
XIOS User Guide

Draft

August 24, 2015

Chapter 1

Calendar

1.1 How to define a calendar
XIOS has an embedded calendar module which needs to be configured before
you can run your simulation.

Only the calendar type and the time step used by your simulation are manda-
tory to have a well defined calendar. For example, a minimal calendar definition
could be:

• from the XML configuration file:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " t imestep=" 1 .5 h" />

</ context>
</ s imu la t i on>

• from the Fortran interface:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the
Ç corresponding s e c t i on o f t h i s user manual and
Ç o f the r e f e r ence manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian " , t imestep

Ç =1.5∗ xios_hour)

The calendar type definition is done once and for all, either from the XML con-
figuration file or the Fortran interface, and cannot be modified. However there

1

CHAPTER 1. CALENDAR 2

is no such restriction regarding the time step which can be defined at a different
time than the calendar type and even redefined multiple times.

For example, it is possible to the achieve the same minimal configuration as
above by using both the XML configuration file:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="Gregorian " />

</ context>
</ s imu la t i on>

and the Fortran interface:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
! x ios_def ine_ca lendar cannot be used here because the
Ç type was a l r eady de f ined in the con f i g u r a t i on f i l e .

! Ommiting the f o l l ow i n g l i n e would l ead to an error
Ç because the t imes t ep would be undef ined .

CALL xios_set_timestep (t imestep =1.5∗ xios_hour)

The calendar also has two optional date parameters:

• the start date which corresponds to the beginning of the simulation

• the time origin which corresponds to the origin of the time axis.

If they are undefined, those parameters are set by default to “0000-01-01
00:00:00 ”. If you are not interested in specific dates, you can ignore those
parameters completely. However if you wish to set them, please note that they
must not be set before the calendar is defined. Thus the following XML config-
uration file would be for example invalid:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<!−− I n v a l i d because the ca lendar type cannot be

Ç known at t ha t po in t −−>
<ca lendar start_date="2011−11−11␣13 : 3 7 : 4 2 " />

</ context>
</ s imu la t i on>

while the following configuration file would be valid:

<?xml version=" 1 .0 "?>

CHAPTER 1. CALENDAR 3

<s imu la t i on>
<context id=" t e s t ">

<!−− The order o f the arguments does not matter so
Ç t h i s i s v a l i d −−>

<ca lendar t ime_or ig in="2011−11−11␣13 : 3 7 : 4 2 " type="
Ç Gregorian " />

</ context>
</ s imu la t i on>

Of course, it is always possible to define or redefine those parameters from the
Fortran interface, directly when defining the calendar:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian " , t ime_or ig in=

Ç xios_date (1977 , 10 , 19 , 00 , 00 , 00) , s tart_date=
Ç xios_date (2011 , 11 , 11 , 13 , 37 , 42))

or at a later time:

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian ")
CALL xios_set_time_orig in (t ime_or ig in=xios_date (1977 , 10 ,

Ç 19 , 00 , 00 , 00))
CALL xios_set_start_date (start_date=xios_date (2011 , 11 ,

Ç 11 , 13 , 37 , 42))

To simplify the use of dates in the XML configuration files, it is possible to
partially define a date as long as the omitted parts are the rightmost. In
this case the remainder of the date is initialized as in the default date. For
example, it would be valid to write: start_date="1977-10-19" instead of
start_date="1977-10-19 00:00:00" or even time_origin="1789" instead of
time_origin="1789-01-01 00:00:00". Similarly, it is possible to express a
date with an optional duration offset in the configuration file by using the date
+ duration notation, with date potentially partially defined or even completely
omitted. Consequently the following examples are all valid in the XML config-
uration file:

• time_origin="2011-11-11 13:37:00 + 42s"

CHAPTER 1. CALENDAR 4

• time_origin="2014 + 1y 2d"

• start_date="+ 36h".

1.2 How to define a user defined calendar
Predefined calendars might not be enough for your needs if you simulate phe-
nomenons on another planet than the Earth. For this reason, XIOS can let you
configure a completely user defined calendar by setting the type attribute to
“user_defined ”. In that case, the calendar type alone is not sufficient to define
the calendar and other parameters should be provided since the duration of a
day or a year are not known in advance.

