! ! $Header$ ! SUBROUTINE pentes_ini (q,w,masse,pbaru,pbarv,mode) IMPLICIT NONE c======================================================================= c Adaptation LMDZ: A.Armengaud (LGGE) c ---------------- c c ******************************************************************** c Transport des traceurs par la methode des pentes c ******************************************************************** c Reference possible : Russel. G.L., Lerner J.A.: c A new Finite-Differencing Scheme for Traceur Transport c Equation , Journal of Applied Meteorology, pp 1483-1498,dec. 81 c ******************************************************************** c q,w,masse,pbaru et pbarv c sont des arguments d'entree pour le s-pg .... c c======================================================================= !----------------------------------------------------------------------- ! INCLUDE 'dimensions.h' ! ! dimensions.h contient les dimensions du modele ! ndm est tel que iim=2**ndm !----------------------------------------------------------------------- INTEGER iim,jjm,llm,ndm PARAMETER (iim= 128,jjm=96,llm=64,ndm=1) !----------------------------------------------------------------------- ! ! $Header$ ! ! ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre ! veillez n'utiliser que des ! pour les commentaires ! et bien positionner les & des lignes de continuation ! (les placer en colonne 6 et en colonne 73) ! ! !----------------------------------------------------------------------- ! INCLUDE 'paramet.h' INTEGER iip1,iip2,iip3,jjp1,llmp1,llmp2,llmm1 INTEGER kftd,ip1jm,ip1jmp1,ip1jmi1,ijp1llm INTEGER ijmllm,mvar INTEGER jcfil,jcfllm PARAMETER( iip1= iim+1,iip2=iim+2,iip3=iim+3 & & ,jjp1=jjm+1-1/jjm) PARAMETER( llmp1 = llm+1, llmp2 = llm+2, llmm1 = llm-1 ) PARAMETER( kftd = iim/2 -ndm ) PARAMETER( ip1jm = iip1*jjm, ip1jmp1= iip1*jjp1 ) PARAMETER( ip1jmi1= ip1jm - iip1 ) PARAMETER( ijp1llm= ip1jmp1 * llm, ijmllm= ip1jm * llm ) PARAMETER( mvar= ip1jmp1*( 2*llm+1) + ijmllm ) PARAMETER( jcfil=jjm/2+5, jcfllm=jcfil*llm ) !----------------------------------------------------------------------- ! ! $Id: comconst.h 1437 2010-09-30 08:29:10Z emillour $ ! !----------------------------------------------------------------------- ! INCLUDE comconst.h COMMON/comconsti/im,jm,lllm,imp1,jmp1,lllmm1,lllmp1,lcl, & & iflag_top_bound,mode_top_bound COMMON/comconstr/dtvr,daysec, & & pi,dtphys,dtdiss,rad,r,kappa,cotot,unsim,g,omeg & & ,dissip_fac_mid,dissip_fac_up,dissip_deltaz,dissip_hdelta & & ,dissip_pupstart ,tau_top_bound, & & daylen,molmass, ihf COMMON/cpdetvenus/cpp,nu_venus,t0_venus INTEGER im,jm,lllm,imp1,jmp1,lllmm1,lllmp1,lcl REAL dtvr ! dynamical time step (in s) REAL daysec !length (in s) of a standard day REAL pi ! something like 3.14159.... REAL dtphys ! (s) time step for the physics REAL dtdiss ! (s) time step for the dissipation REAL rad ! (m) radius of the planet REAL r ! Reduced Gas constant r=R/mu ! with R=8.31.. J.K-1.mol-1, mu: mol mass of atmosphere (kg/mol) REAL cpp ! Cp REAL kappa ! kappa=R/Cp REAL cotot REAL unsim ! = 