
XIOS training

How to extract XIOS:

How to compile XIOS:

./make_xios

You can create your own architecture files by adapting :

You should see "Build command finished …" to confirme a successful
compilation.

svn checkout http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk

Option Value Default Description

- - arch arch_name Mandatory. Define target architecture

- - avail Show available target architectures

- - prod Compilation in production mode (default)

- - debug Compilation in debug mode

- - full Generate dependencies and recompile from scratch

- - build_dir build_directory Name of the build directory

- - job ntasks 1 To use parallel compilation with ntasks processus

- - netcdf_lib
netcdf_par
netcdf_seq
netcdf_internal

netcdf_par Choice of netcdf library

- - help Show all available options and descriptions

arch.fcm Mandatory. Define compile options.

arch.env Define environment variables, load modules.

arch.path Define paths to libraries.

How to include XIOS in your fortran program

How to link XIOS to your program

Hands-on 0

Extract and compile XIOS.

1 cd training_src

2 svn checkout http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/trunk

3 bash ./compile_xios.sh OR cd trunk ; ./make_xios …

4 If you use ./make_xios to compile XIOS, please add option "- - build_dir ../xios_build".
Otherwise, you have to modify in all Makefile the path to your XIOS build location.

SUBROUTINE Hello_world

 USE XIOS
 TYPE(xios_duration) :: dtime

 CALL MPI_Init()

 CALL xios_initialize("client", return_comm=comm)
 CALL xios_context_initialize("Hello_world", comm)

 CALL xios_define_calendar(type="Gregorian")
 dtime%second=3600
 CALL xios_set_timestep(dtime)

 CALL xios_close_context_definition()

 CALL xios_context_finalize()
 CALL xios_finalize()

 CALL MPI_Finalize()

END SUBROUTINE Hello_world

export XIOS_DIR=path_to_yout_build_dir

-I$(XIOS_DIR)/inc

-L$(XIOS)/lib -lxios

General information about the hands-on exercises

In each hands-on folders, you have already the codes to work with (e.g.
test_tp*.f90, iodef.xml, Makefile, job.sh). These codes can also be found in
the "TP_src" folder which servers as a backup place. You can find step by
step solutions in the "answer" folder.

Hands-on 1

We will begin with a "Hello XIOS" fortran program and make it XIOS-
compliant.

The "iodef.xml" is a mandatory input file for XIOS. Do not modify it for the
moment. We will work on it later.

Hands-on 2

Define a well-formed configuration file (iodef.xml) in XML step by step, for the
following case :

- Gregorian calendar (set you favourite date as the start date)
- Rectilinear discretisation composed of an 2D domain and a vertical axis
- We want to output a 3D field after each time step
- We want to have a single output file

1 Initialize XIOS with id "client"

Assign the return communicator to an integer "comm"

xios_initialize

return_comm = comm

2 Initialize a context "test" xios_context_initialize

3 Define the calendar (mandatory) xios_define_calendar(type="Gregorian")

4 Set the time step to 1 hour dtime%second=3600

xios_set_timestep

5 Close the context definition xios_close_context_definition

6 Close the context xios_context_finalize

7 Free the XIOS communicator and end XIOS xios_finalize

8 Run the program and you should have several XIOS
report files

xios_client_*.out

xios_client_*.err

1

- Define a context element "test"

- Instead of defining the calendar in fortran interface, define the

calendar element in xml

- Print out the defined value of "start_date" and "time_origin"

id

type, start_date, time_origin

xios_date_convert_to_string

Hands-on 3

Test different configurations of data size with respect to the domain size.

Case 1 : data size = domain size

Case 2 : data size > domain size : ghost layers (data offset negative)

Case 3 : data size < domain size : domain partially masked (data offset
positive)

2
- Define an axis element "axis_A" of size 10

- Define the coordinate value [100 200 … 1000] of the axis in

xml and print out the value from fortran

id, n_glo, value

xios_get_axis_attr

3

- Define a domain element "domain_A" of size 60x20

- Set the longitude value and latitude values for domain

- longitude ranging from -180° to 180°

- latitude ranging from -90° to 90°

id, type, ni_glo, nj_glo

lonvalue, latvalue

xios_get/set_domain_attr

4
- Define a grid element "grid_A" composed of "domain_A" and

"axis_A" id, domain_ref, axis_ref

5
- Define a field element "field_A" associated with "grid_A"

- Send the field to XIOS in a temporal loop

id, operation, grid_ref

xios_calendar_update

xios_send_field

6 - Define the file element and output "field_A" id, output_freq, type

Data

P0 P1 P2 P3 P0

Case 1

Data

P0 P1 P2 P3 P0

Case 2

Hands-on 4

Test the file splitting method and the time_series functionality.

Hands-on 5

Read the netcdf file "input.nc" and output the read field.

DataP0 P1 P2 P3 P0

Case 3

1

- Get the size of the 2D grid

- Evenly distribute the domain along i (or longitude) onto the processes

- You need to resize the lonvalue and latvalue to fit the size of

subdomain

- Set field_A the exact size of the subdomain and output to file

"output.nc"

xios_get/set_domain_attr

ni, nj, ibegin, jbegin

2 - Set field_A to have one layer of ghost cells and output to file data_dim

data_ni, data_ibegin

data_nj, data_jbegin

defalut_value3

- Set field_A of size smaller than the subdomain and output to file

- Don’t forget to set "default_value" attribute to properly distinguish

masked portion of the domain

1 - Define two more fields "field_B" and "field_C" on grid "grid_A" test_tp4.f90

iodef.xml

2 - Define in iodef.xml another output file "output_BC.nc" including
instant outputs of "field_B" and "field_C" output_freq

3 - Split "output.nc" into files, each of them containing output over
2 hours. split_freq

4
- Enable the time series attribut for "field_B"

- Set the splitting frequency to "2h" (or "2ts")

- You should have no difference in the output files

ts_enabled

ts_split_freq

5 - Test different mode for the time series output timeseries

1
- Check the dimensions of the input file using ncdump for example

- The input grid is curvilinear and the field’s name is "field_A_recv" input.nc

2
- Construct a grid "grid_read" corresponding to the input field’s grid

- Define "field_read" on g"grid_read"

- Set the field’s name to "field_A_recv"

iodef.xml

Hands-on 6

In the program, the hourly temperature is calculated. The grid is 2D for the
sake of simplicity.