Two approaches are possible depending on whether you want that your cus-
tom calendar to have months or not: either use the month_lengths attribute
to define the duration of each months in days or use the year_length attribute
to define the duration of the year in seconds. In both cases, you have to define
day_length, the duration of a day in seconds. Those attributes have to be
defined at the same time than the calendar type, either from the XML configu-
ration file or the Fortran interface, for example:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="user_def ined " day_length="86400"

Ç month_lengths=" (1 , ␣ 12) ␣ [31 ␣28␣31␣30␣31␣30␣31␣31
Ç ␣30␣31␣30␣ 31] " />

</ context>
</ s imu la t i on>

or

! . . .
TYPE(x ios_context) : : ctx_hdl
! . . .
! Context i n i t i a l i z a t i o n ommited , see the corresponding
Ç s e c t i on o f t h i s user manual and o f the r e f e r ence
Ç manual

CALL xios_get_handle (" t e s t " , ctx_hdl)
CALL xios_set_current_context (ctx_hdl)
CALL xios_def ine_ca lendar (type="Gregorian " , day_length

Ç =86400 , year_length=31557600)

Note that if no months are defined, the format of the dates is modified in
the XML configuration file since the month must be omitted. For example,
"2015-71 13:37:42" would be the correct way to refer to the 71st day of the
year 2015 at 13:37:42. If you use the Fortran interface, the month cannot be
omitted but you have to make sure to always set it to 1 in that case. For ex-
ample, use xios_date(2015, 01, 71, 13, 37, 42)for "2015-71 13:37:42".

CHAPTER 1. CALENDAR 5

Moreover, it is possible that the duration of the day is greater than the dura-
tion of the year on some planets. In this case, it obviously not possible to define
months so you have to use the year_length attribute. Additionally the day
must also be omitted from the dates in the configuration file (for example "2015
13:37:42") and must always be set to 1 when using the Fortran interface (for
example xios_date(2015, 01, 01, 13, 37, 42)).

If months have been defined, you might want to have leap years to correct
the drift between the calendar year and the astronomical year. This can be
achieved by using the leap_year_drift and leap_year_month attributes
and optionally the leap_year_drift_offset attribute. The idea is to define
leap_year_drift, the yearly drift between the calendar year and the astro-
nomical year as a fraction of a day. This yearly drift is summed each year to
know the current drift and each time the current drift is greater or equal to one
day, the year is considered a leap year. In that case, an extra day is added to
the month defined by leap_year_month and one day is subtracted to the
current drift. The initial drift is null by default but it can be fixed by the
leap_year_drift_offset attribute.

The following configuration file defines a simplified Gregorian calendar using
the user calendar feature:

<?xml version=" 1 .0 "?>
<s imu la t i on>

<context id=" t e s t ">
<ca lendar type="user_def ined "

day_length="86400"
month_lengths=" (1 , ␣ 12) ␣ [31 ␣28␣31␣30␣31␣30␣31␣31
Ç ␣30␣31␣30␣ 31] "

leap_year_month="2"
leap_year_dr i f t=" 0 .25 "
l eap_year_dr i f t_o f f s e t=" 0 .75 "
t ime_or ig in="2012−02−29␣15 : 0 0 : 0 0 "
start_date="2012−03−01␣15 : 0 0 : 0 0 " />

</ context>
</ s imu la t i on>

As you know, the astronomical year on Earth is approximately a quarter of day
longer than the Gregorian calendar year so we have to define the yearly drift as
0.25 day. In case of a leap year, an extra day is added at the end of February
which is the second month of the year so leap_year_month should be set to 2.
We start our time axis in 2012 which was a leap year in the Gregorian calendar.
This means there was previously three non-leap years in a row so the current
drift was (approximately) 3×0.25 days, hence leap_year_drift_offset should
be set to 0.75. At the beginning of 2013, the drift would have been 0.75+0.25 = 1
day so 2012 will be a leap year as expected.

CHAPTER 1. CALENDAR 6

1.3 How to use the calendar
The calendar is created immediately after the calendar type has been defined
and thus can be used even before the context definition has been closed.

Once the calendar is created, you have to keep it updated so that it is in sync
with your simulation. To do that, you have to call the xios_update_calendar
subroutine for each iteration of your code:

! . . .
INTEGER : : t s
! . . .
DO t s =1,end

CALL xios_update_calendar (t s)
! Do u s e f u l s t u f f

ENDDO

The current date is updated to start_date + ts × timestep after each call.

Many other calendar operations are available, including:

• accessing various calendar related information like the time step, the time
origin, the start date, the duration of a day or a year, the current date,
etc.

