Climate change is a central problem for humanity with important ramifications for policy and decision making. Robust and cost-efficient policies on mitigation and adaptation require assessments of current and future risks for natural and human systems. Those assessments rely on numerical simulations performed with state-of-the-art global climate models. These simulations are coordinated at an international level within the Coupled Model Intercomparison Project (CMIP) which provides the bedrock for a large fraction of the publications synthesized in the Intergovernmental Panel on Climate Change (IPCC) reports. These exercises are fundamentally documenting the large uncertainty in the projections that come from the choices made by the ~30 teams that develop CMIP-class models. The latest version, CMIP6, is now in the production phase. The first analysis suggests that several models are more alarming in terms of global mean temperature increase than previous versions, as quantified by the Equilibrium Climate Sensitivity (ECS). Another outcome of CMIP exercises is that the improvements in the performances of climate models are slow, especially when facing the emergency of the climate change. The derivation of the IPSL coupled model for CMIP6 (IPSL-CM6) was an unprecedented coordinated effort during which key processes and parameters for climate sensitivity were identified both in the atmosphere and in the ocean. The present project proposes an ambitious plan to quantify the uncertainties associated with this choice of free parameters in a systematic way using the latest version of the IPSL climate model with two major targets: i) speed up and improve the calibration of the future higher resolution version of IPSL-CM and ii) estimate the associated errors in present-day climate representation (i.e. mean state and variability) and uncertainty in the ECS. The improvements in the future version will target in particular oceanic processes in high latitudes and the potential benefit associated with a significant increase of the grid resolution, the reduction of the classical large patterns of sea surface temperature biases, and an improvement of the rainfall variability in the tropics. For both tuning and uncertainty quantification purposes, the parameter space will be sampled by applying, for the first time in climate change simulations, state- of-the art machine learning approaches developed by the Uncertainty Quantification community. The idea is to replace a long (3 actual years for CMIP6) calibration process for which 15 model configurations were re-adjusted based on typically 20 to 40 sensitivity experiments done by varying one parameter at once, by an automatic random Latin Hypercube sampling of the full parameter domain. First promising tests done since the first submission of the proposal suggest that the approach requires 3 waves of typically 200 few-years-long simulations of the stand alone atmospheric component for 20 parameters. This project will take on the additional challenge of extending this to the calibration of slower ocean and coupled atmosphere-ocean processes.

	cores	CPU h/10 yr	requested CPU hours	equivalent in simulated years
IPSL-CM6-LR	960	18000	16,155,000	8,975
IPSL-CM6-MR1	1800	32000	8,040,000	2,513
IPSL-CM6-MR025	4600	100300	12,036,000	1,200
LMDZ6-LR-tuning	284	5000	5,000,000	10,000
LMDZ6-MR-tuning	512	25000	3,125,000	1,250
total			44,356,000	
allocated by PRACE			45,000,000	

October - December	January - March	April - June	July - September	
4k cores : sensitivity exp. LR	4k cores : sensitivity exp. LR	1k cores : sensitivity exp. LR		
4k cores : UQ atm LR and MR sub-sample	3k cores : LR & MR1 retuning (coupled)	1k cores : LR ad hoc retuning		
3k cores : MR025 ad hoc	3k cores : MR1 ad hoc and from UQ	3k cores : MR025 from UQ	5k cores : MR025 & MR1 +4xCO2	

WP1 Physical tuning of ocean parameters	IPSL-CM6-LR			
1.1 blue ocean parameters				
inter-comparing with UK GC3.1	MM	2,700,000		
1.2 Sea ice parameters				
Nudging of SIC	GG & AS	270,000		
Modified albedo / conductivity	GG & AS	540,000		
Modified LW	GG & AS	540,000		
sea ice dynamics	MV	2,385,000		
primary production & seasonality	MV	2,385,000		
1.3 Impact of GrIS melting on oceanic circulation				
Reconstruction of the past climate inc. GrIS melting	DS & MD	1,035,000		
Impact of GrIS on predictablilty	DS & MD	1,800,000		
1.4 Impact of persistent atmopsheric conditions on decadal variablity				
Constrained experiments NAO + predictiability	YRR	1,440,000		
TOTAL		13,095,000		

WP2 Automatic tuning of atmospheric parameters		IPSL-CM6-LR IPSL-CM6-MR1 LMDZ6-LR-tuning LMDZ6-MR-tuning
UQ sample, LR (3*amip +1*+4K)	FH + LF	2,000,000
UQ sub-sample, MR, atm	FH	625,000
UQ sub-sample, MR1, coupled	FH	1,280,000
pdControl - slight retuning of LR	JD et FH	2,700,000
Tuning - VAGUE 1		1,500,000
Tuning - VAGUE 2		1,500,000
Tuning		2,500,000
TOTAL		12,105,000

Quantifying Uncertainties and Enhancing the Speed of climate model Tuning **IPSL-CM6-LR IPSL-CM6-MR1** WP3 Combining WP1 and WP2 to tune MR1 and MR025 **IPSL-CM6-MR025** pdControl - tuning from UQ LR et MR1 4,800,000 pdControl - tuning au fil de l'eau, ad hoc 1,600,000 pdControl - tuning from UQ LR et MR1 5,015,000 pdControl - tuning au fil de l'eau, ad hoc 5,015,000 +4CO2 360,000 +4CO2 360,000 +4CO2 2,006,000 TOTAL 19,156,000

collaborator	WP1	WP2	WP3	collaborator	WP1	WP2	WP3
Dr Julie Deshayes	Х	X	X	Dr Victor Estella-Perez	X		
Ms Marie-Alice Foujols	Х	X	X	Dr Jerome Servonnat	X		
Dr Laurent Fairhead	Х	X	X	Dr Jean-Baptiste		Х	
Dr Marion Devilliers	Х			Madeleine			
Dr Martin Vancoppenolle	Х			Dr Ionela Musat		Х	
Mr Nicolas Lebas	Х	X	X	Dr Eric Guilyardi	X		
Dr Claire Levy			X	Dr Casimir De Lavergne			X
Mr Renaud Person			X	Dr Yohan Ruprich-Robert	X		
Dr Guillaume Gastineau	Х						
Mrs Josefine Ghattas	Х			(bold = initials mentioned in WP)			ר)
Dr Matthew Menary	Х)
Dr Didier Swingedouw	Х						
Dr Juliette Mignot	Х	X	X				
Dr Frederic Hourdin	Х	X	X	+ anyone else interested !			
Mrs Simona Flavoni	Х						
Mr Arnaud Caubel	Х	Х	X				
Dr Olivier Marti			X				
Dr Frederique Cheruy	Х						
Mr Christian Ethe			X				
Dr Amelie Simon	Х						
Dr Patricia Cadule			X				