
IPSL BootCamp: Unix commands

Institute Pierre Simone Laplace, IPSL BootCamp

March 23, 2016

Contents

1 Introduction 2
1.1 Unix architecture . 2

2 Before starting 3
2.1 Common vocabulary . 3
2.2 Useful keyboard short-cuts . 3

3 Get to know your (digital) self and your environment 4
3.1 Basic information . 4
3.2 Estimate your quota . 4

4 Directories and files 4
4.1 Special directories . 4
4.2 Handling directories and files . 4

4.2.1 Directories . 4
4.2.2 File permission setup . 5
4.2.3 Files . 7

4.3 Finding things . 8

5 Compress: zip, gzip and tar 8

6 Working on remote computers 9
6.1 ssh - Secure SHell . 9
6.2 Getting files from a external machine . 9

6.2.1 scp - Secure CoPy . 9
6.2.2 rsync . 10
6.2.3 ftp . 10
6.2.4 wget . 10

7 Packages 10

8 A few links 11

1

IPSL BootCamp: 2016/03/24. Unix commands 2

1 Introduction

Unix is an operating system available on many computers, from PCs to supercomputers.1

When you log onto a Unix system, your main interface to the system is called the Unix shell that is
a command-line interface allowing you to interact with a computer program via successive lines of text
(command-lines). Each command-line starts you with the dollar sign ($). One can change this: in some
others the prompt ends with >. This prompt means that the shell is ready to accept your typed commands.
Every user has a unique username. Bash is the default Unix shell on may GNU/Linux distributions (e.g.,
Debian, Fedora, Ubuntu).

When you logon to the system, you are placed in a home directory, which is a portion of the disk space
reserved just for them.

Unix commands are strings of characters typed in at the keyboard. To run a command, you just type
it in at the keyboard and press the ENTER key. We will look at several of the most common commands in
the following sections.

Unix extends the power of commands by using special flags that are usually preceded by a dash (-) and
preceed any filenames or other arguments on the command line. Unlike the DOS (or Windows) command
line, Unix systems are case sensitive (upper and lower case characters are considered different). Nearly all
command names and most of their command line switches will be in lowercase.

1.1 Unix architecture

All versions of Unix shares a common architecture that is composed by the following four basics:

• Kernel: The kernel is the heart of the operating system. It interacts with hardware and most of the
tasks like memory management, tash scheduling and file management.

• Shell: The shell is the utility that processes your requests. When you type in a command at your
terminal, the shell interprets the command and calls the program that you want. The shell uses
standard syntax for all commands. C Shell (csh), Bourne again Shell (bash) and Korn Shell (ksh)
are the most famous shells which are available with most of the Unix variants.

• Commands and Utilities: There are various command and utilities which you would use in your
day to day activities. cp, mv, cat and grep etc... are a few examples of commands and utilities. There
are over 250 standard commands plus numerous others provided through 3rd party software. All the
commands come along with various optional options.

• Users: Unix system is based on users and privileges. The main user with which one manages the
system is called root (or super user su). Then each person who will work in the system has a user
with less privileges than root. Doing this, any user can damage the system (so, do not panic!). On
top of that there are groups and all users sets of users. With that one can manage who has access to
certain files and directories, rights to modify files, etc... root is ‘the one to rule them all’

• Files and Directories: All data in Unix is organized into files. All files are organized into directories.
These directories are organized into a tree-like structure called the filesystem. Files and directories
have assigned modes, with which one manages the rights to execute, read and modify of the owner
(user) of the file, group and all users in the computer (see further on for a detailed explanation).

1UNIX (capitalised) is the operating system created by AT&T at Bell Labs in the 1970s. Derivative versions are denoted
by Unix, but here we’ll use that term for any Unix-like operating system. Among these Unix-like operating systems one of the
most popular is GNU/Linux. GNU stands for GNU’s Not Unix : indeed, it is not Unix as it does not use any of the original
codebase of the AT&T UNIX code. It is rather written from scratch with the goal of providing an operating system consisting
of only free software. On purpose the GNU system is similar to UNIX and henceforth in this document referred to as Unix.

https://www.fsf.org/about/what-is-free-software

IPSL BootCamp: 2016/03/24. Unix commands 3

2 Before starting

2.1 Common vocabulary

Common language and basic knowledge to navigate through Unix commands:

• Command-line: Where you actually type your commands.

