlmtv(:,:) = 1._wp ! Horizontal Flux in u and v direction DO jj = 2, jpj DO ji = 2, jpi IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE ! we don't care about land cells IF(bathy(ji,jj) > zdepwd) CYCLE ! and cells which will unlikely go dried out zflxp(ji,jj) = max(zflxu(ji,jj), 0._wp) - min(zflxu(ji-1,jj), 0._wp) + & & max(zflxv(ji,jj), 0._wp) - min(zflxv(ji, jj-1), 0._wp) zflxn(ji,jj) = min(zflxu(ji,jj), 0._wp) - max(zflxu(ji-1,jj), 0._wp) + & & min(zflxv(ji,jj), 0._wp) - max(zflxv(ji, jj-1), 0._wp) zdep2 = bathy(ji,jj) + sshn_e(ji,jj) - rn_wdmin1 ENDDO END DO !! start limiter iterations DO jk1 = 1, nn_wdit + 1 zflxu1(:,:) = zflxu(:,:) * zwdlmtu(:,:) zflxv1(:,:) = zflxv(:,:) * zwdlmtv(:,:) DO jj = 2, jpj DO ji = 2, jpi IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE IF(bathy(ji,jj) > zdepwd) CYCLE ztmp = e1e2t(ji,jj) zzflxp = max(zflxu1(ji,jj), 0._wp) - min(zflxu1(ji-1,jj), 0._wp) + & & max(zflxv1(ji,jj), 0._wp) - min(zflxv1(ji, jj-1), 0._wp) zzflxn = min(zflxu1(ji,jj), 0._wp) - max(zflxu1(ji-1,jj), 0._wp) + & & min(zflxv1(ji,jj), 0._wp) - max(zflxv1(ji, jj-1), 0._wp) zdep1 = (zzflxp + zzflxn) * z2dt / ztmp zdep2 = bathy(ji,jj) + sshn_e(ji,jj) - rn_wdmin1 ! this one can be moved out of the loop zdep2 = zdep2 - z2dt * zssh_frc(ji,jj) IF(zdep1 > zdep2) THEN zflag = 1 zcoef = ( ( zdep2 - rn_wdmin2 ) * ztmp - zzflxn * z2dt ) / ( zflxp(ji,jj) * z2dt ) zcoef = max(zcoef, 0._wp) IF(jk1 > nn_wdit) zcoef = 0._wp IF(zflxu1(ji, jj) > 0._wp) zwdlmtu(ji ,jj) = zcoef IF(zflxu1(ji-1,jj) < 0._wp) zwdlmtu(ji-1,jj) = zcoef IF(zflxv1(ji, jj) > 0._wp) zwdlmtv(ji ,jj) = zcoef IF(zflxv1(ji,jj-1) < 0._wp) zwdlmtv(ji,jj-1) = zcoef END IF END DO ! ji loop END DO ! jj loop CALL lbc_lnk( zwdlmtu, 'U', 1. ) CALL lbc_lnk( zwdlmtv, 'V', 1. ) IF(lk_mpp) CALL mpp_max(zflag) !max over the global domain IF(zflag == 0) EXIT zflag = 0 ! flag indicating if any further iteration is needed? END DO ! jk1 loop zflxu(:,:) = zflxu(:,:) * zwdlmtu(:, :) zflxv(:,:) = zflxv(:,:) * zwdlmtv(:, :) CALL lbc_lnk( zflxu, 'U', -1. ) CALL lbc_lnk( zflxv, 'V', -1. ) IF(zflag == 1 .AND. lwp) WRITE(numout,*) 'Need more iterations in wad_lmt_bt!!!' ! ! CALL wrk_dealloc( jpi, jpj, zflxp, zflxn, zflxu1, zflxv1 ) CALL wrk_dealloc( jpi, jpj, zwdlmtu, zwdlmtv) ! END IF IF( nn_timing == 1 ) CALL timing_stop('wad_lmt') END SUBROUTINE wad_lmt_bt SUBROUTINE wad_istate !!---------------------------------------------------------------------- !! *** ROUTINE wad_istate *** !! !! ** Purpose : Initialization of the dynamics and tracers for WAD test !! configurations (channels or bowls with initial ssh gradients) !! !! ** Method : - set temperature field !! - set salinity field !! - set ssh slope (needs to be repeated in domvvl_rst_init to !! set vertical metrics ) !!---------------------------------------------------------------------- ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zi, zj !!