source: trunk/SRC/Interpolation/extrapolate.pro @ 338

Last change on this file since 338 was 327, checked in by pinsard, 17 years ago

modification of headers : mainly blanks around = sign for keywords in declaration of function and pro

  • Property svn:keywords set to Id
File size: 6.3 KB
RevLine 
[101]1;+
[232]2;
[136]3; @file_comments
[238]4; extrapolate data (zinput) where maskinput equal 0 by filling step by
[295]5; step the coastline points with the mean value of the 8 neighbors
6; (weighted by their mask values).
[101]7;
[226]8; @categories
[157]9; Interpolation
10;
[202]11; @param zinput {in}{required}{type=2d array}
[118]12; data to be extrapolate
13;
[202]14; @param maskinput {in}{required}{type=2d array or -1}
15; a 2D array, the land-sea mask of the output data (1 on ocean, 0 on land)
16; put -1 if input data are not masked
[118]17;
[271]18; @param nb_iteration {in}{optional}{type=integer}{default=large enough to fill everything}
[242]19; Maximum number of iterations done in the extrapolation process. If there
[202]20; is no more masked values we exit extrapolate before reaching nb_iteration
[118]21;
[261]22; @keyword X_PERIODIC {type=scalar, 0 or 1}{default=0}
[202]23; put 1 to specify that the data are periodic along x axis
[118]24;
[202]25; @keyword MINVAL {type=scalar}{default=not used}
26; to specify a minimum value to the extrapolated values
27;
28; @keyword MAXVAL {type=scalar}{default=not used}
29; to specify a maximum value to the extrapolated values
30;
31; @keyword GE0 {type=scalar 0 or 1}{default=0}
32; put 1 to force the extrapolated values to be larger than 0, same as using minval=0.
33;
[271]34; @keyword
35; _EXTRA to be able to call extrapolate with _extra keyword
36;
[238]37; @returns
38; the extrapolated 2d array
[202]39;
40; @examples
41; IDL> a=extrapolate(dist(jpi,jpj),tmask[*,*,0],/x_periodic)
42; IDL> tvplus, a
43; IDL> tvplus, a*(1-tmask[*,*,0])
44; get the coastline:
45; IDL> a=extrapolate(tmask[*,*,0],tmask[*,*,0],1,/x_periodic)
46; IDL> tvplus, a-tmask[*,*,0]
47;
48; @history
[292]49;  Originaly written by G. Roullet
[202]50;  Sebastien Masson (smasson\@lodyc.jussieu.fr)
51;
[226]52; @version
53; $Id$
[118]54;
[101]55;-
[327]56FUNCTION extrapolate, zinput, maskinput, nb_iteration, X_PERIODIC=x_periodic $
57                      , MINVAL=minval, MAXVAL=maxval, GE0=ge0, _EXTRA=ex
[59]58;
[125]59  compile_opt idl2, strictarrsubs
[59]60;
61; check the number of iteration used in the extrapolation.
[271]62  szin = size(zinput)
63  IF szin[0] NE 2 THEN return, -1. ELSE szin = szin[1:2]
64  nx = szin[0]
65  ny = szin[1]
66  IF n_elements(nb_iteration) EQ 0 THEN nb_iteration = max(szin)
[59]67  IF nb_iteration EQ 0 THEN return, zinput
68; take care of the boundary conditions...
[125]69;
[59]70; for the x direction, we put 2 additional columns at the left and
[125]71; right side of the array.
[59]72; for the y direction, we put 2 additional lines at the bottom and
[125]73; top side of the array.
[59]74; These changes allow us to use shift function without taking care of
75; the x and y periodicity.
76;
77  ztmp = bytarr(nx+2, ny+2)
[202]78  IF n_elements(maskinput) EQ 1 AND maskinput[0] EQ -1 THEN maskinput = replicate(1b, nx, ny)
[226]79  IF n_elements(maskinput) NE nx*ny THEN BEGIN
[236]80    ras = report('input grid mask do not have the good size')
[202]81    return, -1
82  ENDIF
[59]83  ztmp[1:nx, 1:ny] = byte(maskinput)
84  msk = temporary(ztmp)
85;
86  ztmp = replicate(1.e20, nx+2, ny+2)
87  ztmp[1:nx, 1:ny] = zinput
88  if keyword_set(x_periodic) then begin
89    ztmp[0, 1:ny] = zinput[nx-1, *]
90    ztmp[nx+1, 1:ny] = zinput[0, *]
91  ENDIF
92; remove NaN points if there is some...
93  nan = where(finite(ztmp) EQ 0, cnt_nan)
94  IF cnt_nan NE 0 THEN ztmp[temporary(nan)] = 1.e20
95  z = temporary(ztmp)