• Command-prompt: At the beginning of the command-line, the command-prompt looks like: user@computer:directory$.
It indicates that the computer is ready to accept commands and provides useful information when
working with multiple remote computers at the same time.

• Hidden files: Files whose first character is the dot or period character (.). Unix programs (including
the shell) use most of these files to store configuration information. Common hidden files:

.bash profile the Bash initialization script (login shells);

.bashrc the per-interactive-shell startup script.

• Meta characters: Meta characters have special meaning in Unix. For example * and ? are metachar-
acters.

* matches 0 or more characters;

? matches a single character.

• Command structure: command {-option} target

Many commands require neither flags nor target.

• Command manual: man command1 displays on-line reference manual pages, in the example for
command1:

man -k keyword → List the manual page subjects that have keyword in their headings. This is
useful if you do not yet the name of a command you are looking for.

2.2 Useful keyboard short-cuts

Keyboard short-cuts to move around in your command-line:

Control-a → Move to beginning of line;

Control-e → Move to end of line;

Alt-f → Move forward one word;

Alt-b → Move backwards one word;

Control-l → Clear, leaving current line;

Tab → Try to automatically complete path;

Control-u → Cancel the whole (e.g., if you made a typo);

Up & down arrows → Move back (↑) and forward (↓) in the history of commands you typed, or
use the command history that lists previously executed commands.

IPSL BootCamp: 2016/03/24. Unix commands 4

3 Get to know your (digital) self and your environment

3.1 Basic information

Basic commands to better know your environment and answer some important questions:

• whoami → This returns your username. You may need to you have logged out your username;

• hostname → Name of the machine you are working on;

• pwd → Current directory, where you are typing the command;

• uname → Get complete information on your Operating System, use option -a: uname -a;

• passwd → Change your password, which you should do regularly (at least once a year).

3.2 Estimate your quota

• df → Summarize free space on disk filesystems

df -h → Print free space in human readable format (e.g., 1K, 234M, 2G, etc.) (flag -h).

• du → Show disk space used by files or directories (without argument the current directory is analyzed);

du -hs dirname → Show disk space used by dirname in human readable format and without
specifying disk space used by all sub-directories (flag -s).

• quota → Show what your disk quota is (i.e. how much space you have to store files), how much you’re
actually using, and in case you’ve exceeded your quota (which you’ll be given an automatic warning
about by the system) how much time you have left to sort them out (by deleting or compressing some,
or moving them to your own computer).

4 Directories and files

4.1 Special directories

/ Root directory;

. Current directory (where you are actually working/typing);

.. Parent directory;

∼ Home directory (as $HOME);

∼user User home directory.

4.2 Handling directories and files

4.2.1 Directories

Directories, like folders on Windows, are used to group files together in a hierarchical structure.

• mkdir dirname → Make a new directory;

IPSL BootCamp: 2016/03/24. Unix commands 5

• cd dirname → Change directory and move in dirname. dirname may be either the full pathname of
the directory, or its pathname relative to the current directory.

cd or cd ~ → Go straight to your home directory;

cd .. → Get one level up from your current directory.

• ls → List name of files and directories in your current directory:

ls -F → Indicate sub-directories by appending a slash (/) to their name (flag -F);

ls -t → Sort the list of files by modification time;

ls -h → Print file/directory sizes in human readable format (e.g., 1K, 234M, 2G, etc.).

ls dirname → List name of the files and directories in the directory dirname, excluding hidden
files whose names begin with .

ls -a dirname → List the contents of dirname, including files whose names begin with . (flag
-a);

ls -l dirname → Give details of the access permissions for the directory called dirname (flag
-l) (see next section);

ls -l filename → Same as before, to get details on a file called filename;

4.2.2 File permission setup

File ownership is an important component of Unix that provides a secure method for storing files. Every
file in Unix has the following attributes:

• Owner permissions: The owner’s permissions determine what actions the owner of the file can
perform on the file.