---------------------------------------------------------------------- ! ! Uniform T & S in all test cases tsn(:,:,:,jp_tem) = 10._wp tsb(:,:,:,jp_tem) = 10._wp tsn(:,:,:,jp_sal) = 35._wp tsb(:,:,:,jp_sal) = 35._wp SELECT CASE ( jp_cfg ) ! ! ==================== CASE ( 1 ) ! WAD 1 configuration ! ! ==================== ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'istate_wad : Closed box with EW linear bottom slope' IF(lwp) WRITE(numout,*) '~~~~~~~~~~' ! do ji = 1,jpi sshn(ji,:) = ( -5.5_wp + 5.5_wp*FLOAT(mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) end do ! ! ==================== CASE ( 2 ) ! WAD 2 configuration ! ! ==================== ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'istate_wad : Parobolic EW channel, mid-range initial ssh slope' IF(lwp) WRITE(numout,*) '~~~~~~~~~~' ! do ji = 1,jpi sshn(ji,:) = ( -5.5_wp + 3.9_wp*FLOAT(jpidta - mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) end do ! ! ==================== CASE ( 3 ) ! WAD 3 configuration ! ! ==================== ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'istate_wad : Parobolic EW channel, extreme initial ssh slope' IF(lwp) WRITE(numout,*) '~~~~~~~~~~' ! do ji = 1,jpi sshn(ji,:) = ( -7.5_wp + 6.9_wp*FLOAT(jpidta - mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) end do ! ! ! ==================== CASE ( 4 ) ! WAD 4 configuration ! ! ==================== ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'istate_wad : Parobolic bowl, mid-range initial ssh slope' IF(lwp) WRITE(numout,*) '~~~~~~~~~~' ! DO ji = 1, jpi zi = MAX(1.0-FLOAT((mig(ji)-25)**2)/400.0, 0.0 ) DO jj = 1, jpj zj = MAX(1.0-FLOAT((mjg(jj)-17)**2)/144.0, 0.0 ) sshn(ji,jj) = -8.5_wp + 8.5_wp*zi*zj END DO END DO ! ! ! =========================== CASE ( 5 ) ! WAD 5 configuration ! ! ==================== ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'istate_wad : Double slope with shelf' IF(lwp) WRITE(numout,*) '~~~~~~~~~~' ! ! Needed rn_wdmin2 increased to 0.01 for this case? do ji = 1,jpi sshn(ji,:) = ( -5.5_wp + 9.0_wp*FLOAT(mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) end do ! ! ! =========================== CASE ( 6 ) ! WAD 6 configuration ! ! ==================== ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'istate_wad : Parobolic EW channel with gaussian ridge' IF(lwp) WRITE(numout,*) '~~~~~~~~~~' ! do ji = 1,jpi !6a sshn(ji,:) = ( -5.5_wp + 9.0_wp*FLOAT(jpidta - mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) !Some variations in initial slope that have been tested !6b !sshn(ji,:) = ( -5.5_wp + 6.5_wp*FLOAT(jpidta - mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) !6c !sshn(ji,:) = ( -5.5_wp + 7.5_wp*FLOAT(jpidta - mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) !6d !sshn(ji,:) = ( -4.5_wp + 8.0_wp*FLOAT(jpidta - mig(ji))/FLOAT(jpidta-1))*tmask(ji,:,1) end do ! ! ! =========================== CASE DEFAULT ! NONE existing configuration ! ! =========================== WRITE(ctmp1,*) 'WAD test with a ', jp_cfg,' option is not coded' ! CALL ctl_stop( ctmp1 ) ! END SELECT ! ! Apply minimum wetdepth criterion ! do jj = 1,jpj do ji = 1,jpi IF( bathy(ji,jj) + sshn(ji,jj) < rn_wdmin1 ) THEN sshn(ji,jj) = tmask(ji,jj,1)*( rn_wdmin1 - bathy(ji,jj) ) ENDIF end do end do sshb = sshn ssha = sshn ! END SUBROUTINE wad_istate !!===================================================================== END MODULE wet_dry