Changes between Version 11 and Version 12 of Documentation/TrunkFunctionality4


Ignore:
Timestamp:
2020-03-09T13:56:28+01:00 (4 years ago)
Author:
luyssaert
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • Documentation/TrunkFunctionality4

    v11 v12  
    9292ORCHIDEE trunk 4 uses the allometric allocation as developed in O-CN. In ORCHIDEE trunk 4 the approach was adjusted to work for more than one diameter class. Since it was developed this allocation has been used in ORCHIDEE-CN and ORCHIDEE-CNP. In those branches only a single diameter class was used. Except for the way the reserves and labile pools are calculated (incl. the pseudo sugar loading), the allocation scheme remained rather similar between the aforementioned versions. The model is, however, very sensitive to the way the reserves and labile pools are calculated. The allocation makes use of a labile pool for which the activity is calculated based on the temperature. This sensitivity is important at the start and the end of the growing seasons when temperatures may be low. As such the model addresses the sink/source discussion initiated by Körner. Whereas this approach resulted in an acceptable interannual variability in for example NPP in ORCHIDEE-CAN, adding N seems to have dampen the interannual variability a lot/too much. This dampening was observed in ORCHIDEE-CN  and ORCHIDEE-CN-CAN. IN ORCHIDEE-CNP the temperature relationship was removed (hence NPP and GPP are strictly coupled) because the interannual variability became unrealistic.  
    9393 
    94  
    95  
    9694There are no options to revert to the allocation based on resource limitation (Friedlingstein et al. 1999). All references and parameters for allocation based on resource limitation have been removed from the code (those that were overlooked can be removed). Allometric allocation makes use of the following PFT-specific parameters: '''sla''', '''tau_root''', '''tau_leaf''', '''tau_sap''', '''pipe_density''', '''tree_ff''', '''pipe_tune_x''', '''k_latosa_max''', and '''k_latosa_min'''. In addition to this set of parameters that mainly describe the allometric relationships and the longevity of the different tissues, the calculation of the allocation coefficients makes use PFT-specific tissue conductivities, i.e., '''k_sap''', '''k_belowground''', and '''k_leaf''' (see also plant water stress). Details on the parameters can be found in the SI of Naudts et al 2015 in GMD or in src_parameters/constantes_mtc.f90.  
    9795 
    98 Previously there was a functional link between C and N-allocation and the hydraulic architecture of a plant because both approaches used the same parameter k_root. In DOFOCO k_root described the conductivity of the fine roots and the soil. In ORCHIDEE-CN-CAN this joined conductivity has been split in a fine root conductivity and a soil to root conductivity. Allocation should make use of both conductivities but soil to root conductivity cannot be easily calculated when needed in the allocation. This is subject to future developments. Accounting for the soil to root conductivity in the allocation would imply an adaptation of plant growth to its environment.   
     96Previously there was a functional link between C and N-allocation and the hydraulic architecture of a plant because both approaches used the same parameter k_root. In ORCHIDEE-CAN k_root described the conductivity of the fine roots and the soil. In ORCHIDEE trunk 4 this joined conductivity has been split in a fine root conductivity and a soil to root conductivity. Allocation should make use of both conductivities but soil to root conductivity cannot be easily calculated when needed in the allocation. This is subject to future developments. Accounting for the soil to root conductivity in the allocation would imply an adaptation of plant growth to its environment.   
    9997 
    10098=== Anthropogenic species change (r6614) === 
    101 Following a disturbance (which could be a clear cut), tree species changes and forest management change can be prescribed or read from a map in ORCHIDEE-CN-CAN. Set '''ok_change_species''' = y, '''read_species_change_map''' = y, and '''read_desired_fm_map''' = y and specify the paths of those maps in the COMP/stomate.card. A example of such a configuration can be found in config/ORCHIDEE_OL/OOL_SEC_STO_FG5. This functionality replaces the DGVM in areas where humans rather than nature govern species distribution, for example, Europe. Note that there are some constraints on the possible species changes. If the forest is unmanaged (fm=1), the code assumes that nature will determine the species rather than humans. Anthropogenic species change has not been developed to work together with land cover change. For the moment it is one or the other. When testing this functionality read_species_change_map and/or read_desired_fm_map could be set to n. The new forest management strategy can then be simply prescribed by setting the parameter '''fm_change_force''' to one of the four fm strategies. Likewise the new species can be prescribed by setting the parameter '''species_change_force''' to the desired PFT number. 
     99Following a disturbance (which could be a clear cut), tree species changes and forest management change can be prescribed or read from a map in ORCHIDEE trunk 4. Set '''ok_change_species''' = y, '''read_species_change_map''' = y, and '''read_desired_fm_map''' = y and specify the paths of those maps in the COMP/stomate.card. A example of such a configuration can be found in config/ORCHIDEE_OL/OOL_SEC_STO_FG5. This functionality replaces the DGVM in areas where humans rather than nature govern species distribution, for example, Europe. Note that there are some constraints on the possible species changes. If the forest is unmanaged (fm=1), the code assumes that nature will determine the species rather than humans. Anthropogenic species change has not been developed to work together with land cover change. For the moment it is one or the other. When testing this functionality read_species_change_map and/or read_desired_fm_map could be set to n. The new forest management strategy can then be simply prescribed by setting the parameter '''fm_change_force''' to one of the four fm strategies. Likewise the new species can be prescribed by setting the parameter '''species_change_force''' to the desired PFT number. 
    102100 
    103101=== Bare soil (r6614) === 
     
