!$Id: bl_for_dms.F90 163 2010-02-22 15:41:45Z acosce $ !! ========================================================================= !! INCA - INteraction with Chemistry and Aerosols !! !! Copyright Laboratoire des Sciences du Climat et de l'Environnement (LSCE) !! Unite mixte CEA-CNRS-UVSQ !! !! Contributors to this INCA subroutine: !! !! E. Cosme !! !! Anne Cozic, LSCE, anne.cozic@cea.fr !! Yann Meurdesoif, LSCE, yann.meurdesoif@cea.fr !! !! This software is a computer program whose purpose is to simulate the !! atmospheric gas phase and aerosol composition. The model is designed to be !! used within a transport model or a general circulation model. This version !! of INCA was designed to be coupled to the LMDz GCM. LMDz-INCA accounts !! for emissions, transport (resolved and sub-grid scale), photochemical !! transformations, and scavenging (dry deposition and washout) of chemical !! species and aerosols interactively in the GCM. Several versions of the INCA !! model are currently used depending on the envisaged applications with the !! chemistry-climate model. !! !! This software is governed by the CeCILL license under French law and !! abiding by the rules of distribution of free software. You can use, !! modify and/ or redistribute the software under the terms of the CeCILL !! license as circulated by CEA, CNRS and INRIA at the following URL !! "http://www.cecill.info". !! !! As a counterpart to the access to the source code and rights to copy, !! modify and redistribute granted by the license, users are provided only !! with a limited warranty and the software's author, the holder of the !! economic rights, and the successive licensors have only limited !! liability. !! !! In this respect, the user's attention is drawn to the risks associated !! with loading, using, modifying and/or developing or reproducing the !! software by the user in light of its specific status of free software, !! that may mean that it is complicated to manipulate, and that also !! therefore means that it is reserved for developers and experienced !! professionals having in-depth computer knowledge. Users are therefore !! encouraged to load and test the software's suitability as regards their !! requirements in conditions enabling the security of their systems and/or !! data to be ensured and, more generally, to use and operate it in the !! same conditions as regards security. !! !! The fact that you are presently reading this means that you have had !! knowledge of the CeCILL license and that you accept its terms. !! ========================================================================= SUBROUTINE bl_for_dms(u,v,paprs,pplay,cdragh,cdragm & ,t,q,tsol,ustar,obklen) USE INCA_DIM USE PRINT_INCA IMPLICIT NONE !=================================================================== ! Auteur : E. Cosme ! Calcul de la vitesse de friction (ustar) et de la longueur de ! Monin-Obukhov (obklen), necessaires pour calculer les flux de DMS ! par la methode de Nightingale. ! Cette subroutine est plus que fortement inspiree de la subroutine ! 'nonlocal' dans clmain.F . ! reference : Holtslag, A.A.M., and B.A. Boville, 1993: ! Local versus nonlocal boundary-layer diffusion in a global climate ! model. J. of Climate, vol. 6, 1825-1842. (a confirmer) ! 31 08 01 !=================================================================== ! ! ! $Header$ ! ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre ! veillez à n'utiliser que des ! pour les commentaires ! et à bien positionner les & des lignes de continuation ! (les placer en colonne 6 et en colonne 73) ! ! ! A1.0 Fundamental constants REAL RPI,RCLUM,RHPLA,RKBOL,RNAVO ! A1.1 Astronomical constants REAL RDAY,REA,REPSM,RSIYEA,RSIDAY,ROMEGA ! A1.1.bis Constantes concernant l'orbite de la Terre: REAL R_ecc, R_peri, R_incl ! A1.2 Geoide REAL RA,RG,R1SA ! A1.3 Radiation ! REAL RSIGMA,RI0 REAL RSIGMA ! A1.4 Thermodynamic gas phase REAL R,RMD,RMO3,RMV,RD,RV,RCPD,RCPV,RCVD,RCVV REAL RKAPPA,RETV ! A1.5,6 Thermodynamic liquid,solid phases REAL RCW,RCS ! A1.7 Thermodynamic transition of phase REAL RLVTT,RLSTT,RLMLT,RTT,RATM ! A1.8 Curve of saturation REAL RESTT,RALPW,RBETW,RGAMW,RALPS,RBETS,RGAMS REAL RALPD,RBETD,RGAMD ! COMMON/YOMCST_I/RPI ,RCLUM ,RHPLA ,RKBOL ,RNAVO & & ,RDAY ,REA ,REPSM ,RSIYEA,RSIDAY,ROMEGA & & ,R_ecc, R_peri, R_incl & & ,RA ,RG ,R1SA & & ,RSIGMA & & ,R ,RMD ,RMO3 ,RMV ,RD ,RV ,RCPD & & ,RCPV ,RCVD ,RCVV ,RKAPPA,RETV & & ,RCW ,RCS & & ,RLVTT ,RLSTT ,RLMLT ,RTT ,RATM & & ,RESTT ,RALPW ,RBETW ,RGAMW ,RALPS ,RBETS ,RGAMS & & ,RALPD ,RBETD ,RGAMD ! ------------------------------------------------------------------ !