
IPSL BootCamp: vi∗

Institute Pierre Simone Laplace, IPSL BootCamp

The content of the BootCamp can be found in:
https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Train

March 23, 2016

Contents

1 Introduction 2

2 Basics 2

3 Exercises 4

4 Useful links 5

∗Author of this chapter: Marco van Hulten, Laboratoire des Sciences du Climat et de l’Environnement (LSCE).
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

1

https://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Train
http://www.lsce.ipsl.fr/Pisp/marco.van-hulten/
http://creativecommons.org/licenses/by-sa/4.0/

IPSL BootCamp: 2016/03/24. vi 2

1 Introduction

You’re at your desk and decided, after reloading Slashdot for the fiftieth time and realising that there won’t
be a new XKCD for another two days, to become productive. You are thus confronted with the decades old
dilemma: the need to choose an editor: vi or Emacs. This introduction is about vi.

vi is a text editor originally created by Bill Joy in 1976 for the Unix operating system. While originally
proprietary software, nowadays commonly used variants of vi are free software1. For this course you can
use any vi variant as I tended to ensure compatibility with the POSIX standard and the OpenBSD imple-
mentation, which are more minimal than ‘Vi IMproved’ (vim) that has many more features. E.g., vim has
syntax highlighting, vi has not. Several properties of vi:

• It is always installed on GNU/Linux and BSD systems,

• it is fast,

• but you have to learn to use it.

vi is a modal editor, which means that

• in command mode you can input commands (move, delete, copy, save etc.)

• in insert mode you type text (like you do in gedit or Notepad)

2 Basics

You can start up with any of these commands in a terminal:

$ vi on GNU systems this is, in fact, usually vim

$ vim Vi IMproved : much extended version of vi

$ gvim GUI version of vim

When you started vim, you’ll get this welcome screen:

~

~ VIM - Vi IMproved

~

~ version 7.4.827

~ by Bram Moolenaar et al.

~ Modified by <bugzilla@redhat.com>

~ Vim is open source and freely distributable

~

~ Sponsor Vim development!

~ type :help sponsor<Enter> for information

~

~ type :q<Enter> to exit

~ type :help<Enter> or <F1> for on-line help

~ type :help version7<Enter> for version info

~

0,0-1 All

1In the context of software ‘free’ refers to liberty, not price: http://www.gnu.org/philosophy/free-sw.html, but you’ll
find many free software vi implementations to be gratis as well.

http://slashdot.org/
http://xkcd.com/
http://www.catb.org/~esr/writings/taoup/html/ch15s02.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/vi.html
http://man.openbsd.org/OpenBSD-current/man1/ex.1
http://man.openbsd.org/OpenBSD-current/man1/ex.1
http://www.gnu.org/philosophy/free-sw.html

IPSL BootCamp: 2016/03/24. vi 3

Here you are already confronted with some basic information. Many commands, like :q<Enter>, start with
a colon (:). The help text presented to you is not actually in the buffer: it’ll disappear as soon as you enter
a command. The buffer is the in-memory text of a file. At the left of the screen are tildes (∼), which are
the lines beyond the text buffer. Since the first line has a tilde, the buffer is empty. The left of the bottom
of the screen is empty, which means vi has no messages to display, you’re not entering a command, and you
are in command mode (or normal mode). At the bottom near the right of the screen you see the current
line number (0) and the column number (0–1). At the far right you’ll see how far you are in the buffer: ‘All’
at the moment, since all is shown.2

Press i to change the mode to insert mode. Now you can insert text at the position of the cursor
(column 1). As soon as you start typing, the first line is created and the column number is increased:

My first line in vi.

My second line.

And so on...

~

~

~

~

~

-- INSERT -- 3,13 All

You can see that you are in insert mode as that is presented in the bottom-left corner of your screen. We
see that we finished typing when the cursor was at line 3, column 13. If you press Escape now, you’ll get
back to command mode. If you are not sure in what mode you are and want to get back to command mode
(the normal mode), press the Escape key until your terminal starts beeping.

