SUBROUTINE tidal_forces (t, du, dv) IMPLICIT NONE c c======================================================================= c c Auteur: B. Charnay (10/2010) c ------- c c Objet: c ------ c c ***************************************************************** c ..... calcul du gradient horizontal du potentiel gravitationnel du aux forces de marees causees par Saturne c ..... Formule tiree de Tokano 2002 c ***************************************************************** c Ces termes sont ajoutes a d(ucov)/dt et a d(vcov)/dt .. c c c du et dv sont des arguments de sortie pour le s-pg .... c c======================================================================= c !----------------------------------------------------------------------- ! INCLUDE 'dimensions.h' ! ! dimensions.h contient les dimensions du modele ! ndm est tel que iim=2**ndm !----------------------------------------------------------------------- INTEGER iim,jjm,llm,ndm PARAMETER (iim= 128,jjm=96,llm=64,ndm=1) !----------------------------------------------------------------------- ! ! $Header$ ! ! ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre ! veillez n'utiliser que des ! pour les commentaires ! et bien positionner les & des lignes de continuation ! (les placer en colonne 6 et en colonne 73) ! ! !----------------------------------------------------------------------- ! INCLUDE 'paramet.h' INTEGER iip1,iip2,iip3,jjp1,llmp1,llmp2,llmm1 INTEGER kftd,ip1jm,ip1jmp1,ip1jmi1,ijp1llm INTEGER ijmllm,mvar INTEGER jcfil,jcfllm PARAMETER( iip1= iim+1,iip2=iim+2,iip3=iim+3 & & ,jjp1=jjm+1-1/jjm) PARAMETER( llmp1 = llm+1, llmp2 = llm+2, llmm1 = llm-1 ) PARAMETER( kftd = iim/2 -ndm ) PARAMETER( ip1jm = iip1*jjm, ip1jmp1= iip1*jjp1 ) PARAMETER( ip1jmi1= ip1jm - iip1 ) PARAMETER( ijp1llm= ip1jmp1 * llm, ijmllm= ip1jm * llm ) PARAMETER( mvar= ip1jmp1*( 2*llm+1) + ijmllm ) PARAMETER( jcfil=jjm/2+5, jcfllm=jcfil*llm ) !----------------------------------------------------------------------- ! ! $Id: logic.h 1520 2011-05-23 11:37:09Z emillour $ ! ! ! NB: keep items of different kinds in seperate common blocs to avoid ! "misaligned commons" issues !----------------------------------------------------------------------- ! INCLUDE 'logic.h' COMMON/logicl/ purmats,forward,leapf,apphys, & & statcl,conser,apdiss,apdelq,saison,ecripar,fxyhypb,ysinus & & ,read_start,ok_guide,ok_strato,tidal,ok_gradsfile & & ,ok_limit,ok_etat0,hybrid & & ,moyzon_mu,moyzon_ch COMMON/logici/ iflag_phys,iflag_trac LOGICAL purmats,forward,leapf,apphys,statcl,conser, & & apdiss,apdelq,saison,ecripar,fxyhypb,ysinus & & ,read_start,ok_guide,ok_strato,tidal,ok_gradsfile & & ,ok_limit,ok_etat0 logical hybrid ! vertical coordinate is hybrid if true (sigma otherwise) ! (only used if disvert_type==2) logical moyzon_mu,moyzon_ch ! used for zonal averages in Titan integer iflag_phys,iflag_trac !$OMP THREADPRIVATE(/logicl/) !$OMP THREADPRIVATE(/logici/) !