source: trunk/SRC/Interpolation/compute_fromirr_bilinear_weigaddr.pro @ 134

Last change on this file since 134 was 125, checked in by pinsard, 18 years ago

improvements of Interpolation/*.pro header

  • Property svn:keywords set to Id
File size: 9.0 KB
Line 
1;+
2; @file_comments
3; compute the weight and address needed to interpolate data from
4; an "irregular 2D grid" (defined as a grid made of quadrilateral cells)
5; to any grid using the bilinear method
6;
7; @categories interpolation
8;
9; @param olonin {in}{required} longitudeof the input data
10; @param olat   {in}{required} latitude of the input data
11; @param omsk   {in}{required} land/se mask of the input data
12; @param alonin {in}{required} longitude of the output data
13; @param alat   {in}{required} latitude of the output data
14; @param amsk   {in}{required} land/sea mask of the output data
15;
16; @param weig {out}
17; @param addr {out}
18; 2D arrays, weig and addr are the weight and addresses used to
19; perform the interpolation:
20;  dataout = total(weig*datain[addr], 1)
21;  dataout = reform(dataout, jpia, jpja, /over)
22;
23; @restrictions
24;  -  the input grid must be an "irregular 2D grid", defined as a grid made
25;  of quadrilateral cells which corners positions are defined with olonin and olat
26;  -  We supposed the data are located on a sphere, with a periodicity along
27;  the longitude
28;  -  to perform the bilinear interpolation within quadrilateral cells, we
29;  first morph the cell into a square cell and then compute the bilinear
30;  interpolation.
31;  -  if some corners of the cell are land points, their weight is set to 0
32;  and the weight is redistributed on the remaining "water" corners
33;  -  points located out of the southern and northern boundaries or in cells
34;  containing only land points are set the the same value as their closest neighbor l
35;
36; @history
37;  June 2006: Sebastien Masson (smasson\@lodyc.jussieu.fr)
38;
39; @version $Id$
40;
41;-
42;
43PRO compute_fromirr_bilinear_weigaddr, olonin, olat, omsk, alonin, alat, amsk, weig, addr
44;
45  compile_opt idl2, strictarrsubs
46;
47  jpia = (size(alonin, /dimensions))[0]
48  jpja = (size(alonin, /dimensions))[1]
49;
50  jpio = (size(olonin, /dimensions))[0]
51  jpjo = (size(olonin, /dimensions))[1]
52;
53; longitude, between 0 and 360
54  alon = alonin MOD 360
55  out = where(alon LT 0)
56  IF out[0] NE -1 THEN alon[out] = alon[out]+360
57  olon = olonin MOD 360
58  out = where(olon LT 0)
59  IF out[0] NE -1 THEN olon[out] = olon[out]+360
60;
61; we work only on the water points
62  owater = where(omsk EQ 1)
63  nowater = n_elements(owater)
64  awater = where(amsk EQ 1)
65  nawater = n_elements(awater)
66;
67; define all cells that have corners located at olon, olat
68; we define the cell with the address of all corners
69;
70;            3        2
71;             +------+
72;             |      |
73;             |      |
74;             |      |
75;             +------+
76;            0        1
77;
78  alladdr = lindgen(jpio, jpjo-1)
79  celladdr = lonarr(4, jpio*(jpjo-1))
80  celladdr[0, *] = alladdr
81  celladdr[1, *] = shift(alladdr, -1)
82  celladdr[2, *] = shift(alladdr + jpio, -1)
83  celladdr[3, *] = alladdr + jpio
84;
85; list the cells that have at least 1 ocean point as corner
86  good = where(total(omsk[celladdr], 1) GT 0)
87; keep only those cells
88  celladdr = celladdr[*, temporary(good)]
89;
90  xcell = olon[celladdr]
91  minxcell = min(xcell, dimension = 1, max = maxxcell)
92  ycell = olat[celladdr]
93  minycell = min(ycell, dimension = 1, max = maxycell)
94; foraddr: address of the ocean water cell associated to each atmosphere water point
95  foraddr = lonarr(nawater)
96; forweight: x/y position of the atmosphere water point in the ocean water cell
97  forweight = dblarr(nawater, 2)
98;
99; Loop on all the water point of the atmosphere
100; We look for which ocean water cell contains the atmosphere water point
101;
102  delta = max([(360./jpio), (180./jpjo)])* 4.
103  FOR n = 0L, nawater-1 DO BEGIN
104; control print
105    IF (n MOD 5000) EQ 0 THEN print, n
106; longitude and latitude of the atmosphere water point
107    xx = alon[awater[n]]
108    yy = alat[awater[n]]
109; 1) we reduce the number of ocean cells for which we will try to know if
110; xx,yy is inside.
111    CASE 1 OF
112; if we are near the norh pole
113      yy GE (90-delta):BEGIN
114        lat1 = 90-2*delta
115        good = where(maxycell GE lat1)
116        onsphere = 1
117      END
118; if we are near the longitude periodicity area
119      xx LE delta OR xx GE (360-delta):BEGIN
120        lat1 = yy-delta
121        lat2 = yy+delta
122        good = where((minxcell LE 2*delta OR maxxcell GE (360-2*delta)) AND maxycell GE lat1 AND minycell LE lat2)
123        onsphere = 1
124      END
125; other cases
126      ELSE:BEGIN
127        lon1 = xx-delta
128        lon2 = xx+delta
129        lat1 = yy-delta
130        lat2 = yy+delta
131        good = where(maxxcell GE lon1 AND minxcell LE lon2 AND maxycell GE lat1 AND minycell le lat2)