• doing arithmetic and comparison operations on date:

TYPE(xios_date) : : date1 , date2
TYPE(x ios_durat ion) : : durat ion
LOGICAL : : r e s
! we suppose a ca lendar i s de f i ned
CALL xios_get_current_date (date1)
durat ion = xios_durat ion (0 , 0 , 1 , 0 , 0 , 0 , 0 , 0) + 12
Ç ∗ xios_hour

date2 = date1 + durat ion + 0 .5 ∗ xios_hour
r e s = date2 > date1
durat ion = date2 − date1

• converting dates to

– the number of seconds since the time origin, the beginning of the year
or the beginning of the day,

– the number of days since the beginning of the year,

– the fraction of the day or the year.

For more detailed about the calendar attributes and operations, see the XIOS
reference guide.

Chapter 2

Grid

2.1 Overview
Grid plays an important role in XIOS. Same as Field, Grid is one of the basic
elements in XIOS, which should be well defined, not only in the configuration
file but also in the FORTRAN code. Because, until now, XIOS has mainly
served for writing NetCDF data format, most of its components are inspired
from NetCDF Data Model, and Grid is not an exception. Grid is a concept
describing dimensions that contain the axes of the data arrays. Moreover, Grid
always consists of an unlimited dimension whose length can be expanded at
any time. Other dimensions can be described with Domain and Axis. The
followings describe how to make use of Grid in XIOS. Details of its attributes
and operations can be found in XIOS reference guide.

2.2 Working with configuration file
As mentioned above, a grid contains the axes of the data arrays, which are
characterized by Domain and/or Axis. A domain is composed of a 2-dimension
array, meanwhile an axis is, as its name, an 1-dimension array.

Like other components of XIOS, a grid is defined inside its definition part
with the tag grid_definition

<gr i d_de f i n i t i o n>
<grid_group id="gridGroup">

<gr id id="grid_A">
<domain domain_ref="domain_A" />
<ax i s ax i s_re f="axis_C" />

</ gr id>
<gr id id="grid_Axis ">

<ax i s ax i s_re f="axis_D" />
</ gr id>
<gr id id="grid_All_Axis ">

<ax i s ax i s_re f="axis_A" />
<ax i s ax i s_re f="axis_B" />

<ax i s ax i s_re f="axis_C" />

7

CHAPTER 2. GRID 8

</ gr id>
</grid_group>

</ g r i d_de f i n i t i o n>

As XIOS supports netCDF-4/HDF5, it allows user to gather several grids
into groups to better organize data. Very often, grids are grouped, basing on
the dimensions that they describe. However, there is not a limit for user to
group out the grids. The more important thing than grid_group is grid. A grid
is defined with the tag grid.

While it is not crucial for a grid group not to have an identification specified
by attribute id, a grid must be assigned an id to become useful. Unlike grid
group is a way of hierarchically organizing related grid only, a grid itself is
referenced by fields with its id. Without the id, a grid can not be made used
of by a field. Id is a string of anything but there is one thing to remember: id
of a grid as well as id of any component in XIOS are unique among this kind
of components. It is not allowed to have two grids with a same id, but it is
permitted a grid and, for example, a domain to share a same one.

A grid is defined by domain(s) and axis. A domain represents two-dimension
data while an axis serves as one-dimension data. They are defined inside the
grid definition. One of the convenient and effective way to reuse the definitions
in XIOS is to take advantage of attribute *_ref. On using *_ref, the referencing
component has all attributes from its referenced one. As the example below, grid
with id “grid_A” (from now one, called grid_A), is composed of one domain
whose attributes derived directly from another one-domain_A, and one axis
whose attributes are taken from axis axis_C, which are defined previously.

<domain id="domain_A␣/>
<ax i s ␣ id="axis_A"␣/>

<gr id ␣ id="grid_A">
␣␣␣<domain␣domain_ref="domain_A"␣/>
␣␣␣<ax i s ␣ ax i s_re f="axis_C"␣/>
␣</gr id>

The *_ref can only used to reference to a already defined element (e.g do-
main, axis, grid, etc). If these *_ref have not been defined yet, there will be a
runtime error.

Details about domain and axis can be found in other sections but there is
one thing to bear in mind: A domain represents two-dimension data and it also
contains several special information: longitude, latitude, bound, etc. For the
meteorological mind, domain indicates a surface with latitude and longitude,
whereas axis represents a vertical level.