----------------------------------------------------------------------- ! ! $Id: comvert.h 1654 2012-09-24 15:07:18Z aslmd $ ! !----------------------------------------------------------------------- ! INCLUDE 'comvert.h' COMMON/comvertr/ap(llm+1),bp(llm+1),presnivs(llm),dpres(llm), & & pa,preff,nivsigs(llm),nivsig(llm+1), & & aps(llm),bps(llm),scaleheight,pseudoalt(llm) common/comverti/disvert_type, pressure_exner real ap ! hybrid pressure contribution at interlayers real bp ! hybrid sigma contribution at interlayer real presnivs ! (reference) pressure at mid-layers real dpres real pa ! reference pressure (Pa) at which hybrid coordinates ! become purely pressure real preff ! reference surface pressure (Pa) real nivsigs real nivsig real aps ! hybrid pressure contribution at mid-layers real bps ! hybrid sigma contribution at mid-layers real scaleheight ! atmospheric (reference) scale height (km) real pseudoalt ! pseudo-altitude of model levels (km), based on presnivs(), ! preff and scaleheight integer disvert_type ! type of vertical discretization: ! 1: Earth (default for planet_type==earth), ! automatic generation ! 2: Planets (default for planet_type!=earth), ! using 'z2sig.def' (or 'esasig.def) file logical pressure_exner ! compute pressure inside layers using Exner function, else use mean ! of pressure values at interfaces !----------------------------------------------------------------------- ! ! $Id: comconst.h 1437 2010-09-30 08:29:10Z emillour $ ! !----------------------------------------------------------------------- ! INCLUDE comconst.h COMMON/comconsti/im,jm,lllm,imp1,jmp1,lllmm1,lllmp1,lcl, & & iflag_top_bound,mode_top_bound COMMON/comconstr/dtvr,daysec, & & pi,dtphys,dtdiss,rad,r,kappa,cotot,unsim,g,omeg & & ,dissip_fac_mid,dissip_fac_up,dissip_deltaz,dissip_hdelta & & ,dissip_pupstart ,tau_top_bound, & & daylen,molmass, ihf COMMON/cpdetvenus/cpp,nu_venus,t0_venus INTEGER im,jm,lllm,imp1,jmp1,lllmm1,lllmp1,lcl REAL dtvr ! dynamical time step (in s) REAL daysec !length (in s) of a standard day REAL pi ! something like 3.14159.... REAL dtphys ! (s) time step for the physics REAL dtdiss ! (s) time step for the dissipation REAL rad ! (m) radius of the planet REAL r ! Reduced Gas constant r=R/mu ! with R=8.31.. J.K-1.mol-1, mu: mol mass of atmosphere (kg/mol) REAL cpp ! Cp REAL kappa ! kappa=R/Cp REAL cotot REAL unsim ! = 1./iim REAL g ! (m/s2) gravity REAL omeg ! (rad/s) rotation rate of the planet ! Dissipation factors, for Earth model: REAL dissip_factz,dissip_zref !dissip_deltaz ! Dissipation factors, for other planets: REAL dissip_fac_mid,dissip_fac_up,dissip_deltaz,dissip_hdelta REAL dissip_pupstart INTEGER iflag_top_bound,mode_top_bound REAL tau_top_bound REAL daylen ! length of solar day, in 'standard' day length REAL molmass ! (g/mol) molar mass of the atmosphere REAL nu_venus,t0_venus ! coeffs needed for Cp(T), Venus atmosphere REAL ihf ! (W/m2) intrinsic heat flux for giant planets !