MODULE wadlmt !!============================================================================== !! *** MODULE wadlmt *** !! compute the flux limiter for water depth positivity in !wetting/drying case !!============================================================================== !! History : !! NEMO 3.5 ! 2014-01 ((H.Liu) Original code !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! wad_lmt : Compute the horizontal flux limiter and the limited velocity !! when wetting and drying happens !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce, ONLY : ln_rnf ! surface boundary condition: ocean USE sbcrnf ! river runoff USE cla ! cross land advection (cla_div routine) USE in_out_manager ! I/O manager USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE lib_mpp ! MPP library USE wrk_nemo ! Memory Allocation USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC wad_lmt ! routine called by step.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" CONTAINS SUBROUTINE wad_lmt( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE wad_lmt *** !! !! ** Purpose : generate flux limiters for wetting/drying !! !! ** Method : - Prevent negative depth occurring (Not ready for Agrif) !! !! ** Action : - update: uwdlmt(:,:), vwdlmt(:,:) !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time-step index ! INTEGER :: ji, jj, jk, jk1 ! dummy loop indices INTEGER :: zflag, z2dt ! local scalar REAL(wp) :: zcoef, zdep1, zdep2 ! local scalars REAL(wp) :: ztmp ! local scalars REAL(wp), POINTER, DIMENSION(:,:) :: zflxp, zflxn ! specific 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu, zflxv ! specific 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: zflxu1, zflxv1 ! specific 2D workspace REAL(wp), POINTER, DIMENSION(:,:) :: wdlmt !: W/D flux limiters !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('wad_lmt') IF(ln_wad) THEN CALL wrk_alloc( jpi, jpj, zflxp, zflxn, zflxu, zflxv, zflxu1, zflxv1, wdlmt ) ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'wad_lmt : wetting/drying limiters and velocity limiting' z2dt = 2. * rdt ! Euler or leap-frog time step IF( neuler == 0 .AND. kt == nit000 ) z2dt = rdt zflxp(:,:) = 0._wp zflxn(:,:) = 0._wp zflxu(:,:) = 0._wp zflxv(:,:) = 0._wp wdlmt(:,:) = 1._wp ! Horizontal Flux in u and v direction DO jk = 1, jpkm1 DO jj = 1, jpjm1 DO ji = 1, jpim1 zflxu(ji,jj) = zflxu(ji,jj) + fse3u(ji,jj,jk) * un(ji,jj,jk) * umask(ji,jj,jk) zflxv(ji,jj) = zflxv(ji,jj) + fse3v(ji,jj,jk) * vn(ji,jj,jk) * vmask(ji,jj,jk) END DO END DO END DO zflxu(:,:) = zflxu(:,:) * e2u(:,:) zflxv(:,:) = zflxv(:,:) * e1v(:,:) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE zflxp(ji,jj) = max(zflxu(ji,jj), 0._wp) - min(zflxu(ji-1,jj), 0._wp) + & & max(zflxv(ji,jj), 0._wp) - min(zflxv(ji, jj-1), 0._wp) zflxn(ji,jj) = min(zflxu(ji,jj), 0._wp) - max(zflxu(ji-1,jj), 0._wp) + & & min(zflxv(ji,jj), 0._wp) - max(zflxv(ji, jj-1), 0._wp) zdep2 = bathy(ji,jj) + sshb(ji,jj) - rn_wadmin IF(zdep2 < 0._wp) THEN zdep2 = 0._wp sshb(ji,jj) = rn_wadmin - bathy(ji,jj) END IF ENDDO END DO !! start limiter iteration DO jk1 = 1, nn_waditr zflag = 0 ! flag indicating if any further iteration is needed? zflxu1(:,:) = zflxu(:,:) * wdlmt(:,:) zflxv1(:,:) = zflxv(:,:) * wdlmt(:,:) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. IF(tmask(ji, jj, 1) < 0.5_wp) CYCLE ztmp = e1t(ji,jj) * e2t(ji,jj) zflxn(ji,jj) = min(zflxu1(ji,jj), 0._wp) - max(zflxu1(ji-1,jj), 0._wp) + & & min(zflxv1(ji,jj), 0._wp) - max(zflxv1(ji, jj-1), 0._wp) zdep1 = (zflxp(ji,jj) * wdlmt(ji,jj) + zflxn(ji,jj)) * z2dt / ztmp zdep2 = bathy(ji,jj) + sshb(ji,jj) - rn_wadmin IF(zdep1 > zdep2) THEN zflag = 1 zcoef = ( ( zdep2 - rn_wadmine ) * ztmp - zflxn(ji,jj) * z2dt ) / ( zflxp(ji,jj) * z2dt ) zcoef = max(zcoef, 0._wp) IF(zflxu1(ji, jj ) >= 0._wp) wdlmt(ji, jj ) = zcoef IF(zflxu1(ji-1,jj ) < 0._wp) wdlmt(ji-1,jj ) = zcoef IF(zflxv1(ji, jj ) >= 0._wp) wdlmt(ji, jj ) = zcoef IF(zflxv1(ji, jj-1) < 0._wp) wdlmt(ji, jj-1) = zcoef END IF END DO ! ji loop END DO ! jj loop CALL lbc_lnk( wdlmt, 'T', 1. ) IF(zflag == 0) EXIT IF(jk1 == nn_waditr) THEN IF(zflxu1(ji, jj ) >= 0._wp) wdlmt(ji, jj ) = 0._wp IF(zflxu1(ji-1,jj ) < 0._wp) wdlmt(ji-1,jj ) = 0._wp IF(zflxv1(ji, jj ) >= 0._wp) wdlmt(ji, jj ) = 0._wp IF(zflxv1(ji, jj-1) < 0._wp) wdlmt(ji, jj-1) = 0._wp END IF END DO ! jk1 loop DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. un(ji, jj, jk) = ( sign(0.5_wp, un(ji, jj, jk)) + 0.5_wp ) * wdlmt(ji ,jj) vn(ji, jj, jk) = ( sign(0.5_wp, vn(ji, jj, jk)) + 0.5_wp ) * wdlmt(ji ,jj) un(ji-1,jj, jk) = (-sign(0.5_wp, un(ji-1,jj, jk)) + 0.5_wp ) * wdlmt(ji-1,jj) vn(ji, jj-1,jk) = (-sign(0.5_wp, vn(ji, jj-1,jk)) + 0.5_wp ) * wdlmt(ji, jj-1) END DO END DO END DO IF(zflag == 1 .AND. lwp) WRITE(numout,*) 'Need more iterations in wad_lmt!!!' !IF( ln_rnf ) CALL sbc_rnf_div( hdivn ) ! runoffs (update hdivn field) !IF( nn_cla == 1 ) CALL cla_div ( kt ) ! Cross Land Advection (update hdivn field) ! ! CALL wrk_dealloc( jpi, jpj, zflxp, zflxn, zflxu, zflxv, zflxu1, zflxv1, wdlmt ) ! END IF IF( nn_timing == 1 ) CALL timing_stop('wad_lmt') END SUBROUTINE wad_lmt !!====================================================================== END MODULE wadlmt