In general cases, there is only a need of writing some multidimensional data
to a netCDF without any specific information, then comes the following defini-
tion of grid.

<gr id id="grid_All_Axis ">
<ax i s ax i s_re f="axis_A" />
<ax i s ax i s_re f="axis_B" />
<ax i s ax i s_re f="axis_C" />

</ gr id>

CHAPTER 2. GRID 9

The grid_All_Axis is similar to grid_A, but with three dimensions defined
by 3 axis that can be described in any way on demand of user. For example, the
axis_A and the axis_B can have corresponding name latitude and longitude to
characterize a two-dimension surface with latitude and longitude.

Very often, one dimensional data needs writing to netCDF, it can be easily
done with the following XML code

<gr id id="grid_Axis ">
<ax i s ax i s_re f="axis_D" />

</ gr id>

As it is discussed more details in the next section, but remember that even
the non-distributed one dimensional data can be well processed by XIOS.

As mentioned above, grid includes by default one unlimited dimension which
is often used as time step axis. In order to write only time step to netCDF,
XIOS provides a special way to do: empty grid - a grid without any domain or
axis.

<gr id id="grid_TimeStep">
</ gr id>

∆The order of domain and/or in grid definition decides order of data written
to netCDF: data on domain or axis appearing firstly in grid definition will vary
the most. For example, on using ncdump command on netCDF which contains
data written on the grid_A .

f l o a t f ie ld_A (time_counter , axis_A , y , x) ;
f i e ld_A:on l ine_operat i on = " average " ;
f i e l d_A: in t e rva l_ope ra t i on = "3600 s " ;
f i e l d_A: in t e rva l_wr i t e = "6h" ;
f i e l d_A: coo rd ina t e s = " time_centered ␣axis_A␣nav_lat␣
Ç nav_lon" ;

The data vary most quickly on dimension y, x which are two axes of do-
main_A. These are the default name of these dimension of a domain. The data
on axis_C vary slower than on the domain and all the data are written one time
step defined by time_counter at a time.

Although a grid can be easily configured in XML file, it also needs defining
in the FORTRAN via the definition of domain and axis for a model to work
fully and correctly. All these instruction will be detailed in the next section.

2.3 Working with FORTRAN code
Because grid is composed of domain and axis, all processing are taken grid
via Domain and Axis. The next chapters supply the detail of these two sub
components.

Chapter 3

Domain

Domain is a two dimensional coordinates, which can be considered to be com-
posed of two axis: y-axis and x-axis. However, different from two axis composed
mechanically, a domain contains more typical information which play an impor-
tant role in specific cases. Very often, in meteorological applications, domain
represents a surface with latitude and longitude.

3.1 Working with configuration file

3.1.1 Basic configuration
Similar to Grid as well as other components in XIOS, a domain is defined inside
its definition part with the tag domain_definition.

<domain_def in i t ion>
<domain id="domain_A" />
<domain domain_ref="domain_A" />

</domain_def in i t ion>

The first one is to specify explicitly identification of a domain with an id.
One repetition, id of any component in XIOS are unique among this kind of
components. It is not allowed to have two domains with a same id, but it is
permitted a domain and a grid, for example, to share a same one.

<domain_def in i t ion>
<domain id="domain_A" />

</domain_def in i t ion>

In this way, with id, the domain can be processed, e.x modified its attributes,
with Fortran interface; besides, it is only possible to reference to a domain whose
id is explicitly defined.

Very often, after a domain is defined, it may be referenced many times. To
make a reference to a domain, we use domain_ref

<domain_def in i t ion>
<domain domain_ref="domain_A" />

</domain_def in i t ion>

10

CHAPTER 3. DOMAIN 11

A domain defined by domain_ref will inherit all attributes of the referenced
one, except its id attribute. If there is no id specified, an implicit one is assigned
to this new domain. The domain with implicit id can only be used inside the
scope where it is defined, it can not be referenced, nor be processed. It is rare to
define a domain without id inside domain_definition. However, the domain_ref
is utilized widely outside the scope of domain_definition.

Because a domain is a sub component of grid, it is possible to define a new
domain inside a grid with the tag domain. Moreover it is the only region where
we can define a new domain outside domain_definition.

<gr id id="grid_A">
<domain domain_ref="domain_A" />

</ gr id>

The xml lines above can be translated as: the grid_A composed of a do-
main_A that is defined somewhere else before. More precisely, the grid grid_A
is constituted of a “unknown id” domain which has inherited all attributes (and
their values) from domain A (name, long name, i_index, j_index, ... etc).