----------------------------------------------------------------------- ! ! $Header$ ! !CDK comgeom COMMON/comgeom/ & & cu(ip1jmp1),cv(ip1jm),unscu2(ip1jmp1),unscv2(ip1jm), & & aire(ip1jmp1),airesurg(ip1jmp1),aireu(ip1jmp1), & & airev(ip1jm),unsaire(ip1jmp1),apoln,apols, & & unsairez(ip1jm),airuscv2(ip1jm),airvscu2(ip1jm), & & aireij1(ip1jmp1),aireij2(ip1jmp1),aireij3(ip1jmp1), & & aireij4(ip1jmp1),alpha1(ip1jmp1),alpha2(ip1jmp1), & & alpha3(ip1jmp1),alpha4(ip1jmp1),alpha1p2(ip1jmp1), & & alpha1p4(ip1jmp1),alpha2p3(ip1jmp1),alpha3p4(ip1jmp1), & & fext(ip1jm),constang(ip1jmp1),rlatu(jjp1),rlatv(jjm), & & rlonu(iip1),rlonv(iip1),cuvsurcv(ip1jm),cvsurcuv(ip1jm), & & cvusurcu(ip1jmp1),cusurcvu(ip1jmp1),cuvscvgam1(ip1jm), & & cuvscvgam2(ip1jm),cvuscugam1(ip1jmp1), & & cvuscugam2(ip1jmp1),cvscuvgam(ip1jm),cuscvugam(ip1jmp1), & & unsapolnga1,unsapolnga2,unsapolsga1,unsapolsga2, & & unsair_gam1(ip1jmp1),unsair_gam2(ip1jmp1),unsairz_gam(ip1jm), & & aivscu2gam(ip1jm),aiuscv2gam(ip1jm),xprimu(iip1),xprimv(iip1) ! REAL & & cu,cv,unscu2,unscv2,aire,airesurg,aireu,airev,unsaire,apoln ,& & apols,unsairez,airuscv2,airvscu2,aireij1,aireij2,aireij3,aireij4,& & alpha1,alpha2,alpha3,alpha4,alpha1p2,alpha1p4,alpha2p3,alpha3p4 ,& & fext,constang,rlatu,rlatv,rlonu,rlonv,cuvscvgam1,cuvscvgam2 ,& & cvuscugam1,cvuscugam2,cvscuvgam,cuscvugam,unsapolnga1,unsapolnga2& & ,unsapolsga1,unsapolsga2,unsair_gam1,unsair_gam2,unsairz_gam ,& & aivscu2gam ,aiuscv2gam,cuvsurcv,cvsurcuv,cvusurcu,cusurcvu,xprimu& & , xprimv ! !#include "comorbit.h" REAL t ! jour de l'annee REAL du( ip1jmp1,llm ), dv( ip1jm,llm ) c variables locales REAL Vo PARAMETER (Vo=-4.691e-6) INTEGER l,ij,i,k REAL n ! 2pi/periode de rotation siderale (en jours) REAL a0 ! angle à l'instant initial entre Titan et le perihelie PARAMETER (a0=0.) c cos et sin de la latitude et longitude, calcules au premiers appel REAL coslonv(ip1jm),sinlonv(ip1jm) REAL sinlatv(ip1jm),coslatv(ip1jm) REAL coslonu(ip1jmp1),sinlonu(ip1jmp1) REAL sinlatu(ip1jmp1),coslatu(ip1jmp1) LOGICAl first SAVE coslonv,coslonu,sinlonu,sinlonv SAVE coslatv,coslatu,sinlatu,sinlatv SAVE first, n DATA first /.true./ ! Calcul des sin et cos aux points consideres IF(first) THEN first=.false. n=2*3.145!*(1+1/673.) do i=1,iip1 do k=1,jjm coslonv(i+(k-1)*iip1)=cos(rlonv(i)) sinlonv(i+(k-1)*iip1)=sin(rlonv(i)) coslatv(i+(k-1)*iip1)=cos(rlatv(k)) sinlatv(i+(k-1)*iip1)=sin(rlatv(k)) ENDDO ENDDO do i=1,iip1 do k=1,jjp1 coslonu(i+(k-1)*iip1)=cos(rlonu(i)) sinlonu(i+(k-1)*iip1)=sin(rlonu(i)) coslatu(i+(k-1)*iip1)=cos(rlatu(k)) sinlatu(i+(k-1)*iip1)=sin(rlatu(k)) ENDDO ENDDO ENDIF ! Tendance du aux forces de maree DO l = 1,llm DO ij = 1, ip1jmp1 du(ij,l) = cu(ij)*Vo $ *(3*sinlonu(ij)*coslonu(ij)*coslatu(ij)*cos(n*t+a0) $ -2*coslatu(ij)*(2*coslonu(ij)**2-1)*sin(n*t+a0)) ENDDO DO ij = 1, ip1jm dv(ij,l) = cv(ij)*Vo $ *(3*sinlatv(ij)*coslatv(ij)*coslonv(ij)**2*cos(n*t+a0) $ + 4*coslatv(ij)*sinlatv(ij)*sinlonv(ij)*coslonv(ij) $ *sin(n*t+a0)) ENDDO ENDDO c RETURN END