• Group permissions: The group’s permissions determine what actions a user, who is a member of
the group that a file belongs to, can perform on the file.

• Other (world) permissions: The permissions for others indicate what action all other users can
perform on the file.

Using ls -l command, various information related to file permission are shown:

$ ls -l /home/amrood
-rwxr-xr– 1 amrood users 1024 Nov 2 00:10 myfile
drwxr-xr–- 1 amrood users 1024 Nov 2 00:10 mydir

Here first column represents different access mode, i.e. permission associated with a file (- as first
character in the first column) or directory (d as first character in the first column). The permissions are
broken into triples, and each position in the group denotes a specific permission, in this order: read (r),
write (w), execute (x):

• Owner The first three characters (2-4) represent the permissions for the file’s owner. For example,
-rwxr-xr-- represents that onwer has read (r), write (w) and execute (x) permission.

• Group The second group of three characters (5-7) consists of the permissions for the group to which the
file belongs. For example, -rwxr-xr-- represents that group has read (r) and execute (x) permission
but no write permission.

IPSL BootCamp: 2016/03/24. Unix commands 6

• Other The last group of three characters (8-10) represents the permissions for everyone else. For
example, -rwxr-xr-- represents that other world has read (r) only permission.

File Access Modes: The permissions of a file are the first line of defense in the security of a Unix system.
The basic building blocks of Unix permissions are the read, write, and execute permissions, which are
described below:

1. Read: Grants the capability to view the contents of files.

2. Write: Grants the capability to modify, or remove the content of the file.

3. Execute: Grants the capability to run files as programs.

Directory Access Modes:
Directory access modes are listed and organized in the same manner as any other file. There are a few

differences that need to be mentioned:

1. Read: The user can read the contents and can look at the filenames inside the directory.

2. Write: The user can add or delete files to the contents of the directory.

3. Execute: The user can enter the directory (cd).

The execute bit clearly has a different meaning than that of a normal file. Try this:

$ mkdir -p test0/test1
$ chmod 000 test0
$ cd test0/test1/
cd: test0/test1/: Permission denied
$ chmod u+x test0
$ ls test0
ls: can’t open test0: Permission denied
$ cd test0/test1/
$ pwd
/my/path/to/test0/test1

create test0, and test1 within test0

lock down test0 for all users
try to get into test1

set only executable bit (for owner)
try to read the content of test0

try to get into test0/test1: success!
see in which directory you are

Change permission
chmod {options} filename → Change the read, write, and execute permissions on your files.

chmod o+r filename → Make the file readable (flag r) for everyone (flag o). The plus symbol adds
the named right.

chmod o-r filename → Make it unreadable for others again. The minus symbol removes the named
right.

chmod 755 filename → Using numerical format the three number give permissions to, in order: the
owner, the group, and others. Number 7 corresponds to all permission (read, write and execute),
while 5 provides only the rights to read and execute (not to write). See at the following link, for more
information: https://en.wikipedia.org/wiki/Chmod.

https://en.wikipedia.org/wiki/Chmod

IPSL BootCamp: 2016/03/24. Unix commands 7

4.2.3 Files

About filenames in Unix: A filename in Unix can consist of any combination of characters on the keyboard
except for the null character and slash (/) as these are control characters. Moreover, on modern Unices
typically any Unicode character is allowed. You are adviced not to use the following characters in filenames:
* ? ! | \ / ’ " { } < > ; , ^ () $ ~. These characters can be used in filenames, but only by escap-
ing (prefixing with a backslash) or quoting them because they have special meaning to the shell. On Unix
systems, the extension of a filename (e.g.: *.pdf, *.png, *.txt) are part of the filename. This does not
need to to define the type of file; for that use file(1):

$ ls -l
total 105632
-rw-r–r– 1 mvhulten lsce 1040 Mar 23 13:17 README
-rw-r–r– 1 mvhulten lsce 108092785 Mar 23 13:13 rms_gplv3_launch.ogg
-rw-r–r– 1 mvhulten lsce 40541 Mar 23 13:12 sound.ogg
-rw-r–r– 1 mvhulten lsce 26398 Mar 23 13:18 unix.tex
$ file *
README: ASCII text
rms_gplv3_launch.ogg: Ogg data, Theora video
sound.ogg: Ogg data, Vorbis audio, stereo, 48000 Hz, 192000 bps
unix.tex: LaTeX 2e document, UTF-8 Unicode text, with very long lines