With this approach, we only define a domain once but reuse it as many time
as we like in different configurations.

3.1.2 Advanced configuration
One of a new concept which differenciates XIOS 2.0 from its precedent is trans-
formation. In a simple case, zoom feature is now considered to be a transfor-
mation. It can be more complicated for other geometric transformation such as
inversion or interpolation. All transformation are taken place on grid level. It
means that it is neccessary to define a grid source and a grid destination as well
as a transformation or list of transformation which we’d like to have. In order
to transform a grid to one another, we need to specify a transformation on its
sub-component: domain or axis.

Because transformation on a domain is different from one on an axis, we dif-
ferenciate two categories of transformation: transformation_domain and trans-
formation_axis.

Till now, XIOS supports the following transformation on domain:

• zoom_domain: Like zoom functionality in XIOS 1.0, the destination grid
is the zoomed region of the source grid.

• interpolation_domain: Implement interpolation from a domain to one
another, for now XIOS can only do interpolation by reading calculated
weight values from a file. The calculation on the fly will be implemented
soon.

It is not difficult to define a transformation: Include type of transformation
inside domain definition, as the following

<domain_def in i t ion>
<domain id="domain_A" />
<domain id="domain_A_zoom" domain_ref="domain_A">
<zoom_domain zoom_ibegin="1" zoom_ni="3" zoom_jbegin="

Ç 0" zoom_nj="2"/>

CHAPTER 3. DOMAIN 12

</domain>
</domain_def in i t ion>

The concrete example above says many things: a domain named domain_A_zoom
is transformed from domain name domain_A with a zoom activity. The detailed
attributes of zoom_domain can be found in reference document, but simply it
contains the begining and size of zoomed region.

One remark is the transformed domain SHOULD have an id, in this case,
it’s domain_A_zoom. As mentioned before, a no-id domain or any no-id com-
ponent of XIOS can only be used inside its definition scope. It exists but is
useless. So care about that.

To make use of transformation, the grid must contain domains which refer-
ence to transformed ones.

<gr id id="grid_A">
<domain domain_ref="domain_A" />

</ gr id>
<gr id id="grid_A_zoom">

<domain domain_ref="domain_A_zoom" />
</ gr id>

On defining this way, we tell XIOS to establish a connection between two
grids by a transformation (zoom) with: grid source - grid_A, grid destination -
grid_A_zoom.

As mentioned in Grid Chapter, in order to use transformed grid, just refer-
ence to it in field_definition

<f i e l d_d e f i n i t i o n l e v e l="1" enabled=" .TRUE. "
Ç defau l t_value=" 9.96921 e+36">

<f i e l d id=" fie ld_A" operat i on=" average " freq_op="3600 s
Ç " gr id_re f="grid_A" />

<f i e l d id="field_A_zoom" operat i on=" average " freq_op="
Ç 3600 s " gr id_re f="grid_A_zoom" />

</ f i e l d_d e f i n i t i o n>

Although xml is helpful to define several configurations, it can not be used
to customize attributes of domain. So it’s the turn of Fortran interface.

3.2 Working with FORTRAN code
One of the important concepts to grasp in mind in using FORTRAN interface
is the data distribution. With a distributed-memory XIOS, data are broken
into disjoint blocks, one per client process. In the next sections, local describes
everything related to a client process, whereas global means whole data. The
followings describe the essential parts of domain. Details of its attributes and
operations can be found in XIOS reference guide

3.2.1 Domain type
Domain is a two dimensional coordinates, which can be considered to be com-
posed of two axis: y-axis and x-axis. However, different from two axis com-

CHAPTER 3. DOMAIN 13

posed mechanically, a domain contains more typical information which play an
important role in specific cases. Very often, in meteorological applications, do-
main represents a surface with latitude and longitude. Because these properties
change from one domain type to another, it is recommended to use domain in
case of representing a surface.

In XIOS, a domain can be represented by one of three different types of
coordinate system which also differentiate the way to represent latitude and
longitude correspondingly.

• rectilinear: a simple 2-dimensional Cartesian coordinates with two per-
pendicular axes. Latitude represents the y-axe while longitude represents
the x-axe.

• curvilinear: a 2-dimensional coordinates allows the generality of two axes
not perpendicular to each other. Latitude and longitude have the size
equivalent to size of whole domain.