    127125 
    128126=== Consistency checks (r6614) === 
    129 The code distinguishes between three options to check for mass and surface conservation. These options are controlled by the parameter '''err_act'''. Always use err_act = 3 when developing and testing the code. Note that in addition to checking for mass balance closure ORCHIDEE-CN-CAN will also check for the conservation of veget_max and frac_nobio. This is useful to make sure no surface area is lost when moving biomass from one PFT to another following natural disturbances, forest management, land cover changes and when using age classes. In some parts of the code, for example, modules that deal with disturbances, it is assumed that the tallest trees are stored in the last diameter class. When the difference in diameter between diameter classes becomes very small, this assumption could be violated. Therefore, the diameter classes are sorted to enforce the assumed order and where needed the order is checked. 
     127The code distinguishes between three options to check for mass and surface conservation. These options are controlled by the parameter '''err_act'''. Always use err_act = 3 when developing and testing the code. Note that in addition to checking for mass balance closure ORCHIDEE trunk 4 will also check for the conservation of veget_max and frac_nobio. This is useful to make sure no surface area is lost when moving biomass from one PFT to another following natural disturbances, forest management, land cover changes and when using age classes. In some parts of the code, for example, modules that deal with disturbances, it is assumed that the tallest trees are stored in the last diameter class. When the difference in diameter between diameter classes becomes very small, this assumption could be violated. Therefore, the diameter classes are sorted to enforce the assumed order and where needed the order is checked. 
    130128* err_act = 1 is recommended when running global long-term simulations. Under this option, mass balance closure is checked for all biogeochemical processes but only at the highest level thus stomate.f90 and stomate_lpj.f90. Although the mass balance checks are not very expensive in terms of computer time, skipping the numerous lower level checks is expected to save some time. Under this option the total mass balance error is only written to the history file. No information is provided in which subroutine the problem occurred. 
    131129* err_act = 2 is recommended when developing and testing the model. Now the mass balance is explicitly checked in stomate.f90, stomate_lpj.f90 and all its subroutines. Under this option the mass balance error is written to the history file and if the mass balance is not closed, the warning message will indicate in which subroutine the problem likely originated. 
    132130* arr_act = 3 is recommended when having a problem with mass balance closure. The mass balance is explicitly checked in stomate.f90, stomate_lpj.f90 and all its subroutines. If a mass balance error occurs, the model is stopped. 
     131 
     132 
     133 
     134 
     135++++ CONTINUE CHECKING +++++ 
    133136 
    134137=== Croplands (CHECK) ===