Now we may want to move around in the text. For that we’ll use the navigation keys h, j, k and l. The
letter h and l are for left and right, respectively (since they are the first and last in the sequence on the
keyboard). The j is for down (looks like an downward arrow), and k is for up. For instance, when typing
hhhhkk, you’ll end up at the end of the word ‘first’ in the buffer:

My first line in vi.

My second line.

And so on...

~

~

~

~

~

1,8 All

There are other ways to navigate to that place. Especially with longer texts it would be handy to know
how. So, let’s first go back to the end of the file by pressing the inverse navigation series: jjllll. Now
press 1Gee. You are again at the end of the word ‘first’. The 1G sets the cursor at the start of the buffer.3

The letter e jumps to the end of a word. For completeness, the inverse navigation is G$, where G sends you
to the last line and $ to the end of the line.

You can save the file with :w (the colon puts you in a state that some call the command-line mode),
where w stands for write. At first try, vim may display the error “E32: No file name”.4 That means it
does not know where to write the file to, so you need an argument to the write command:

2Plain vi (on OpenBSD) does not show this information, but you can show some information by pressing Ctrl-g.
3That is plain vi; in vim gg works as well, so here you may press ggee.
4Plain vi does not do that and saves your buffer in a temporary file.

http://www.openbsd.org/

IPSL BootCamp: 2016/03/24. vi 4

My first line in vi.

My second line.

And so on...

~

~

~

~

~

:w myfile.txt

and you’ll get back in command mode, now with some information at the bottom:

My first line in vi.

My second line.

And so on...

~

~

~

~

~

"myfile.txt" [New] 3L, 50C written 1,8 All

Usually I don’t give the file argument within vi. Instead I inform vi what files to open by supplying them
at start-up:

$ vi mydoc.tex

If mydoc.tex exists in the current directory, the buffer gets filled with the content of mydoc.tex. When I
then make changes and write, this file gets updated on the disk. If the file did not exist, a new file is created
with the name I supplied at the command shell, as soon as I give the write command (:w).

A final command that you must know is how to quit a buffer or vi. That is :q to simply quit the current
buffer gracefully. You can use :wq to write the buffer to disk and quit. Or if you made changes to the buffer
but don’t want to save, :q!, the exclamation mark meaning do it no matter what!.

3 Exercises

The exercises are in VIM Tutor :

$ vimtutor interactive vim tutorial

$ gvimtutor GUI version of vimtutor

Use the right locale for different languages:

$ locale -a list the available locales

$ LC_ALL=fr_FR.utf8 vimtutor in French French

$ LC_ALL=en_GB.utf8 vimtutor in British English

The interactive tutorial gets copied to the temporary directory of the operating system (/tmp/):

IPSL BootCamp: 2016/03/24. vi 5

===

= W e l c o m e t o t h e V I M T u t o r - Version 1.7 =

===

Vim is a very powerful editor that has many commands, too many to

explain in a tutor such as this. This tutor is designed to describe

enough of the commands that you will be able to easily use Vim as

an all-purpose editor.

The approximate time required to complete the tutor is 25-30 minutes,

depending upon how much time is spent with experimentation.

"/tmp/tutorHhuEaK" 970 lines, 33257 characters

Edit the file to do the exercises.5 Since you will be asked to remove parts of the manual or move around
many lines, it may be useful to open another terminal and open there a vim session (by creating a new file,
editing an existing or starting another vimtutor session).

4 Useful links

• Arguments for using vi, with examples: http://www.viemu.com/a-why-vi-vim.html

• Vi Lovers Home Page: http://thomer.com/vi/vi.html

• Wiki book: https://en.wikibooks.org/wiki/Learning_the_vi_Editor/Getting_acquainted

• Vim documentation: http://vimdoc.sourceforge.net/htmldoc/help.html

• vi(1): http://man.openbsd.org/OpenBSD-current/man1/ex.1

• Regular expressions: http://man.openbsd.org/OpenBSD-current/man7/re_format.7

• POSIX standard: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/vi.html

5Most exercises are compatible with plain (OpenBSD’s) vi, except for some of the sections 2.7, 4.1, 4.2, 5.3, 6.4, 6.5 and 7.