1./iim REAL g ! (m/s2) gravity REAL omeg ! (rad/s) rotation rate of the planet ! Dissipation factors, for Earth model: REAL dissip_factz,dissip_zref !dissip_deltaz ! Dissipation factors, for other planets: REAL dissip_fac_mid,dissip_fac_up,dissip_deltaz,dissip_hdelta REAL dissip_pupstart INTEGER iflag_top_bound,mode_top_bound REAL tau_top_bound REAL daylen ! length of solar day, in 'standard' day length REAL molmass ! (g/mol) molar mass of the atmosphere REAL nu_venus,t0_venus ! coeffs needed for Cp(T), Venus atmosphere REAL ihf ! (W/m2) intrinsic heat flux for giant planets !----------------------------------------------------------------------- ! ! $Id: comvert.h 1654 2012-09-24 15:07:18Z aslmd $ ! !----------------------------------------------------------------------- ! INCLUDE 'comvert.h' COMMON/comvertr/ap(llm+1),bp(llm+1),presnivs(llm),dpres(llm), & & pa,preff,nivsigs(llm),nivsig(llm+1), & & aps(llm),bps(llm),scaleheight,pseudoalt(llm) common/comverti/disvert_type, pressure_exner real ap ! hybrid pressure contribution at interlayers real bp ! hybrid sigma contribution at interlayer real presnivs ! (reference) pressure at mid-layers real dpres real pa ! reference pressure (Pa) at which hybrid coordinates ! become purely pressure real preff ! reference surface pressure (Pa) real nivsigs real nivsig real aps ! hybrid pressure contribution at mid-layers real bps ! hybrid sigma contribution at mid-layers real scaleheight ! atmospheric (reference) scale height (km) real pseudoalt ! pseudo-altitude of model levels (km), based on presnivs(), ! preff and scaleheight integer disvert_type ! type of vertical discretization: ! 1: Earth (default for planet_type==earth), ! automatic generation ! 2: Planets (default for planet_type!=earth), ! using 'z2sig.def' (or 'esasig.def) file logical pressure_exner ! compute pressure inside layers using Exner function, else use mean ! of pressure values at interfaces !----------------------------------------------------------------------- ! ! $Header$ ! !CDK comgeom2 COMMON/comgeom/ & & cu(iip1,jjp1),cv(iip1,jjm),unscu2(iip1,jjp1),unscv2(iip1,jjm) , & & aire(iip1,jjp1),airesurg(iip1,jjp1),aireu(iip1,jjp1) , & & airev(iip1,jjm),unsaire(iip1,jjp1),apoln,apols , & & unsairez(iip1,jjm),airuscv2(iip1,jjm),airvscu2(iip1,jjm) , & & aireij1(iip1,jjp1),aireij2(iip1,jjp1),aireij3(iip1,jjp1) , & & aireij4(iip1,jjp1),alpha1(iip1,jjp1),alpha2(iip1,jjp1) , & & alpha3(iip1,jjp1),alpha4(iip1,jjp1),alpha1p2(iip1,jjp1) , & & alpha1p4(iip1,jjp1),alpha2p3(iip1,jjp1),alpha3p4(iip1,jjp1) , & & fext(iip1,jjm),constang(iip1,jjp1), rlatu(jjp1),rlatv(jjm), & & rlonu(iip1),rlonv(iip1),cuvsurcv(iip1,jjm),cvsurcuv(iip1,jjm) , & & cvusurcu(iip1,jjp1),cusurcvu(iip1,jjp1) , & & cuvscvgam1(iip1,jjm),cuvscvgam2(iip1,jjm),cvuscugam1(iip1,jjp1), & & cvuscugam2(iip1,jjp1),cvscuvgam(iip1,jjm),cuscvugam(iip1,jjp1) , & & unsapolnga1,unsapolnga2,unsapolsga1,unsapolsga2 , & & unsair_gam1(iip1,jjp1),unsair_gam2(iip1,jjp1) , & & unsairz_gam(iip1,jjm),aivscu2gam(iip1,jjm),aiuscv2gam(iip1,jjm) & & , xprimu(iip1),xprimv(iip1) REAL & & cu,cv,unscu2,unscv2,aire,airesurg,aireu,airev,apoln,apols,unsaire & & ,unsairez,airuscv2,airvscu2,aireij1,aireij2,aireij3,aireij4 , & & alpha1,alpha2,alpha3,alpha4,alpha1p2,alpha1p4,alpha2p3,alpha3p4 , & & fext,constang,rlatu,rlatv,rlonu,rlonv,cuvscvgam1,cuvscvgam2 , & & cvuscugam1,cvuscugam2,cvscuvgam,cuscvugam,unsapolnga1 , & & unsapolnga2,unsapolsga1,unsapolsga2,unsair_gam1,unsair_gam2 , & & unsairz_gam,aivscu2gam,aiuscv2gam,cuvsurcv,cvsurcuv,cvusurcu , & & cusurcvu,xprimu,xprimv c Arguments: c ---------- integer mode REAL pbaru( ip1jmp1,llm ),pbarv( ip1jm,llm ) REAL q( iip1,jjp1,llm,0:3) REAL w( ip1jmp1,llm ) REAL masse( iip1,jjp1,llm) c Local: c ------ LOGICAL limit REAL sm ( iip1,jjp1, llm ) REAL s0( iip1,jjp1,llm ), sx( iip1,jjp1,llm ) REAL sy( iip1,jjp1,llm ), sz( iip1,jjp1,llm ) real masn,mass,zz INTEGER i,j,l,iq c modif Fred 24 03 96 real sinlon(iip1),sinlondlon(iip1) real coslon(iip1),coslondlon(iip1) save sinlon,coslon,sinlondlon,coslondlon real dyn1,dyn2,dys1,dys2 real qpn,qps,dqzpn,dqzps real smn,sms,s0n,s0s,sxn(iip1),sxs(iip1) real qmin,zq,pente_max c REAL SSUM integer ismax,ismin,lati,latf EXTERNAL SSUM, convflu,ismin,ismax logical first save first c fin modif c EXTERNAL masskg EXTERNAL advx EXTERNAL advy EXTERNAL advz c modif Fred 24 03 96 data first/.true./ limit = .TRUE. pente_max=2 c if (mode.eq.1.or.mode.eq.3) then c if (mode.eq.1) then if (mode.ge.1) then lati=2 latf=jjm else lati=1 latf=jjp1 endif qmin=0.4995 qmin=0. if(first) then print*,'SCHEMA AMONT NOUVEAU' first=.false. do i=2,iip1 coslon(i)=cos(rlonv(i)) sinlon(i)=sin(rlonv(i)) coslondlon(i)=coslon(i)*(rlonu(i)-rlonu(i-1))/pi sinlondlon(i)=sinlon(i)*(rlonu(i)-rlonu(i-1))/pi print*,coslondlon(i),sinlondlon(i) enddo coslon(1)=coslon(iip1) coslondlon(1)=coslondlon(iip1) sinlon(1)=sinlon(iip1) sinlondlon(1)=sinlondlon(iip1) print*,'sum sinlondlon ',ssum(iim,sinlondlon,1)/sinlondlon(1) print*,'sum coslondlon ',ssum(iim,coslondlon,1)/coslondlon(1) DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 q ( i,j,l,1 )=0. q ( i,j,l,2 )=0. q ( i,j,l,3 )=0. ENDDO ENDDO ENDDO endif c Fin modif Fred c *** q contient les qqtes de traceur avant l'advection c *** Affectation des tableaux S a partir de Q c *** Rem : utilisation de SCOPY ulterieurement DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 s0( i,j,llm+1-l ) = q ( i,j,l,0 ) sx( i,j,llm+1-l ) = q ( i,j,l,1 ) sy( i,j,llm+1-l ) = q ( i,j,l,2 ) sz( i,j,llm+1-l ) = q ( i,j,l,3 ) ENDDO ENDDO ENDDO c PRINT*,'----- S0 just before conversion -------' c PRINT*,'S0(16,12,1)=',s0(16,12,1) c PRINT*,'Q(16,12,1,4)=',q(16,12,1,4) c *** On calcule la masse d'air en kg DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 sm ( i,j,llm+1-l)=masse( i,j,l ) ENDDO ENDDO ENDDO c *** On converti les champs S en atome (resp. kg) c *** Les routines d'advection traitent les champs c *** a advecter si ces derniers sont en atome (resp. kg) c *** A optimiser !!! DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 s0(i,j,l) = s0(i,j,l) * sm ( i,j,l ) sx(i,j,l) = sx(i,j,l) * sm ( i,j,l ) sy(i,j,l) = sy(i,j,l) * sm ( i,j,l ) sz(i,j,l) = sz(i,j,l) * sm ( i,j,l ) ENDDO ENDDO ENDDO c ss0 = 0. c DO l = 1,llm c DO j = 1,jjp1 c DO i = 1,iim c ss0 = ss0 + s0 ( i,j,l ) c ENDDO c ENDDO c ENDDO c PRINT*, 'valeur tot s0 avant advection=',ss0 c *** Appel des subroutines d'advection en X, en Y et en Z c *** Advection avec "time-splitting" c----------------------------------------------------------- c PRINT*,'----- S0 just before ADVX -------' c PRINT*,'S0(16,12,1)=',s0(16,12,1) c----------------------------------------------------------- c do l=1,llm c do j=1,jjp1 c do i=1,iip1 c zq=s0(i,j,l)/sm(i,j,l) c if(zq.lt.qmin) c , print*,'avant advx1, s0(',i,',',j,',',l,')=',zq c enddo c enddo c enddo CCC if(mode.eq.2) then do l=1,llm s0s=0. s0n=0. dyn1=0. dys1=0. dyn2=0. dys2=0. smn=0. sms=0. do i=1,iim smn=smn+sm(i,1,l) sms=sms+sm(i,jjp1,l) s0n=s0n+s0(i,1,l) s0s=s0s+s0(i,jjp1,l) zz=sy(i,1,l)/sm(i,1,l) dyn1=dyn1+sinlondlon(i)*zz dyn2=dyn2+coslondlon(i)*zz zz=sy(i,jjp1,l)/sm(i,jjp1,l) dys1=dys1+sinlondlon(i)*zz dys2=dys2+coslondlon(i)*zz enddo do i=1,iim sy(i,1,l)=dyn1*sinlon(i)+dyn2*coslon(i) sy(i,jjp1,l)=dys1*sinlon(i)+dys2*coslon(i) enddo do i=1,iim s0(i,1,l)=s0n/smn+sy(i,1,l) s0(i,jjp1,l)=s0s/sms-sy(i,jjp1,l) enddo s0(iip1,1,l)=s0(1,1,l) s0(iip1,jjp1,l)=s0(1,jjp1,l) do i=1,iim sxn(i)=s0(i+1,1,l)-s0(i,1,l) sxs(i)=s0(i+1,jjp1,l)-s0(i,jjp1,l) c on rerentre les masses enddo do i=1,iim sy(i,1,l)=sy(i,1,l)*sm(i,1,l) sy(i,jjp1,l)=sy(i,jjp1,l)*sm(i,jjp1,l) s0(i,1,l)=s0(i,1,l)*sm(i,1,l) s0(i,jjp1,l)=s0(i,jjp1,l)*sm(i,jjp1,l) enddo sxn(iip1)=sxn(1) sxs(iip1)=sxs(1) do i=1,iim sx(i+1,1,l)=0.25*(sxn(i)+sxn(i+1))*sm(i+1,1,l) sx(i+1,jjp1,l)=0.25*(sxs(i)+sxs(i+1))*sm(i+1,jjp1,l) enddo s0(iip1,1,l)=s0(1,1,l) s0(iip1,jjp1,l)=s0(1,jjp1,l) sy(iip1,1,l)=sy(1,1,l) sy(iip1,jjp1,l)=sy(1,jjp1,l) sx(1,1,l)=sx(iip1,1,l) sx(1,jjp1,l)=sx(iip1,jjp1,l) enddo endif if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limx(s0,sx,sm,pente_max) c call minmaxq(zq,1.e33,-1.e33,'avant advx ') call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) c call minmaxq(zq,1.e33,-1.e33,'avant advy ') if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limy(s0,sy,sm,pente_max) call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) c call minmaxq(zq,1.e33,-1.e33,'avant advz ') do j=1,jjp1 do i=1,iip1 sz(i,j,1)=0. sz(i,j,llm)=0. enddo enddo call limz(s0,sz,sm,pente_max) call advz( limit,dtvr,w,sm,s0,sx,sy,sz ) if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limy(s0,sy,sm,pente_max) call advy( limit,.5*dtvr,pbarv,sm,s0,sx,sy,sz ) do l=1,llm do j=1,jjp1 sm(iip1,j,l)=sm(1,j,l) s0(iip1,j,l)=s0(1,j,l) sx(iip1,j,l)=sx(1,j,l) sy(iip1,j,l)=sy(1,j,l) sz(iip1,j,l)=sz(1,j,l) enddo enddo c call minmaxq(zq,1.e33,-1.e33,'avant advx ') if (mode.eq.4) then do l=1,llm do i=1,iip1 sx(i,1,l)=0. sx(i,jjp1,l)=0. sy(i,1,l)=0. sy(i,jjp1,l)=0. enddo enddo endif call limx(s0,sx,sm,pente_max) call advx( limit,.5*dtvr,pbaru,sm,s0,sx,sy,sz,lati,latf) c call minmaxq(zq,1.e33,-1.e33,'apres advx ') c do l=1,llm c do j=1,jjp1 c do i=1,iip1 c zq=s0(i,j,l)/sm(i,j,l) c