MODULE icesbc !!====================================================================== !! *** MODULE icesbc *** !! Sea-Ice : air-ice sbc fields !!===================================================================== !! History : 4.0 ! 2017-08 (C. Rousset) Original code !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] !!---------------------------------------------------------------------- #if defined key_si3 !!---------------------------------------------------------------------- !! 'key_si3' : SI3 sea-ice model !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE ice ! sea-ice: variables USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE usrdef_sbc ! Surface boundary condition: user defined USE sbcblk ! Surface boundary condition: bulk USE sbccpl ! Surface boundary condition: coupled interface USE icealb ! sea-ice: albedo ! USE in_out_manager ! I/O manager USE iom ! I/O manager library USE lib_mpp ! MPP library USE lib_fortran ! fortran utilities (glob_sum + no signed zero) USE lbclnk ! lateral boundary conditions (or mpp links) USE timing ! Timing USE fldread !!GS: needed by agrif IMPLICIT NONE PRIVATE PUBLIC ice_sbc_tau ! called by icestp.F90 PUBLIC ice_sbc_flx ! called by icestp.F90 PUBLIC ice_sbc_init ! called by icestp.F90 !! * Substitutions # include "do_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/ICE 4.0 , NEMO Consortium (2018) !! $Id$ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE ice_sbc_tau( kt, ksbc, utau_ice, vtau_ice ) !!------------------------------------------------------------------- !! *** ROUTINE ice_sbc_tau *** !! !! ** Purpose : provide surface boundary condition for sea ice (momentum) !! !! ** Action : It provides the following fields: !! utau_ice, vtau_ice : surface ice stress (U- & V-points) [N/m2] !!------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time step INTEGER , INTENT(in ) :: ksbc ! type of sbc flux REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: utau_ice, vtau_ice ! air-ice stress [N/m2] !! INTEGER :: ji, jj ! dummy loop index REAL(wp), DIMENSION(jpi,jpj) :: zutau_ice, zvtau_ice !!------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('icesbc') ! IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*)'ice_sbc_tau: Surface boundary condition for sea ice (momentum)' WRITE(numout,*)'~~~~~~~~~~~~~~~' ENDIF ! SELECT CASE( ksbc ) CASE( jp_usr ) ; CALL usrdef_sbc_ice_tau( kt ) ! user defined formulation CASE( jp_blk ) CALL blk_ice_1( sf(jp_wndi)%fnow(:,:,1), sf(jp_wndj)%fnow(:,:,1), & & theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module... & sf(jp_slp )%fnow(:,:,1), u_ice, v_ice, tm_su , & ! inputs & putaui = utau_ice, pvtaui = vtau_ice ) ! outputs ! CASE( jp_abl ) utau_ice & vtau_ice are computed in ablmod CASE( jp_purecpl ) ; CALL sbc_cpl_ice_tau( utau_ice , vtau_ice ) ! Coupled formulation END SELECT ! IF( ln_mixcpl) THEN ! Case of a mixed Bulk/Coupled formulation CALL sbc_cpl_ice_tau( zutau_ice , zvtau_ice ) DO_2D( 0, 0, 0, 0 ) utau_ice(ji,jj) = utau_ice(ji,jj) * xcplmask(ji,jj,0) + zutau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) ) vtau_ice(ji,jj) = vtau_ice(ji,jj) * xcplmask(ji,jj,0) + zvtau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) ) END_2D CALL lbc_lnk( 'icesbc', utau_ice, 'U', -1.0_wp, vtau_ice, 'V', -1.0_wp ) ENDIF ! IF( ln_timing ) CALL timing_stop('icesbc') ! END SUBROUTINE ice_sbc_tau SUBROUTINE ice_sbc_flx( kt, ksbc ) !!