source: trunk/SRC/Interpolation/square2quadrilateral.pro @ 105

Last change on this file since 105 was 105, checked in by pinsard, 18 years ago

bugfix compute_fromreg_imoms3_weigaddr and square2quadrilateral

  • Property svn:executable set to *
File size: 7.1 KB
Line 
1;+
2;
3; @file_comments warm (or map) a unit square onto an arbitrary quadrilateral
4; according to the 4-point correspondences:
5;       (0,0) -> (x0,y0)
6;       (1,0) -> (x1,y1)
7;       (1,1) -> (x2,y2)
8;       (0,1) -> (x3,y3)
9; The mapping is done using perspective transformation which preserve
10; lines in all orientations and permit quadrilateral to quadrilateral
11; mappings. see ref. bellow.
12;
13; @categories image, grid manipulation
14;
15; @examples
16; IDL>  res = square2quadrilateral(x0,y0,x1,y1,x2,y2,x3,y3[,xin,yin])
17;
18;     @param x0in {in}{required}  the coordinates of the quadrilateral
19;     (see above for correspondance with the unit square). Can be
20;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
21;     given in the anticlockwise order.
22;     @param y0in {in}{required}  the coordinates of the quadrilateral
23;     (see above for correspondance with the unit square). Can be
24;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
25;     given in the anticlockwise order.
26;     @param x1in {in}{required}  the coordinates of the quadrilateral
27;     (see above for correspondance with the unit square). Can be
28;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
29;     given in the anticlockwise order.
30;     @param y1in {in}{required}  the coordinates of the quadrilateral
31;     (see above for correspondance with the unit square). Can be
32;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
33;     given in the anticlockwise order.
34;     @param x2in {in}{required}  the coordinates of the quadrilateral
35;     (see above for correspondance with the unit square). Can be
36;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
37;     given in the anticlockwise order.
38;     @param y2in {in}{required}  the coordinates of the quadrilateral
39;     (see above for correspondance with the unit square). Can be
40;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
41;     given in the anticlockwise order.
42;     @param x3in {in}{required}  the coordinates of the quadrilateral
43;     (see above for correspondance with the unit square). Can be
44;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
45;     given in the anticlockwise order.
46;     @param y3in {in}{required}  the coordinates of the quadrilateral
47;     (see above for correspondance with the unit square). Can be
48;     scalar or array. (x0,y0), (x1,y1), (x2,y2) and (x3,y3) are
49;     given in the anticlockwise order.
50;
51;     @param xxin {in}{required} the coordinates of the point(s) for which we want to do the
52;     mapping. Can be scalar or array.
53;     @param yyin {in}{required} the coordinates of the point(s) for which we want to do the
54;     mapping. Can be scalar or array.
55;
56; @returns
57;
58;     (2,n) array: the new coodinates (xout, yout) of the (xin,yin)
59;     point(s) after mapping.
60;     If xin is a scalar, then n is equal to the number of elements of
61;     x0. If xin is an array , then n is equal to the number of
62;     elements of xin.
63;     If xin and yin are omited, square2quadrilateral returns the
64;     matrix A which is used for the inverse transformation.
65;
66;
67; @restrictions I think degenerated quadrilateral (e.g. flat of
68; twisted) is not work. This has to be tested.
69;
70; @examples
71;
72; IDL> splot,[0,5],[0,3],/nodata,xstyle=1,ystyle=1
73; IDL> tracegrille, findgen(11)*.1, findgen(11)*.1,color=indgen(12)*20
74; IDL> xin = (findgen(11)*.1)#replicate(1, 11)
75; IDL> yin = replicate(1, 11)#(findgen(11)*.1)
76; IDL> out = square2quadrilateral(2,1,3,0,5,1,2,3, xin, yin)
77; IDL> tracegrille, reform(out[0,*],11,11), reform(out[1,*],11,11),color=indgen(12)*20
78;
79; @history
80;      Sebastien Masson (smasson\@lodyc.jussieu.fr)