if(zq.lt.qmin) c , print*,'apres advx2, s0(',i,',',j,',',l,')=',zq c enddo c enddo c enddo c *** On repasse les S dans la variable q directement 14/10/94 c On revient a des rapports de melange en divisant par la masse c En dehors des poles: DO l = 1,llm DO j = 1,jjp1 DO i = 1,iim q(i,j,llm+1-l,0)=s0(i,j,l)/sm(i,j,l) q(i,j,llm+1-l,1)=sx(i,j,l)/sm(i,j,l) q(i,j,llm+1-l,2)=sy(i,j,l)/sm(i,j,l) q(i,j,llm+1-l,3)=sz(i,j,l)/sm(i,j,l) ENDDO ENDDO ENDDO c Traitements specifiques au pole if(mode.ge.1) then DO l=1,llm c filtrages aux poles masn=ssum(iim,sm(1,1,l),1) mass=ssum(iim,sm(1,jjp1,l),1) qpn=ssum(iim,s0(1,1,l),1)/masn qps=ssum(iim,s0(1,jjp1,l),1)/mass dqzpn=ssum(iim,sz(1,1,l),1)/masn dqzps=ssum(iim,sz(1,jjp1,l),1)/mass do i=1,iip1 q( i,1,llm+1-l,3)=dqzpn q( i,jjp1,llm+1-l,3)=dqzps q( i,1,llm+1-l,0)=qpn q( i,jjp1,llm+1-l,0)=qps enddo if(mode.eq.3) then dyn1=0. dys1=0. dyn2=0. dys2=0. do i=1,iim dyn1=dyn1+sinlondlon(i)*sy(i,1,l)/sm(i,1,l) dyn2=dyn2+coslondlon(i)*sy(i,1,l)/sm(i,1,l) dys1=dys1+sinlondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) dys2=dys2+coslondlon(i)*sy(i,jjp1,l)/sm(i,jjp1,l) enddo do i=1,iim q(i,1,llm+1-l,2)= s (sinlon(i)*dyn1+coslon(i)*dyn2) q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) q(i,jjp1,llm+1-l,2)= s (sinlon(i)*dys1+coslon(i)*dys2) q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) s -q(i,jjp1,llm+1-l,2) enddo endif if(mode.eq.1) then c on filtre les valeurs au bord de la "grande maille pole" dyn1=0. dys1=0. dyn2=0. dys2=0. do i=1,iim zz=s0(i,2,l)/sm(i,2,l)-q(i,1,llm+1-l,0) dyn1=dyn1+sinlondlon(i)*zz dyn2=dyn2+coslondlon(i)*zz zz=q(i,jjp1,llm+1-l,0)-s0(i,jjm,l)/sm(i,jjm,l) dys1=dys1+sinlondlon(i)*zz dys2=dys2+coslondlon(i)*zz enddo do i=1,iim q(i,1,llm+1-l,2)= s (sinlon(i)*dyn1+coslon(i)*dyn2)/2. q(i,1,llm+1-l,0)=q(i,1,llm+1-l,0)+q(i,1,llm+1-l,2) q(i,jjp1,llm+1-l,2)= s (sinlon(i)*dys1+coslon(i)*dys2)/2. q(i,jjp1,llm+1-l,0)=q(i,jjp1,llm+1-l,0) s -q(i,jjp1,llm+1-l,2) enddo q(iip1,1,llm+1-l,0)=q(1,1,llm+1-l,0) q(iip1,jjp1,llm+1-l,0)=q(1,jjp1,llm+1-l,0) do i=1,iim sxn(i)=q(i+1,1,llm+1-l,0)-q(i,1,llm+1-l,0) sxs(i)=q(i+1,jjp1,llm+1-l,0)-q(i,jjp1,llm+1-l,0) enddo sxn(iip1)=sxn(1) sxs(iip1)=sxs(1) do i=1,iim q(i+1,1,llm+1-l,1)=0.25*(sxn(i)+sxn(i+1)) q(i+1,jjp1,llm+1-l,1)=0.25*(sxs(i)+sxs(i+1)) enddo q(1,1,llm+1-l,1)=q(iip1,1,llm+1-l,1) q(1,jjp1,llm+1-l,1)=q(iip1,jjp1,llm+1-l,1) endif ENDDO endif c bouclage en longitude do iq=0,3 do l=1,llm do j=1,jjp1 q(iip1,j,l,iq)=q(1,j,l,iq) enddo enddo enddo c PRINT*, ' SORTIE DE PENTES --- ca peut glisser ....' DO l = 1,llm DO j = 1,jjp1 DO i = 1,iip1 IF (q(i,j,l,0).lt.0.) THEN c PRINT*,'------------ BIP-----------' c PRINT*,'Q0(',i,j,l,')=',q(i,j,l,0) c PRINT*,'QX(',i,j,l,')=',q(i,j,l,1) c PRINT*,'QY(',i,j,l,')=',q(i,j,l,2) c PRINT*,'QZ(',i,j,l,')=',q(i,j,l,3) c PRINT*,' PBL EN SORTIE DE PENTES' q(i,j,l,0)=0. c STOP ENDIF ENDDO ENDDO ENDDO c PRINT*, '-------------------------------------------' do l=1,llm do j=1,jjp1 do i=1,iip1 if(q(i,j,l,0).lt.qmin) , print*,'apres pentes, s0(',i,',',j,',',l,')=',q(i,j,l,0) enddo enddo enddo RETURN END