PROGRAM ammonium_sulfate !--based on Tang and Munkelwitz JGR 1994 and Tang JGR 1997 IMPLICIT NONE REAL xms !--solute mass fraction REAL aw !-water activity (RH here) REAL molality !-molality REAL rhop !-dry droplet density REAL nr !--real refractive index REAL RR, Rwater, Ramm !--molar refraction PARAMETER (Rwater=3.717, Ramm=23.50) REAL VV !--molal volume REAL Mwater, Mamm PARAMETER (Mwater=18.02, Mamm=132.14) REAL y !--mole fraction PARAMETER (rhop=1.769) !--g cm-3 REAL B0, B1, B2, B3, B4 PARAMETER (B0=110.65495, B1=-367.59197,B2=504.62934) PARAMETER (B3=-315.43839,B4=67.70824) REAL C1, C2, C3, C4 PARAMETER (C1=-2.715E-3,C2=3.113E-5,C3=-2.336E-6,C4=1.412E-8) REAL A0, A1, A2, A3 PARAMETER (A0=0.9971, A1=5.92E-3, A2=-5.036E-6, A3=1.024E-8) c------------------------- INTEGER nbre_rh,IRH,wve INTEGER nbre_dry,ii PARAMETER(nbre_rh=12,nbre_dry=4) REAL DELTA REAL RH_tab(nbre_rh) DATA RH_tab/0.,10.,20.,30.,40.,50.,60.,70.,80.,85.,90.,95./ INTEGER Nwvmax PARAMETER(Nwvmax=100) c c--wavelength in m REAL lambda_min, lambda_max, lambda(Nwvmax) PARAMETER (lambda_min=0.2E-6, lambda_max=5.0E-6) REAL n_rr(nbre_rh,Nwvmax) REAL n_ii(nbre_rh,Nwvmax) REAL ratio(nbre_rh) !--diameter growth factor REAL rhod(nbre_rh) !--density REAL n_r_exact(nbre_rh) !--refractive index c DO wve=1,Nwvmax lambda(wve)= . lambda_min+FLOAT(wve-1)*(lambda_max-lambda_min)/FLOAT(Nwvmax-1) ENDDO c c--xms is the varying variable as per Tang and Munkelwitz 1994 OPEN (unit=4,file='ri_sul_v2') OPEN (unit=10,file='growth_sul_v2') c DO IRH=1,nbre_rh c IF (IRH.LE.nbre_dry) THEN c ratio(IRH)=1.0 rhod(IRH)=rhop n_r_exact(IRH)=1.521 c ELSE c aw=rh_tab(IRH)/100. !--water activity molality=B0+aw*(B1+aw*(B2+aw*(B3+aw*B4))) !--molality xms=(molality*Mamm/1000.)/(molality*Mamm/1000.+1.)*100. !--solute mass fraction c rhod(IRH)=A0+xms*(A1+xms*(A2+xms*A3)) !--density ratio(IRH)=(rhop/rhod(IRH))**(1./3.) * (xms/100.)**(-1./3.) !--growth factor y=Mwater*xms/100./(Mamm*(1.-xms/100.)+xms/100.*Mwater) VV=1./rhod(IRH)*(Mwater+(Mamm-Mwater)*y) RR=Rwater+(Ramm-Rwater)*y nr=(2.*RR/VV+1.)/(1.-RR/VV) n_r_exact(IRH)=sqrt(nr) c ENDIF c ENDDO c write(10,20)'RH', (rh_tab(IRH),IRH=1,nbre_rh) write(10,10)"growth factor",(ratio(IRH),IRH=1,nbre_rh) write(10,10)"density factor",(rhod(IRH)/rhod(1),IRH=1,nbre_rh) write(10,10)'rho @ RH', (rhod(IRH),IRH=1,nbre_rh) write(10,10)'nr @ RH', (n_r_exact(IRH),IRH=1,nbre_rh) 10 FORMAT(A14, F6.3,11(',',F6.3)) 20 FORMAT(A14, F6.1,11(',',F6.1)) c c-----Computation of n_r at different wavelengths using c n_r(lambda)=n_r(0.589)-0.03(lambda-0.589) from c Palmer and Williams (1975) and Kent et al. (1983). c Above computed n_r_exact is assumed to be at 0.589 nm c DO IRH=1,nbre_rh DO wve=1,Nwvmax c n_rr(IRH,wve)=n_r_exact(irh)-0.03*(lambda(wve)*1.E6-0.589) n_ii(IRH,wve)=0.0 c WRITE(4,*) RH_tab(IRH), lambda(wve), n_rr(IRH,wve), n_ii(IRH,wve) c ENDDO ENDDO c 63 FORMAT(F10.6,E13.6) c END