When using ls -l you only see the permission, size and date of change of the files. The extension does not
help you much in identifying the filetype: README does not have an extension, and, while in this case both
.ogg files contain Ogg data, you cannot see if they contain audio or video streams. Only when using file

FILES you see the type of file. Only now you are comfortable executing these commands:

$ cat README
$ mplayer rms_gplv3_launch.ogg
$ mplayer sound.ogg
$ ogg123 sound.ogg
$ vim unix.tex

show content of the text file with cat(1)
play the video with mplayer(1)
play the audio with mplayer(1)
play the audio with ogg123(1)
edit the text file, which is in fact a LATEX file

For text (e.g. ASCII or Unicode) files, to get a quick view of the file content

• cat filename → Display the content of a file

cat -b filename → Flag -b, display line numbers in the file;

• more filename → Show the first part of a file, just as much as will fit on one screen. To see more,
just hit the space bar. To left, type q. To search for a pattern, use /pattern;

• head filename or tail filename → show the first or last ten lines;

• wc filename → Count how many lines, words, and characters there are in a file. The command
output lists, in order, the number of lines, words, and characters. To restrict the count to: (1) lines,
use flag -l, (2) words, use flag -w, or (3) characters, use flag -c.

To handle files:

• cp filename1 filename2 → Copy the content of filename1 into filename2. cp cannot copy a file
onto itself.

IPSL BootCamp: 2016/03/24. Unix commands 8

cp filename1 filename2 dirname1 → Create copies of filename1 and filename2 (with the
same names), within the directory dirname1, which must already exist for the copying to succeed.

cp -r dirname1 dirname2 → Recursively copy the directory dirname1, together with its con-
tents and subdirectories, to the directory dirname2 (flag -r). If dirname2 does not already
exist, it is created by cp, and the contents and subdirectories of dirname1 are recreated within
it. If dirname2 does exist, a subdirectory called dirname1 is created within it, containing a copy
of all the contents of the original dirname1. dirname1 and dirname2 can be either directories or
full pathnames of directories.

• mv filename dirname/ → Move a file into a specified directory. dirname can be either a directory
or a full pathname of the directory

mv filename1 filename2 → Rename a file.

• rm -i filename → Remove a file. It is wise to use the flag -i, which will ask you for confirmation
before actually deleting anything.

rm -ri dirname → Remove a whole directory;

rm -f filename → The flag - f force the remove: there’s no possibility to go back!

• diff filename1 filename2 → Compare files and show where they differ

diff filename1 filename2 > diff.txt → Print differences between the two files in a text file,
named diff.txt. The symbol > redirects the output of a command in a file, instead of showing
results on screen.

4.3 Finding things

• whereis filename→ Tries to locate binaries (and on GNU systems also their sources and man pages).

• find → Search for files in a named directory and all its subdirectories:

find . -name *.f -print → Look for all files ending with .f in the current directory and all
its subdirectories, and write their names to the standard output (i.e., on screen);

find /local -name core -user user1 -print → Search the directory /local and its subdi-
rectories for files called core belonging to the user user1 and writes their full file names to the
standard output.

• grep → Search for lines in files containing a specified pattern/string and, by default, writes them to
the standard output. grep is CASE sensitive. This can be useful: e.g. finding the right file among
many, figuring out which is the right version of something. grep has a lot of very flexible options.

grep "motif" filename1 → Search for the string motif in filename1;

grep -i "motif" * → Search for the string motif in all files available in the current directory;
using the flag i, grep will look for the specified pattern in lower and upper case.

5 Compress: zip, gzip and tar

Common tools to compress/uncompress files:

• zip

IPSL BootCamp: 2016/03/24. Unix commands 9

– zip filename → Compress and produce files with the suffix .zip appended to the original
filename;

– unzip filename.zip → Uncompress a file .zip.