http://www.viemu.com/a-why-vi-vim.html
http://thomer.com/vi/vi.html
https://en.wikibooks.org/wiki/Learning_the_vi_Editor/Getting_acquainted
http://vimdoc.sourceforge.net/htmldoc/help.html
http://man.openbsd.org/OpenBSD-current/man1/ex.1
http://man.openbsd.org/OpenBSD-current/man7/re_format.7
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/vi.html

IPSL BootCamp: 2016/03/24. vi 6

Quittin
:x Exit, saving changes
:q Exit as long as there have been no changes
ZZ Exit and save changes if any have been made
:q! Exit and ignore any changes

Insertino Text
Insert before cursor
Insert before line

a Append after cursor
A Append after line
o Open a new line after current line
o Open a new line before current line

Replace one character
R IReplace many characters

Deleting Text
Almost all deletion commands are performed by
t ing d followed by a motion,
dw Delete word
x Delete character to the right of cursor
X Delete character to the left of cursor
D Delete to the end of the line
dd Delete current line
:d Delete current line

Yanking Text
Almost all yank commands are performed by typing

followed bv a motion.
y$IYank to the end of the line
yy Yank the current line
:y Yank the current line

Changing text
The change command is a deletion command that
leaves the editor in insert mode, It is performed by

Ping c followed by a motion.

cw Change word

C Change to the end of the line

cc Change the whole line
m

PuUi no text

p IPut after the position or after the line

P Put before the position or before the line

h
j
k
I
w
W
b
B
e
E
(
)
{
}
o
$

G
G
nG
:n
fc
Fc
H
M
L
Ctrl+u
Ctrl+d
%

fstring

Vi Command Cheat Sheet

Motion
Move left
Move down
Move up
Move right
Move to next word
Move to next blank delim ited word
Move to the beginning of the word
Move to the beginning of blank delimited word
Move to the end of the word
Move to the end of blank delimited word
Move a sentence back
Move a sentence forward
Move a paragraph back
Move a paragraph forward
Move to the beginning of the line
Move to the end of the line
Move to the first line of the file
Move to the last line of the file
Move to nth line of the file
Move to nth line of the file
Move forward to c
Move back to c
Move to top of screen
Move to middle of screen
Move to button of screen
Page up
Page down
Move to associated (), { }, [1

Search for strinas
Search forward for string

?string Search back for string
n Search for next instance of string
N Search for previous instance of string

Other
TOggle capital and lower-case

J Join lines

. Repeat last text-changing command

u Undo last change

U Undo all changes to line
n
Based on http://www.lagmonster.org/docslvi.html

Buffers
Named buffers may be specified before any deletion, change, yank or put
command, The general prefix has the form "c where c is any lowercase
character. for example, "adw deletes a word into buffer a, It may
thereafter be put back into text with an appropriate "ap.

Markers
Named markers may be set on any line in a file. Any lower case leiter
ma
mc
'c
'c

be a marker name. Markers ma also be used as limits for ran
Set marker c on this line
Go to beginning of marker cline.
Go to first non-blank character of marker clin

es.

e.

Replace
The search and replace function is accomplished with the :s command. It
is commonl used in combination with ran es or the: command below.
:sfpatternfstring/flags Replace pattern with string according to flags.
g Flag - Replace all occurrences of pattern
c Flag - Confirm replaces.
& Repeat last :s command

Counts

Nearly every command may be preceded by a number that specifies how
many times it is to be performed. For example, 5dw will delete 5 words

Ranges
Ranges may precede most "colon" commands and cause them to be
executed on a line or IinesJ'or example :3,7d would delete lines 3-7.
:n,m

:$
:'c
:%
:g/pattern/

:wfile
:r file
:n
:p
:e file
!!program

IRange Lines n-m
Range - Current line
Range - Last line
Range - Marker c
Range - All lines in file
Range - All lines that contain pattern

Files
Write to file
Read file in after line
Go to next file
Go to previous file
Edit file
Replace line with output from program

Figure 1: Cheat sheet with basic vi(1) commands, downloaded from http://d.umn.edu/~becke405/. Many
others can be found through a simple web search.

http://d.umn.edu/~becke405/
https://duckduckgo.com/?q=vi+cheat+sheet

	Introduction
	Basics
	Exercises
	Useful links