• unstructured: not any of two above, the latitutude and longitude, as curvi-
linear, are reprensented with the help of boundaries.

Different from XIOS 1.0, in this new version, users must explicitly specify the
type of domain which they would like to use

CALL xios_set_domain_attr ("domain_A" , type=’ r e c t i l i n e a r ’)

Althoug there are different domain types, they share the similar patterns
to settle local data on a client process: There are some essential attributes to
define. The next sections describe their meanings and how to specify correctly
data for a local domain.

3.2.2 Local domain index
It is not uncommon that a global domain is broken into several pieces, each
of which is distributed to one process. Following we consider a simple case:
a domain of rectilinear type with global size 9 x 9 and its data is distributed
evenly among 9 client processes, each of which has 3x3.

The region of local domain can be described by one of the following way.
Specify the the beginning and size of local domain with:

• ni_glo, nj_glo: global size of x-axis and y-axis correspondingly.

• ibegin, jbegin: global position on x-axis and y-axis where a local domain
begin

• ni, nj: local size of domain of each process on x-axis and y-axis

Or tell XIOS exactly the global position of each point in the local domain, from
left to right, top to bottom with:

• i_index, j_index: array of global position of every point in the local
domain. It is very useful when local domains do not align with each
other.

For example, with the first method, the local domain in the middle (the blue
one) can be specified with:

CHAPTER 3. DOMAIN 14

Figure 3.1: Global domain data

CHAPTER 3. DOMAIN 15

CALL xios_set_domain_attr ("domain_A" , ni_glo=9, nj_glo=9,
Ç i b e g i n =3, n i=3, j b eg in=3, nj=3)

The second method demands only two arrays:

CALL xios_set_domain_attr ("domain_A" , i_index=iIndex ,
Ç j_index=jIndex)

and

• iIndex={3,4,5,3,4,5,3,4,5}, jIndex = {3,3,3,4,4,4,5,5,5}

3.2.3 Local domain data
Similar to define local index, local data can be done in two ways.

Specify the begining and size of data on the local domain:

• data_ibegin, data_jbegin: the local position of data on x-axis and y-axis
where data begins

• data_ni, data_nj: size of data on each axis

Or specify data with its position in the local domain, from left to right, top to
bottom with

• data_i_index, data_j_index: array of local position of data in the local
domain.

Beside the attributes above, one of the essential attributes to define is dimen-
sional size of data - data_dim. Although domain has two dimensions, data are
not required to be 2-dimensional. In particular, for case of data_dim == 1,
XIOS uses an 1-dimensional block distribution of data, distributed along the
first dimension, the x-axis.

With the first way to define data on a local domain, we can use:

CALL xios_set_domain_attr ("domain_A" , data_dim=2,
Ç data_ibegin=−1, data_ni=ni+2, data_jbegin=−1,
Ç data_nj=nj+2)

In order to be processed correctly, data must be specified with the be-
gining and size of its block . For two-dimensional data, it can be done with
data_ibegin, data_ni for the first dimension and data_jbegin, data_nj for the
second dimension. In case of one-dimensional data, it is only necessary to de-
termine data_ibegin and data_ni. Although the valid data must be inside a
domain, it is not neccessary for data to have same size as domain. In fact, data
can have larger size than domain on each dimension, this is often the case of
“ghost cell”. The attributes data_ibegin and data_jbegin specify the offset of
data from local domain. For local domain_A, the negative value indicates that
data is larger than local domain, the valid part of data needs extracted from
the real data. A positive value indicates data is smaller than local domain. The
default value of data_ibegin/data_jbegin is 0, which implies that data fit into
local domain properly.

CHAPTER 3. DOMAIN 16

Valid data
(local domain)

Data

Global domain

Figure 3.2: Local domain with data

CHAPTER 3. DOMAIN 17

On Figure 3.2, local domain occupies the center of the global domain, whereas
real data fill up a larger region. Only data inside the local domain, represented
by blue cells, are valid.

With the secon way, data can be represented with:

CALL xios_set_domain_attr ("domain_A" , data_dim=2,
Ç data_i_index=dataI , data_j_index=dataJ)

with

• dataJ = {-1,-1,-1,-1,-1,0,0,0,0,0,1,1,1,1,1,2,2,2,3,3,3,3,3}

• dataI = {-1,0,1,2,3,-1,0,1,2,3,-1,0,1,2,3,-1,0,1,2,3,-1,0,1,2,3}

As mentioned, data on a domain are two-dimensional but in some cases, there
is a need to write data continously, there comes one-dimensional data. With
the precedent example, we can define one dimensional data with:

CALL xios_set_domain_attr ("domain_A" , data_dim=1,
Ç data_i_index=dataI)

and

• dataI = {-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}

Above are the mandatory attributes to define local domain. There are some
auxilliary attributes which make data meaningful, especially for meteorological
one. The next section disscuses these attributes.