------------------------------------------------------------------- !! *** ROUTINE ice_sbc_flx *** !! !! ** Purpose : provide surface boundary condition for sea ice (flux) !! !! ** Action : It provides the following fields used in sea ice model: !! emp_oce , emp_ice = E-P over ocean and sea ice [Kg/m2/s] !! sprecip = solid precipitation [Kg/m2/s] !! evap_ice = sublimation [Kg/m2/s] !! qsr_tot , qns_tot = solar & non solar heat flux (total) [W/m2] !! qsr_ice , qns_ice = solar & non solar heat flux over ice [W/m2] !! dqns_ice = non solar heat sensistivity [W/m2] !! qemp_oce, qemp_ice, qprec_ice, qevap_ice = sensible heat (associated with evap & precip) [W/m2] !! + these fields !! qsb_ice_bot = sensible heat at the ice bottom [W/m2] !! fhld, qlead = heat budget in the leads [W/m2] !! + some fields that are not used outside this module: !! qla_ice = latent heat flux over ice [W/m2] !! dqla_ice = latent heat sensistivity [W/m2] !! tprecip = total precipitation [Kg/m2/s] !! alb_ice = albedo above sea ice !!------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step INTEGER, INTENT(in) :: ksbc ! flux formulation (user defined, bulk or Pure Coupled) !!-------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('icesbc') IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*)'ice_sbc_flx: Surface boundary condition for sea ice (flux)' WRITE(numout,*)'~~~~~~~~~~~~~~~' ENDIF ! !== ice albedo ==! CALL ice_alb( t_su, h_i, h_s, ln_pnd_alb, a_ip_eff, h_ip, cloud_fra, alb_ice ) ! SELECT CASE( ksbc ) !== fluxes over sea ice ==! ! CASE( jp_usr ) !--- user defined formulation CALL usrdef_sbc_ice_flx( kt, h_s, h_i ) CASE( jp_blk, jp_abl ) !--- bulk formulation & ABL formulation CALL blk_ice_2 ( t_su, h_s, h_i, alb_ice, & & theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module... & sf(jp_slp)%fnow(:,:,1), sf(jp_qlw)%fnow(:,:,1), & & sf(jp_prec)%fnow(:,:,1), sf(jp_snow)%fnow(:,:,1) ) IF( ln_mixcpl ) CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i ) IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist ) ! ! compute conduction flux and surface temperature (as in Jules surface module) IF( ln_cndflx .AND. .NOT.ln_cndemulate ) & & CALL blk_ice_qcn ( ln_virtual_itd, t_su, t_bo, h_s, h_i ) CASE ( jp_purecpl ) !--- coupled formulation CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i ) IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist ) END SELECT ! !== some fluxes at the ice-ocean interface and in the leads CALL ice_flx_other ! IF( ln_timing ) CALL timing_stop('icesbc') ! END SUBROUTINE ice_sbc_flx SUBROUTINE ice_flx_dist( ptn_ice, palb_ice, pqns_ice, pqsr_ice, pdqn_ice, pevap_ice, pdevap_ice, k_flxdist ) !!------------------------------------------------------------------- !! *** ROUTINE ice_flx_dist *** !! !! ** Purpose : update the ice surface boundary condition by averaging !! and/or redistributing fluxes on ice categories !! !! ** Method : average then redistribute !! !! ** Action : depends on k_flxdist !! = -1 Do nothing (needs N(cat) fluxes) !! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice !! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice !! using T-ice and albedo sensitivity !! = 2 Redistribute a single flux over categories !!------------------------------------------------------------------- INTEGER , INTENT(in ) :: k_flxdist ! redistributor REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: ptn_ice ! ice surface temperature REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: palb_ice ! ice albedo REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqns_ice ! non solar flux REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqsr_ice ! net solar flux REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdqn_ice ! non solar flux sensitivity REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pevap_ice ! sublimation REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdevap_ice ! sublimation sensitivity ! INTEGER :: jl ! dummy loop index ! REAL(wp), DIMENSION(jpi,jpj) :: z1_at_i ! inverse of concentration ! REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qsr_m ! Mean solar heat flux over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qns_m ! Mean non solar heat flux over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_evap_m ! Mean sublimation over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_dqn_m ! Mean d(qns)/dT over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_devap_m ! Mean d(evap)/dT over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zalb_m ! Mean albedo over all categories REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztem_m ! Mean temperature over all categories !!---------------------------------------------------------------------- ! WHERE ( at_i (:,:) > 0._wp ) ; z1_at_i(:,:) = 1._wp / at_i (:,:) ELSEWHERE ; z1_at_i(:,:) = 0._wp END WHERE SELECT CASE( k_flxdist ) !== averaged on all ice categories ==! ! CASE( 0 , 1 ) ! ALLOCATE( z_qns_m(jpi,jpj), z_qsr_m(jpi,jpj), z_dqn_m(jpi,jpj), z_evap_m(jpi,jpj), z_devap_m(jpi,jpj) ) ! z_qns_m (:,:) = SUM( a_i(:,:,:) * pqns_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_qsr_m (:,:) = SUM( a_i(:,:,:) * pqsr_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_dqn_m (:,:) = SUM( a_i(:,:,:) * pdqn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_evap_m (:,:) = SUM( a_i(:,:,:) * pevap_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) z_devap_m(:,:) = SUM( a_i(:,:,:) * pdevap_ice(:,:,:) , dim=3 ) * z1_at_i(:,:) DO jl = 1, jpl pqns_ice (:,:,jl) = z_qns_m (:,:) pqsr_ice (:,:,jl) = z_qsr_m (:,:) pdqn_ice (:,:,jl) = z_dqn_m (:,:) pevap_ice (:,:,jl) = z_evap_m(:,:) pdevap_ice(:,:,jl) = z_devap_m(:,:) END DO ! DEALLOCATE( z_qns_m, z_qsr_m, z_dqn_m, z_evap_m, z_devap_m ) ! END SELECT ! SELECT CASE( k_flxdist ) !== redistribution on all ice categories ==! ! CASE( 1 , 2 ) ! ALLOCATE( zalb_m(jpi,jpj), ztem_m(jpi,jpj) ) ! zalb_m(:,:) = SUM( a_i(:,:,:) * palb_ice(:,:,:) , dim=3 ) * z1_at_i(:,:) ztem_m(:,:) = SUM( a_i(:,:,:) * ptn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:) DO jl = 1, jpl pqns_ice (:,:,jl) = pqns_ice (:,:,jl) + pdqn_ice (:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) ) pevap_ice(:,:,jl) = pevap_ice(:,:,jl) + pdevap_ice(:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) ) pqsr_ice (:,:,jl) = pqsr_ice (:,:,jl) * ( 1._wp - palb_ice(:,:,jl) ) / ( 1._wp - zalb_m(:,:) ) END DO ! DEALLOCATE( zalb_m, ztem_m ) ! END SELECT ! END SUBROUTINE ice_flx_dist SUBROUTINE ice_flx_other !!----------------------------------------------------------------------- !! *** ROUTINE ice_flx_other *** !! !! ** Purpose : prepare necessary fields for thermo calculations !! !! ** Inputs : u_ice, v_ice, ssu_m, ssv_m, utau, vtau !! frq_m, qsr_oce, qns_oce, qemp_oce, e3t_m, sst_m !! ** Outputs : qsb_ice_bot, fhld, qlead !!----------------------------------------------------------------------- INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zfric_u, zqld, zqfr, zqfr_neg, zqfr_pos, zu_io, zv_io, zu_iom1, zv_iom1 REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04) REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient REAL(wp), DIMENSION(jpi,jpj) :: zfric, zvel ! ice-ocean velocity (m/s) and frictional velocity (m2/s2) !!----------------------------------------------------------------------- ! ! computation of friction velocity at T points IF( ln_icedyn ) THEN DO_2D( 0, 0, 0, 0 ) zu_io = u_ice(ji ,jj ) - ssu_m(ji ,jj ) zu_iom1 = u_ice(ji-1,jj ) - ssu_m(ji-1,jj ) zv_io = v_ice(ji ,jj ) - ssv_m(ji ,jj ) zv_iom1 = v_ice(ji ,jj-1) - ssv_m(ji ,jj-1) ! zfric(ji,jj) = rn_cio * ( 0.5_wp * ( zu_io*zu_io + zu_iom1*zu_iom1 + zv_io*zv_io + zv_iom1*zv_iom1 ) ) * tmask(ji,jj,1) zvel (ji,jj) = 0.5_wp * SQRT( ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) * ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) + & & ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) * ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) ) END_2D ELSE ! if no ice dynamics => transfer directly the atmospheric stress to the ocean DO_2D( 0, 0, 0, 0 ) zfric(ji,jj) = r1_rho0 * SQRT( 0.5_wp * & & ( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) ) * tmask(ji,jj,1) zvel(ji,jj) = 0._wp END_2D ENDIF CALL lbc_lnk( 'icesbc', zfric, 'T', 1.0_wp, zvel, 'T', 1.0_wp ) ! !