$OMP THREADPRIVATE(/YOMCST_I/) ! ! $Header$ ! ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre ! veillez n'utiliser que des ! pour les commentaires ! et bien positionner les & des lignes de continuation ! (les placer en colonne 6 et en colonne 73) ! !* COMMON *YOETHF* DERIVED CONSTANTS SPECIFIC TO ECMWF THERMODYNAMICS ! ! *R__ES* *CONSTANTS USED FOR COMPUTATION OF SATURATION ! MIXING RATIO OVER LIQUID WATER(*R_LES*) OR ! ICE(*R_IES*). ! *RVTMP2* *RVTMP2=RCPV/RCPD-1. ! *RHOH2O* *DENSITY OF LIQUID WATER. (RATM/100.) ! REAL R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES REAL RVTMP2, RHOH2O COMMON /YOETHF_I/R2ES, R3LES, R3IES, R4LES, R4IES, R5LES, R5IES, & & RVTMP2, RHOH2O !$OMP THREADPRIVATE(/YOETHF_I/) ! ! $Header$ ! ! ! ATTENTION!!!!: ce fichier include est compatible format fixe/format libre ! veillez n'utiliser que des ! pour les commentaires ! et bien positionner les & des lignes de continuation ! (les placer en colonne 6 et en colonne 73) ! ! ------------------------------------------------------------------ ! This COMDECK includes the Thermodynamical functions for the cy39 ! ECMWF Physics package. ! Consistent with YOMCST Basic physics constants, assuming the ! partial pressure of water vapour is given by a first order ! Taylor expansion of Qs(T) w.r.t. to Temperature, using constants ! in YOETHF ! ------------------------------------------------------------------ REAL PTARG, PDELARG REAL FOEEW ! FOEEW ( PTARG,PDELARG ) = EXP ( & & (R3LES*(1.-PDELARG)+R3IES*PDELARG) * (PTARG-RTT) & & / (PTARG-(R4LES*(1.-PDELARG)+R4IES*PDELARG)) ) ! ! Arguments : REAL u(PLON,PLEV) ! vent zonal REAL v(PLON,PLEV) ! vent meridien REAL paprs(PLON,PLEV+1) ! niveaux de pression aux intercouches (Pa) REAL pplay(PLON,PLEV) ! niveaux de pression aux milieux... (Pa) REAL cdragh(PLON) ! coefficient de trainee pour la chaleur REAL cdragm(PLON) ! coefficient de trainee pour le vent REAL t(PLON,PLEV) ! temperature REAL q(PLON,PLEV) ! humidite kg/kg REAL tsol(PLON) ! temperature du sol REAL ustar(PLON) ! vitesse de friction REAL obklen(PLON) ! longueur de Monin-Obukhov ! Locales : REAL vk PARAMETER (vk=0.35) REAL beta ! coefficient d'evaporation reelle (/evapotranspiration) ! entre 0 et 1, mais 1 au-dessus de la mer PARAMETER (beta=1.) INTEGER i,k REAL zxt, zxu, zxv, zxq, zxqs, zxmod, taux, tauy REAL zcor, zdelta, zcvm5 REAL z(PLON,1) REAL khfs(PLON) ! surface kinematic heat flux [mK/s] REAL kqfs(PLON) ! sfc kinematic constituent flux [m/s] REAL heatv(PLON) ! surface virtual heat flux ! !====================================================================== ! ! Calculer les hauteurs de chaque couche ! DO i = 1, PLON z(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) & * (paprs(i,1)-pplay(i,1)) / RG ENDDO DO i = 1, PLON ! zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) zxqs= R2ES * FOEEW(tsol(i),zdelta)/paprs(i,1) zxqs=MIN(0.5,zxqs) zcor=1./(1.-RETV*zxqs) zxqs=zxqs*zcor zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) & *(1.+RETV*q(i,1)) zxu = u(i,1) zxv = v(i,1) zxq = q(i,1) zxmod = 1.0+SQRT(zxu**2+zxv**2) khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cdragh(i) kqfs(i) = (zxqs-zxq) *zxmod*cdragh(i) * beta heatv(i) = khfs(i) + 0.61*zxt*kqfs(i) taux = zxu *zxmod*cdragm(i) tauy = zxv *zxmod*cdragm(i) ustar(i) = SQRT(taux**2+tauy**2) ustar(i) = MAX(SQRT(ustar(i)),0.01) ENDDO DO i = 1, PLON obklen(i) = -t(i,1)*ustar(i)**3/(RG*vk*heatv(i)) ENDDO END SUBROUTINE bl_for_dms