81;      August 2003
82;      Based on "Digital Image Warping" by G. Wolberg
83;      IEEE Computer Society Press, Los Alamitos, California
84;      Chapter 3, see p 52-56
85;     
86;-
87;------------------------------------------------------------
88;------------------------------------------------------------
89;------------------------------------------------------------
90FUNCTION square2quadrilateral, x0in, y0in, x1in, y1in, x2in, y2in, x3in, y3in, xxin, yyin
91;
92; Warning, wrong definition of (x2,y2) and (x3,y3) at the bottom of
93; page 54 of Wolberg's book, see figure 3.7 page 56 for the good
94; definition.
95;
96  IF keyword_set(double) THEN BEGIN
97    x0 = double(x0in)
98    x1 = double(x1in)
99    x2 = double(x2in)
100    x3 = double(x3in)
101    y0 = double(y0in)
102    y1 = double(y1in)
103    y2 = double(y2in)
104    y3 = double(y3in)
105    IF arg_present(xxin) THEN BEGIN
106      xin = double(xxin)
107      yin = double(yyin)
108    ENDIF
109  ENDIF ELSE BEGIN
110    x0 = float(x0in)
111    x1 = float(x1in)
112    x2 = float(x2in)
113    x3 = float(x3in)
114    y0 = float(y0in)
115    y1 = float(y1in)
116    y2 = float(y2in)
117    y3 = float(y3in)
118    IF arg_present(xxin) THEN BEGIN
119      xin = float(xxin)
120      yin = float(yyin)
121    ENDIF
122  ENDELSE
123;
124  IF keyword_set(double) THEN a = dlbarr(8, n_elements(x0)) $
125  ELSE a = fltarr(8, n_elements(x0))
126;
127  delx3 = x0-x1+x2-x3
128  dely3 = y0-y1+y2-y3
129;
130  affinemap = where(delx3 EQ 0 AND dely3 EQ 0)
131  IF affinemap[0] NE -1 THEN BEGIN
132    xx0 = x0[affinemap]
133    xx1 = x1[affinemap]
134    xx2 = x2[affinemap]
135    yy0 = y0[affinemap]
136    yy1 = y1[affinemap]
137    yy2 = y2[affinemap]
138;
139    a[0, affinemap] = xx1-xx0
140    a[1, affinemap] = xx2-xx1
141    a[2, affinemap] = xx0
142    a[3, affinemap] = yy1-yy0
143    a[4, affinemap] = yy2-yy1
144    a[5, affinemap] = yy0
145    a[6, affinemap] = 0
146    a[7, affinemap] = 0
147  ENDIF
148;
149  projectivemap = where(delx3 NE 0 OR dely3 NE 0)
150  IF projectivemap[0] NE -1 THEN BEGIN
151    xx0 = x0[projectivemap]
152    xx1 = x1[projectivemap]
153    xx2 = x2[projectivemap]
154    xx3 = x3[projectivemap]
155    yy0 = y0[projectivemap]
156    yy1 = y1[projectivemap]
157    yy2 = y2[projectivemap]
158    yy3 = y3[projectivemap]
159;   
160    delx1 = xx1-xx2
161    dely1 = yy1-yy2
162    delx2 = xx3-xx2
163    dely2 = yy3-yy2
164    delx3 = delx3[projectivemap]
165    dely3 = dely3[projectivemap]
166;
167    div = delx1*dely2-dely1*delx2
168    zero = where(div EQ 0)
169    IF zero[0] NE -1 THEN BEGIN
170      stop
171    ENDIF
172    a13 = (delx3*dely2-dely3*delx2)/div
173    a23 = (delx1*dely3-dely1*delx3)/div
174;
175    a[0, projectivemap] = xx1-xx0+a13*xx1
176    a[1, projectivemap] = xx3-xx0+a23*xx3
177    a[2, projectivemap] = xx0
178    a[3, projectivemap] = yy1-yy0+a13*yy1
179    a[4, projectivemap] = yy3-yy0+a23*yy3
180    a[5, projectivemap] = yy0
181    a[6, projectivemap] = a13
182    a[7, projectivemap] = a23
183  ENDIF
184;   
185  IF NOT arg_present(xxin) THEN return, a
186;
187  IF n_elements(xin) EQ 1 THEN BEGIN
188    xin = replicate(xin, n_elements(x0))
189    yin = replicate(yin, n_elements(x0))
190  ENDIF
191;
192  IF keyword_set(double) THEN res = dblarr(2, n_elements(xin)) $
193  ELSE res = fltarr(2, n_elements(xin))
194  IF n_elements(x0) EQ 1 THEN BEGIN
195    div = a[6]*xin[*] + a[7]*yin[*] + 1
196    zero = where(div EQ 0)
197    IF zero[0] NE -1 THEN BEGIN
198      stop
199    ENDIF
200    res[0, *] = (a[0]*xin[*] + a[1]*yin[*] + a[2])/div
201    res[1, *] = (a[3]*xin[*] + a[4]*yin[*] + a[5])/div
202  ENDIF ELSE BEGIN
203    div = a[6, *]*xin +a[7, *]*yin + 1
204    zero = where(div EQ 0)
205    IF zero[0] NE -1 THEN BEGIN
206      stop
207    ENDIF
208    res[0, *] = (a[0, *]*xin[*] + a[1, *]*yin[*] + a[2, *])/div
209    res[1, *] = (a[3, *]*xin[*] + a[4, *]*yin[*] + a[5, *])/div
210  ENDELSE
211;
212  RETURN, res
213END
Note: See TracBrowser for help on using the repository browser.