Hands-on 7

Using generic testcase program to get familiar with different transformations.
Please refer to lecture slides for detailed informations of how the generic test
case works.

Test the following spatial transformation filters (refer to XIOS_reference_guide
for full description of the filters) :

3

- Read the field content at each time step using "xios_recv_field" (freq_offset="1ts")

- Copy the read value to another field "field_copy"

- Output "field_copy" to "output_copy.nc"

- We should have "output_copy.nc" same to "input.nc"

iodef.xml

test_tp5.f90

4 - Read the file before the beginning of temporal loop (freq_offset="0ts")

1 Define the weekly maximum temperature at noon, and the weekly minimum temperature at midnight

2 Compute the time variance of the temperature and output it daily

1

- Extract a subdomain of size 10x5 from "domain" starting at cell (1,2)

- Construct grid "grid2D_extract_2dom" from the subdomain

- Interpolate "field2D" on this grid and output the field to file

"output_extract_2dom.nc"

- (Optional) Output "field2D" to file "output.nc" and compare the

result with "output_extract_2dom.nc"

extract_domain

ni, nj, ibegin, jbegin

2

- Extract the horizontal axis from "domain" with vertical position = 2

- Construct grid "grid2D_extract_2ax" with the axis element

- Interpolate "field2D" on this grid and output the field to file

"output_extract_2ax.nc"

extract_domain

direction, position

3

- Create an 0D grid "grid1D_reduce_axis" by summing all elements of
"axis"

- Interpolate "field_Z" on this grid and output to file
"output_reduce_axis.nc"

- (Optional) Output "field_Z" to file "output.nc" and compare the
numerical result

reduce_axis

operation

4

- Create an axis element "axis_reduce" of size "18" by reducing
"domain" along the i-direction set the reduce operation to "sum"

- Define a grid "grid2D_reduce_domain" with only the axis element

- Interpolate "field2D" on this grid and output the field to file

"output_reduce_dom.nc"

reduce_domain

operation, direction, local

https://forge.ipsl.jussieu.fr/ioserver/browser/XIOS/trunk/doc/XIOS_reference_guide.pdf

Hands-on 8

Using transformations to solve a more realistic problem :
The temperature of a two dimensional region is recorded at an hourly
frequency. What to define in the xml file in order to output the average
temperature between 1 p.m. and 4 p.m. at a daily frequency ?

Please note that, we do not ask for the spatial average over the region. We
are expecting, for every location in the region, the average temperature
between 1 and 4 p.m.

5
- Define a 1D grid "grid1D_inverse" by inverting "axis"

- Interpolate "field_Z" on "grid1D_inverse" and output to file

"output_inverse.nc"
inverse_axis

6

- Generate a rectilinear domain "recti_domain" of size 20x20

- Set the longitude bounds to -90° and 90°

- Set the latitude bounds to -30° and 30°

- Define grid "grid2D_recti" with the newly generated domain

- interpolate "field2D" on this grid and output to file

"output_interpolate_domain.nc"

generate_rectilinear_domain

interpolate_domain

type, ni_glo, nj_glo
bounds_lon_start

bounds_lon_end

bounds_lat_start

bounds_lat_end

7

- We want to obtain the values of "field3D" on different pressure
levels : 70000, 50000, 30000, 10000

- (Optional) Output "field3D" and "pressure" to file "output.nc"

- Define an axis element "dst_axis" of size 4 and set its value to

70000, 50000, 30000, 10000 (representing different levels of
pressure)

- Interpolate "field3D" by setting the coordinate to pressure and
output the result to file "output_interpolate_axis.nc"

interpolate_axis

order, type, coordinate

8

- Chain some transformations

- Example : extract an axis of size 36 from "domain" and then extract

a subaxis of size 10 from it. Interpolate "field2D" on the grid and
output to file "output_chained.nc"

extract_domain

extract_axis

1
- Create a grid "grid_1" using "domain" and a scalar element.

- Interpolate "temperature" on "grid_1" using a arithmetic operation and output the obtained field

"temp_1" to file "output.nc" at an hourly frequency

2
- Create a grid "grid_2" using "domain" and an axis of size 24

- Use the temporal splitting filter to transform the 2D field "temp_1" to a 3D field "temp_2"

- Output "temp_2" to file "output_ts.nc" with a daily frequency

3

- Create a grid "grid_3" with "domain" and an axis of size 4

- Use the extract_axis transformation to extract the desired values of "temp_2" (values at 1, 2, 3,

and 4 p.m. each day)

- Output the field "temp_3" to file "output_ts.nc"

4
- Create a grid "grid_4" with "domain and a scalar element

- Use the reduce_axis transformation to calculate the average value of "temp_3"

- Output the field "temp_4" to file "output_ts.nc"

Hands-on 9

Activate the build_workflow_graph attribute. Run the program and play with
the graph tool.

Hands-on 10

Run the program with different mode : attached mode, one-level server mode,
two-level server mode. Vary the number of servers and see the difference in
performance.

Hands-on 11

Run the program and look at the error output. Recompile in debug mode and
try to correct the bug.