--------------------------------------------------------------------! ! Partial computation of forcing for the thermodynamic sea ice model !--------------------------------------------------------------------! DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! needed for qlead rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice ! ! --- Energy received in the lead from atm-oce exchanges, zqld is defined everywhere (J.m-2) --- ! zqld = tmask(ji,jj,1) * rDt_ice * & & ( ( 1._wp - at_i_b(ji,jj) ) * qsr_oce(ji,jj) * frq_m(ji,jj) + & & ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) ) ! --- Energy needed to bring ocean surface layer until its freezing, zqfr is defined everywhere (J.m-2) --- ! ! (mostly<0 but >0 if supercooling) zqfr = rho0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) * tmask(ji,jj,1) ! both < 0 (t_bo < sst) and > 0 (t_bo > sst) zqfr_neg = MIN( zqfr , 0._wp ) ! only < 0 zqfr_pos = MAX( zqfr , 0._wp ) ! only > 0 ! --- Sensible ocean-to-ice heat flux (W/m2) --- ! ! (mostly>0 but <0 if supercooling) zfric_u = MAX( SQRT( zfric(ji,jj) ), zfric_umin ) qsb_ice_bot(ji,jj) = rswitch * rho0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) ) ! upper bound for qsb_ice_bot: the heat retrieved from the ocean must be smaller than the heat necessary to reach ! the freezing point, so that we do not have SST < T_freeze ! This implies: qsb_ice_bot(ji,jj) * at_i(ji,jj) * rtdice <= - zqfr_neg ! The following formulation is ok for both normal conditions and supercooling qsb_ice_bot(ji,jj) = rswitch * MIN( qsb_ice_bot(ji,jj), - zqfr_neg * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) ) ! If conditions are always supercooled (such as at the mouth of ice-shelves), then ice grows continuously ! ==> stop ice formation by artificially setting up the turbulent fluxes to 0 when volume > 20m (arbitrary) IF( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) > 0._wp .AND. vt_i(ji,jj) >= 20._wp ) THEN zqfr = 0._wp zqfr_pos = 0._wp qsb_ice_bot(ji,jj) = 0._wp ENDIF ! ! --- Energy Budget of the leads (qlead, J.m-2) --- ! ! qlead is the energy received from the atm. in the leads. ! If warming (zqld >= 0), then the energy in the leads is used to melt ice (bottom melting) => fhld (W/m2) ! If cooling (zqld < 0), then the energy in the leads is used to grow ice in open water => qlead (J.m-2) IF( zqld >= 0._wp .AND. at_i(ji,jj) > 0._wp ) THEN ! upper bound for fhld: fhld should be equal to zqld ! but we have to make sure that this heat will not make the sst drop below the freezing point ! so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr_pos ! The following formulation is ok for both normal conditions and supercooling fhld (ji,jj) = rswitch * MAX( 0._wp, ( zqld - zqfr_pos ) * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) & ! divided by at_i since this is (re)multiplied by a_i in icethd_dh.F90 & - qsb_ice_bot(ji,jj) ) qlead(ji,jj) = 0._wp ELSE fhld (ji,jj) = 0._wp ! upper bound for qlead: qlead should be equal to zqld ! but before using this heat for ice formation, we suppose that the ocean cools down till the freezing point. ! The energy for this cooling down is zqfr. Also some heat will be removed from the ocean from turbulent fluxes (qsb) ! and freezing point is reached if zqfr = zqld - qsb*a/dt ! so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr ! The following formulation is ok for both normal conditions and supercooling qlead(ji,jj) = MIN( 0._wp , zqld - ( qsb_ice_bot(ji,jj) * at_i(ji,jj) * rDt_ice ) - zqfr ) ENDIF ! ! If ice is landfast and ice concentration reaches its max ! => stop ice formation in open water IF( zvel(ji,jj) <= 5.e-04_wp .AND. at_i(ji,jj) >= rn_amax_2d(ji,jj)-epsi06 ) qlead(ji,jj) = 0._wp ! ! If the grid cell is almost fully covered by ice (no leads) ! => stop ice formation in open water IF( at_i(ji,jj) >= (1._wp - epsi10) ) qlead(ji,jj) = 0._wp ! ! If ln_leadhfx is false ! => do not use energy of the leads to melt sea-ice IF( .NOT.ln_leadhfx ) fhld(ji,jj) = 0._wp ! END_2D ! In case we bypass open-water ice formation IF( .NOT. ln_icedO ) qlead(:,:) = 0._wp ! In case we bypass growing/melting from top and bottom IF( .NOT. ln_icedH ) THEN qsb_ice_bot(:,:) = 0._wp fhld (:,:) = 0._wp ENDIF END SUBROUTINE ice_flx_other SUBROUTINE ice_sbc_init !!------------------------------------------------------------------- !! *** ROUTINE ice_sbc_init *** !! !! ** Purpose : Physical constants and parameters linked to the ice dynamics !! !! ** Method : Read the namsbc namelist and check the ice-dynamic !! parameter values called at the first timestep (nit000) !! !! ** input : Namelist namsbc !!------------------------------------------------------------------- INTEGER :: ios, ioptio ! Local integer !! NAMELIST/namsbc/ rn_cio, nn_snwfra, rn_snwblow, nn_flxdist, ln_cndflx, ln_cndemulate, nn_qtrice !!------------------------------------------------------------------- ! READ ( numnam_ice_ref, namsbc, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist' ) READ ( numnam_ice_cfg, namsbc, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist' ) IF(lwm) WRITE( numoni, namsbc ) ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'ice_sbc_init: ice parameters for ice dynamics ' WRITE(numout,*) '~~~~~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namsbc:' WRITE(numout,*) ' drag coefficient for oceanic stress rn_cio = ', rn_cio WRITE(numout,*) ' fraction of ice covered by snow (options 0,1,2) nn_snwfra = ', nn_snwfra WRITE(numout,*) ' coefficient for ice-lead partition of snowfall rn_snwblow = ', rn_snwblow WRITE(numout,*) ' Multicategory heat flux formulation nn_flxdist = ', nn_flxdist WRITE(numout,*) ' Use conduction flux as surface condition ln_cndflx = ', ln_cndflx WRITE(numout,*) ' emulate conduction flux ln_cndemulate = ', ln_cndemulate WRITE(numout,*) ' solar flux transmitted thru the surface scattering layer nn_qtrice = ', nn_qtrice WRITE(numout,*) ' = 0 Grenfell and Maykut 1977' WRITE(numout,*) ' = 1 Lebrun 2019' ENDIF ! IF(lwp) WRITE(numout,*) SELECT CASE( nn_flxdist ) ! SI3 Multi-category heat flux formulation CASE( -1 ) IF(lwp) WRITE(numout,*) ' SI3: use per-category fluxes (nn_flxdist = -1) ' CASE( 0 ) IF(lwp) WRITE(numout,*) ' SI3: use average per-category fluxes (nn_flxdist = 0) ' CASE( 1 ) IF(lwp) WRITE(numout,*) ' SI3: use average then redistribute per-category fluxes (nn_flxdist = 1) ' IF( ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in coupled mode must be /=1' ) CASE( 2 ) IF(lwp) WRITE(numout,*) ' SI3: Redistribute a single flux over categories (nn_flxdist = 2) ' IF( .NOT. ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in forced mode must be /=2' ) CASE DEFAULT CALL ctl_stop( 'ice_thd_init: SI3 option, nn_flxdist, should be between -1 and 2' ) END SELECT ! END SUBROUTINE ice_sbc_init #else !!---------------------------------------------------------------------- !! Default option : Empty module NO SI3 sea-ice model !!---------------------------------------------------------------------- #endif !!====================================================================== END MODULE icesbc