• gzip usually gives a higher compression rate than zip

– gzip filename → Compress and produce files with the suffix .gz appended to the original
filename;

– gunzip filename.gz → Uncompress a file .gz.

Compression works better if files are combined and then compressed together, rather than compressing
them individually, since this allows the compression program to spot repeated patterns between the files.
For this need, you should use the Unix tool for packing and unpacking files and create archives: tar.

Pack into a single tar file, all files ending with the suffix .txt:
tar -cvf pack.tar *.txt

Flags: c means create, v shows on screen files that are packed, f means that the filename (pack.tar)
to write to is specified. Then you may use gzip(1) to compress the tar ball : gzip pack.tar To pack and
gzip sequences simultaneously, add flag z to the tar command:

tar -zcvf pack.tgz *.txt

.tgz is just short for .tar.gz. To extract use flag x:
tar -xf pack.tar

tar -zxf pack.tar.gz

To list the contents without extracting, use flag t:
tar -ztf sequences.tgz

To extract a single file from your tar:
tar -xf pack.tar filename

or, using long-opts:
tar --extract --file={pack.tar} {filename}

6 Working on remote computers

6.1 ssh - Secure SHell

Secure SHell is an encrypted network protocol allowing secure remote login and other network services even
over an unsecured network. To connect to a host (i.e., remote machine):

ssh user@anothermachine.org

You are prompted for a password and then have a command-line that looks like: user@anothermachine:
To leave the connection, type: exit
To enable X11 window to open, use the -X flag:
ssh -X user@anothermachine.org

This allows you to start a graphical application; the application that appears on your computer is actually
running on anothermachine not your local computer.

6.2 Getting files from a external machine

6.2.1 scp - Secure CoPy

Copying file filename to host anothermachine.org, into a specific directory ~user/examples/.
scp filename.txt user@anothermachine.org:~user/examples/ {filename_copy.txt}

IPSL BootCamp: 2016/03/24. Unix commands 10

Paths on the host could also be specified absolutely, like:
user@anothermachine.org:/home/user/examples 23

Copying file from host to your current directory (.):
scp user@anothermachine.org:~user/examples/filename_copy.txt .

6.2.2 rsync

This command is very handy to synchronize files and directories between two different machines. Its use is
very similar to that of scp

rsync [flags] user@sourcemachine.org:[source files] user@destinymachine.org:[location]

rsync does not change metadata of the files (date of creation or last modification). By default rsync(1)
overwrites any existing files in the destination directory. If you supply the --update with rsync(1), it only
copies those files and directories that have changed if it finds the same files on the destiny machine.

6.2.3 ftp

The ‘File Transfer Protocol’ is the basic way to transfer files within the internet. It is based on server/client
infrastructure. When one is connected with ftp to a server, a session is opened there mainly to navigate
within the disk space (commonly a dedicated space into the server), copy (via get) and upload (via mput)
files among a full standard set of file related instructions.

See https://en.wikipedia.org/wiki/List_of_FTP_commands for a full set of commands.

6.2.4 wget

This command is commonly used to get from a file from the internet. It supports http, https and ftp. It
can resume a failed file retrieval, and use wildcards among other things. Its syntax is at follows:

wget internetsourcelink

7 Packages

Unix system distributions are based on a series of packages and applications. These can be installed in the
system. Assuming you run a Debian- or Redhat-based GNU distribution, they are managed via one of two
main applications: apt or yum. Commonly only root manages the applications installed in the machines.
Because in almost all the IPSL laboratories there are dedicated computer manager technicians, we will not
extend more on this point.

Some of the most popular applications:

• image treatment/creation: convert (list of options: http://www.imagemagick.org/script/command-line-options.
php), gimp, inkscape, xpaint

• image display: display, xpdf/evince

• text: LATEX, libreoffice

• OfficeSuite: libreoffice

• graphics: ferret, gnuplot, grads, NCL, python

https://en.wikipedia.org/wiki/List_of_FTP_commands
http://www.imagemagick.org/script/command-line-options.php
http://www.imagemagick.org/script/command-line-options.php

IPSL BootCamp: 2016/03/24. Unix commands 11

8 A few links

• https://swcarpentry.github.io/shell-novice/reference.html

• http://juliend.github.io/linux-cheatsheet/ (in French)

https://swcarpentry.github.io/shell-novice/reference.html
http://juliend.github.io/linux-cheatsheet/