132; ORCA cases : orca grid is irregular only northward of 40N
133        CASE 1 OF
134          jpio EQ 92   AND (jpjo EQ 76   OR jpjo EQ 75   OR jpjo EQ 74  ):onsphere = yy GT 40
135          jpio EQ 180  AND (jpjo EQ 149  OR jpjo EQ 148  OR jpjo EQ 147 ):onsphere = yy GT 40
136          jpio EQ 720  AND (jpjo EQ 522  OR jpjo EQ 521  OR jpjo EQ 520 ):onsphere = yy GT 40
137          jpio EQ 1440 AND (jpjo EQ 1021 OR jpjo EQ 1020 OR jpjo EQ 1019):onsphere = yy GT 40
138          ELSE:onsphere = 1
139        ENDCASE
140      END
141    ENDCASE
142; we found a short list of possible ocean water cells containing the atmosphere water point
143    IF good[0] NE -1 THEN BEGIN
144; in which cell is located the atmosphere water point?
145; Warning! inquad use clockwise quadrilateral definition
146      ind = inquad(xx, yy $
147                   , xcell[0, good], ycell[0, good] $
148                   , xcell[3, good], ycell[3, good] $
149                   , xcell[2, good], ycell[2, good] $
150                   , xcell[1, good], ycell[1, good] $
151                   , onsphere = onsphere, newcoord = newcoord, /noprint)
152; keep only the first cell (if the atmospheric point was located in several ocean cells)
153      ind = ind[0]
154; we found one ocean water cell containing the atmosphere water point
155      IF ind NE -1 THEN BEGIN
156        ind = good[ind]
157; we keep its address
158        foraddr[n] = ind
159; now, we morph the quadrilateral ocean cell into the reference square (0 -> 1)
160; in addition we get the corrdinates of the atmospheric point in this new morphed square
161        IF onsphere THEN BEGIN
162; Warning! quadrilateral2square use anticlockwise quadrilateral definition
163          xy = quadrilateral2square(newcoord[0, 0], newcoord[1, 0] $
164                                    , newcoord[0, 3], newcoord[1, 3] $
165                                    , newcoord[0, 2], newcoord[1, 2] $
166                                    , newcoord[0, 1], newcoord[1, 1] $
167                                    , newcoord[0, 4], newcoord[1, 4])
168        ENDIF ELSE BEGIN
169          xy = quadrilateral2square(xcell[0, ind], ycell[0, ind] $
170                                    , xcell[1, ind], ycell[1, ind] $
171                                    , xcell[2, ind], ycell[2, ind] $
172                                    , xcell[3, ind], ycell[3, ind], xx, yy)
173        ENDELSE
174; take care of rounding errors...
175        zero = where(abs(xy) LT 1e-4)
176        IF zero[0] NE -1 THEN xy[zero] = 0
177        one = where(abs(1-xy) LT 1e-4)
178        IF one[0] NE -1 THEN xy[one] = 1
179; some (useless) checks...
180        IF  xy[0] LT 0 OR xy[0] GT 1 THEN stop
181        IF  xy[0] LT 0 OR xy[0] GT 1 THEN stop
182; keep the new coordinates
183        forweight[n, 0] = xy[0]
184        forweight[n, 1] = xy[1]
185      ENDIF ELSE foraddr[n] = -1
186    ENDIF ELSE foraddr[n] = -1
187  ENDFOR
188; do we have some water atmospheric points that are not located in an water oceanic cell?
189  bad = where(foraddr EQ -1)
190  IF bad[0] NE -1 THEN BEGIN
191; yes?
192; we look for neighbor water atmospheric point located in water oceanic cell
193    badaddr = awater[bad]
194    good = where(foraddr NE -1)
195; list the atmospheric points located in water oceanic cell
196    goodaddr = awater[good]
197; there longitude and latitude
198    goodlon = alon[goodaddr]
199    goodlat = alat[goodaddr]
200; for all the bad points, look for a neighbor
201    neig = lonarr(n_elements(bad))
202    FOR i = 0, n_elements(bad)-1 DO BEGIN
203      neig[i] = (neighbor(alon[badaddr[i]], alat[badaddr[i]], goodlon, goodlat, /sphere))[0]
204    ENDFOR
205; get the address regarding foraddr
206    neig = good[neig]
207; associate each bad point with its neighbor (get its address and weight)
208    foraddr[bad] = foraddr[neig]
209    forweight[bad, *] = forweight[neig, *]
210  endif
211; transform the address of the ocean cell into the address of its 4 corners
212  newaaddr = celladdr[*, temporary(foraddr)]
213; now we compute the weight to give at each corner
214  newaweig = dblarr(4, nawater)
215  a = reform(forweight[*, 0], 1, nawater)
216  b = reform(forweight[*, 1], 1, nawater)
217  forweight =  -1 ; free memory
218  newaweig = [(1-a)*(1-b), (1-b)*a, a*b, (1-a)*b]
219  a = -1 &  b = -1 ; free memory
220; mask the weight to suppress the corner located on land
221  newaweig = newaweig*((omsk)[newaaddr])
222  totalweig = total(newaweig, 1)
223; for cell with some land corner,
224; we have to redistribute the weight on the reaining water corners
225; weights normalization
226  totalweig = total(newaweig, 1)
227  newaweig = newaweig/(replicate(1., 4)#totalweig)
228  totalweig = total(newaweig, 1)
229
230; weights
231  weig = dblarr(4, jpia*jpja)
232  weig[*, awater] = temporary(newaweig)
233; address
234  addr = dblarr(4, jpia*jpja)
235  addr[*, awater] = temporary(newaaddr)
236;
237  RETURN
238END
Note: See TracBrowser for help on using the repository browser.