96  nx2 = nx+2
97  ny2 = ny+2
98;---------------------------------------------------------------
99;---------------------------------------------------------------
[125]100; extrapolation
[59]101;---------------------------------------------------------------
102  sqrtinv = 1./sqrt(2)
103;
[69]104  cnt = 1
[226]105; When we look for the coastline, we don't want to select the
[59]106; borderlines of the array. -> we force the value of the mask for
107; those lines.
108  msk[0, *] = 1b
109  msk[nx+1, *] = 1b
110  msk[*, 0] = 1b
111  msk[*, ny+1] = 1b
112; find the land points
113  land = where(msk EQ 0, cnt_land)
114;---------------------------------------------------------------
115  WHILE cnt LE nb_iteration AND cnt_land NE 0 DO BEGIN
116;---------------------------------------------------------------
[226]117; find the coastline points...
[59]118;---------------------------------------------------------------
[238]119; Once the land points list has been found, we change back the
[59]120; mask values for the boundary conditions.
121    msk[0, *] = 0b
122    msk[nx+1, *] = 0b
123    msk[*, 0] = 0b
124    msk[*, ny+1] = 0b
125    if keyword_set(x_periodic) then begin
126      msk[0, *] = msk[nx, *]
127      msk[nx+1, *] = msk[1, *]
128    endif
129;
[295]130; we compute the weighted number of sea neighbors.
131; those 4 neighbors have a weight of 1:
[125]132;    *
133;   *+*
134;    *
[59]135;
[295]136; those 4 neighbors have a weight of 1/sqrt(2):
[59]137;
138;    * *
[125]139;     +
[59]140;    * *
141;
142; As we make sure that none of the land points are located on the
143; border of the array, we can compute the weight without shift
144; (faster).
145;
146    weight = msk[land+1]+msk[land-1]+msk[land+nx2]+msk[land-nx2] $
147             +sqrtinv*(msk[land+nx2+1]+msk[land+nx2-1] $
148                       +msk[land-nx2+1]+msk[land-nx2-1])
[295]149; list all the points that have sea neighbors
[59]150    ok = where(weight GT 0)
151; the coastline points
152    coast = land[ok]
[295]153; their weighted number of sea neighbors.
[59]154    weight = weight[temporary(ok)]
155;---------------------------------------------------------------
[226]156; fill the coastline points
[59]157;---------------------------------------------------------------
158    z = temporary(z)*msk
159;
160    zcoast = z[1+coast]+z[-1+coast]+z[nx2+coast]+z[-nx2+coast] $
161             +1./sqrt(2)*(z[nx2+1+coast]+z[nx2-1+coast] $
162                          +z[-nx2+1+coast]+z[-nx2-1+coast])
[125]163;
[199]164    IF keyword_set(ge0) THEN zcoast = 0. > temporary(zcoast)
[59]165    IF n_elements(minval) NE 0 THEN zcoast = minval > temporary(zcoast)
166    IF n_elements(maxval) NE 0 THEN zcoast = temporary(zcoast) < maxval
167    z[coast] = temporary(zcoast)/temporary(weight)
[238]168; we update the boundary conditions of z
[59]169    if keyword_set(x_periodic) then begin
170      z[0, *] = z[nx, *]
171      z[nx+1, *] = z[1, *]
172    endif
173;---------------------------------------------------------------
174; we update the mask
175;---------------------------------------------------------------
176    msk[temporary(coast)] = 1
177;
178    cnt = cnt + 1
[125]179; When we look for the coast line, we don't want to select the
[59]180; borderlines of the array. -> we force the value of the mask for
181; those lines.
182    msk[0, *] = 1b
183    msk[nx+1, *] = 1b
184    msk[*, 0] = 1b
185    msk[*, ny+1] = 1b
186; find the land points
187    land = where(msk EQ 0, cnt_land)
188;
189  ENDWHILE
190;---------------------------------------------------------------
191; we return the original size of the array
192;---------------------------------------------------------------
[125]193;
[59]194  return, z[1:nx, 1:ny]
[125]195END
Note: See TracBrowser for help on using the repository browser.