3.2.4 Longitude and latitude
Different from the previous version, in XIOS 2.0, lonngitude and latitude are
optional. Moreover, to be coherent to the data_dim concept, there are more
ways to input longitude and latitude values.

Like data, longitude and latitude values can be one or two dimension. The
first ones are represented with lonvalue_1d, latvalue_1d; the second ones are
specified with lonvalue_2d and latvalue_2d.

With the same domain_A, we can have longitude and latitude by calling:

CALL xios_set_domain_attr ("domain_A" , lonvalue_1d=lon1D ,
Ç latvalue_1d=lat1D)

with

• lon1D = {30, 40, 50, 30, 40, 50, 30, 40, 50}

• lat1D = {30, 30, 30, 40, 40, 40, 50, 50, 50}

Or by using two-dimension longitude and latitude

CALL xios_set_domain_attr ("domain_A" , lonvalue_2d=lon2D ,
Ç latvalue_1d=lat2D)

with

CHAPTER 3. DOMAIN 18

• lon2D = {
30 40 50
30 40 50
30 40 50

}

• lat1D = {
30 30 30
40 40 40
50 50 50

}

For unstructured mesh, a cell can have different number of vertices than rectin-
linear, in this case, longitude and latitude value of the vertex of cell are specified
with bounds_lon_1d and bounds_lat_1d.

For curlinear mesh, bounds_lon_2d and bounds_lat_2d provide a con-
venient way to define longitude and latitude value for the vertex of the cell.
However, it is possible to use bounds_lon_1d and bounds_lat_1d to describe
these values.

One thing to remind, only *_1d or *_2d attributes are used, if *_1d and
*_2d of a same attribute are provides, there will be runtime error.

All attributes of domain can be found in Reference Guide.

Chapter 4

Axis

Like Domain, Axis is a sub-component of Grid but is one dimension. In mete-
orological applications, axis represents a vertical line with different levels.

4.1 Working with configuration file
The way to define an axis with configuration file is similar to define a domain.

4.1.1 Basic configuration
Similar to domain, an axis is defined inside its definition part with the tag
axis_definition.

<ax i s_de f i n i t i o n>
<ax i s id="axis_A" />
<ax i s ax i s_re f="axis_A" />

</ ax i s_de f i n i t i o n>

The first one is to specify explicitly identification of an axis with an id.

<ax i s_de f i n i t i o n>
<ax i s id="axis_A" />

</ ax i s_de f i n i t i o n>

In this way, with id, the axis can be processed, e.x modified its attributes,
with Fortran interface; besides, it is only possible to reference to a axis whose
id is explicitly defined.

To make a reference to an axis, we use axis_ref

<ax i s_de f i n i t i o n>
<ax i s ax i s_re f="axis_A" />

</ ax i s_de f i n i t i o n>

An axis defined by axis_ref will inherit all attributes of the referenced one,
except its id attribute. If there is no id specified, an implicit one is assigned to
this new axis. The axis with implicit id can only be used inside the scope where
it is defined, it can not be referenced, nor be processed. It is rare to define an
axis without id inside axis_definition.

19

CHAPTER 4. AXIS 20

To define a new axis inside a grid, we use the tag axis.

<gr id id="grid_A">
<ax i s ax i s_re f="axis_A" />

</ gr id>

The xml lines above can be translated as: the grid_A composed of an axis_A
that is defined somewhere else before. More precisely, the grid grid_A is con-
stituted of a “unknown id” axis which has inherited all attributes (and their
values) from axis A (name, long name, i_index, j_index, ... etc).

4.1.2 Advanced configuration
Like domain, there are several transformation which can be defined with con-
figuration file. All transformations on an axis have form *_axis.

Till now, XIOS supports the following transformation on axis:

• zoom_axis: Like zoom functionality in XIOS 1.0, the destination grid is
the zoomed region of the source grid.

• interpolation_axis: Implement interpolation from an axis to one another.
For now, only polynominal interpolation is available.