Unix/Linux Command Reference
.com

File Commands
ls – directory listing
ls -al – formatted listing with hidden files
cd dir - change directory to dir
cd – change to home
pwd – show current directory
mkdir dir – create a directory dir
rm file – delete file
rm -r dir – delete directory dir
rm -f file – force remove file
rm -rf dir – force remove directory dir *
cp file1 file2 – copy file1 to file2
cp -r dir1 dir2 – copy dir1 to dir2; create dir2 if it
doesn't exist
mv file1 file2 – rename or move file1 to file2
if file2 is an existing directory, moves file1 into
directory file2
ln -s file link – create symbolic link link to file
touch file – create or update file
cat > file – places standard input into file
more file – output the contents of file
head file – output the first 10 lines of file
tail file – output the last 10 lines of file
tail -f file – output the contents of file as it
grows, starting with the last 10 lines

Process Management
ps – display your currently active processes
top – display all running processes
kill pid – kill process id pid
killall proc – kill all processes named proc *
bg – lists stopped or background jobs; resume a
stopped job in the background
fg – brings the most recent job to foreground
fg n – brings job n to the foreground

File Permissions
chmod octal file – change the permissions of file
to octal, which can be found separately for user,
group, and world by adding:

● 4 – read (r)
● 2 – write (w)
● 1 – execute (x)

Examples:
chmod 777 – read, write, execute for all
chmod 755 – rwx for owner, rx for group and world
For more options, see man chmod.

SSH
ssh user@host – connect to host as user
ssh -p port user@host – connect to host on port
port as user
ssh-copy-id user@host – add your key to host for
user to enable a keyed or passwordless login

Searching
grep pattern files – search for pattern in files
grep -r pattern dir – search recursively for
pattern in dir
command | grep pattern – search for pattern in the
output of command
locate file – find all instances of file

System Info
date – show the current date and time
cal – show this month's calendar
uptime – show current uptime
w – display who is online
whoami – who you are logged in as
finger user – display information about user
uname -a – show kernel information
cat /proc/cpuinfo – cpu information
cat /proc/meminfo – memory information
man command – show the manual for command
df – show disk usage
du – show directory space usage
free – show memory and swap usage
whereis app – show possible locations of app
which app – show which app will be run by default

Compression
tar cf file.tar files – create a tar named
file.tar containing files
tar xf file.tar – extract the files from file.tar
tar czf file.tar.gz files – create a tar with
Gzip compression
tar xzf file.tar.gz – extract a tar using Gzip
tar cjf file.tar.bz2 – create a tar with Bzip2
compression
tar xjf file.tar.bz2 – extract a tar using Bzip2
gzip file – compresses file and renames it to
file.gz
gzip -d file.gz – decompresses file.gz back to
file

Network
ping host – ping host and output results
whois domain – get whois information for domain
dig domain – get DNS information for domain
dig -x host – reverse lookup host
wget file – download file
wget -c file – continue a stopped download

Installation
Install from source:
./configure
make
make install
dpkg -i pkg.deb – install a package (Debian)
rpm -Uvh pkg.rpm – install a package (RPM)

Shortcuts
Ctrl+C – halts the current command
Ctrl+Z – stops the current command, resume with
fg in the foreground or bg in the background
Ctrl+D – log out of current session, similar to exit
Ctrl+W – erases one word in the current line
Ctrl+U – erases the whole line
Ctrl+R – type to bring up a recent command
!! - repeats the last command
exit – log out of current session

* use with extreme caution.

	Introduction
	Unix architecture

	Before starting
	Common vocabulary
	Useful keyboard short-cuts

	Get to know your (digital) self and your environment
	Basic information
	Estimate your quota

	Directories and files
	Special directories
	Handling directories and files
	Directories
	File permission setup
	Files

	Finding things

	Compress: zip, gzip and tar
	Working on remote computers
	ssh - Secure SHell
	Getting files from a external machine
	scp - Secure CoPy
	rsync
	ftp
	wget

	Packages
	A few links