It is not difficult to define a transformation: Include type of transformation
inside axis definition, as the following

<ax i s_de f i n i t i o n>
<ax i s id="axis_A" />
<ax i s id="axis_A_zoom" ax i s_re f="axis_A">
<zoom_axis zoom_begin="1" zoom_size="3"/>

</ ax i s>
</ ax i s_de f i n i t i o n>

The concrete example above says many things: the axis named axis_A_zoom
is transformed from axis name axis_A with a zoom activity. The detailed at-
tributes of zoom_axis can be found in reference document, but simply it con-
tains the begining and size of zoomed region.

One remark is the transformed axis SHOULD have an id, in this case, it’s
axis_A_zoom. As mentioned before, a no-id axis or any no-id component of
XIOS can only be used inside its definition scope.

To make use of transformation, the grid must contain axis which references
to transformed ones.

<gr id id="grid_A">
<ax i s ax i s_re f="axis_A" />

</ gr id>
<gr id id="grid_A_zoom">

<ax i s ax i s_re f="axis_A_zoom" />
</ gr id>

On defining this way, we tell XIOS to establish a connection between two
grids by a transformation (zoom) with: grid source - grid_A, grid destination -
grid_A_zoom.

CHAPTER 4. AXIS 21

As mentioned in Grid Chapter, in order to use transformed grid, just refer-
ence to it in field_definition

<f i e l d_d e f i n i t i o n l e v e l="1" enabled=" .TRUE. "
Ç defau l t_value=" 9.96921 e+36">

<f i e l d id=" fie ld_A" operat i on=" average " freq_op="3600 s
Ç " gr id_re f="grid_A" />

<f i e l d id="field_A_zoom" operat i on=" average " freq_op="
Ç 3600 s " gr id_re f="grid_A_zoom" />

</ f i e l d_d e f i n i t i o n>

Although xml is helpful to define several configurations, it can not be used
to customize attributes of axis. So it’s the turn of Fortran interface.

4.2 Working with FORTRAN code
Although axis is not as complexe as domain, there are some mandatory at-
tributes to define. Different from precedent version, XIOS 2.0 supports distri-
bution of data on a axis. The followings describe the essential parts of axis.
Details of its attributes and operations can be found in XIOS reference guide.

4.2.1 Local axis index
Axis is often used with domain, which is broken into several distributed pieces,
to make a 3 dimension grid. However, there are cases in which data on axis are
distributed among processes. Following we consider a simple case: a axis with
global size 9 and its data are distributed evenly among 3 client processes, each
of which has size 3.

The local axis can be described by the following way.
Specify the the beginning and size of local axis with:

• n_glo: global size of axis.

• begin: global position where a local axis begin

• n: local size of axis on each process

For example, the local axis in the middle (the yellow one) can be specified with:

CALL xios_set_axis_attr ("axis_A" , n_glo=9, begin=3, n=3)

4.2.2 Local axis data
Simpler than local domain data, data on axis is always on-dimension. Like local
domain data, local axis data represent the data offset from local axis, and it can
be defined in two ways.

Specify the begining and size of data on the local axis:

• data_begin: the local position of data on axis where data begins

• data_n: size of data on each local axis

CHAPTER 4. AXIS 22

Figure 4.1: Global axis data

CHAPTER 4. AXIS 23

Or specify data with its position in the local axis:

• data_index: array of local position of data in the local axis.

Although the valid data must be inside a local axis, it is not neccessary for data
to have same size. In fact, data can have larger size than local axis.

CALL xios_set_axis_attr ("axis_A" , data_begin=−1, data_n=n
Ç +2)

For local axis_A, the negative value of data_begin indicates that data is
larger than local axis, the valid part of data needs extracted from the real data.
If data_begin has a positive value, that means data size is smaller than local
axis. The default value of data_begin is 0, which implies that local data fit into
local axis properly.

Loal data can be defined with:

CALL xios_set_axis_attr ("axis_A" , data_index=data)

with

• data = {-1,0,1,2,3}

4.2.3 Value
Value of axis plays a same role as longitude and latitude of domain. As local
data, it can be distributed among processes.

CALL xios_set_axis_attr ("axis_A" , va lue=valueAxis)

with

• valueAxis = {30, 40, 50}

Because there is a need of direction of an axis, then comes the attribute positive

CALL xios_set_axis_attr ("axis_A" , p o s i t i v e=’up ’)

All attributes of axis can be found in Reference Guide.

