MODULE zdfiwm !!======================================================================== !! *** MODULE zdfiwm *** !! Ocean physics: Internal gravity wave-driven vertical mixing !!======================================================================== !! History : 1.0 ! 2004-04 (L. Bessieres, G. Madec) Original code !! - ! 2006-08 (A. Koch-Larrouy) Indonesian strait !! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase !! 3.6 ! 2016-03 (C. de Lavergne) New param: internal wave-driven mixing !! 4.0 ! 2017-04 (G. Madec) renamed module, remove the old param. and the CPP keys !! 4.0 ! 2020-12 (C. de Lavergne) Update param to match published one !! 4.0 ! 2021-09 (C. de Lavergne) Add energy from trapped and shallow internal tides !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! zdf_iwm : global momentum & tracer Kz with wave induced Kz !! zdf_iwm_init : global momentum & tracer Kz with wave induced Kz !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE zdf_oce ! ocean vertical physics variables USE zdfddm ! ocean vertical physics: double diffusive mixing USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE eosbn2 ! ocean equation of state USE phycst ! physical constants ! USE fldread ! field read USE prtctl ! Print control USE in_out_manager ! I/O manager USE iom ! I/O Manager USE lib_mpp ! MPP library USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) IMPLICIT NONE PRIVATE PUBLIC zdf_iwm ! called in step module PUBLIC zdf_iwm_init ! called in nemogcm module ! !!* Namelist namzdf_iwm : internal wave-driven mixing * LOGICAL :: ln_mevar ! variable (=T) or constant (=F) mixing efficiency LOGICAL :: ln_tsdiff ! account for differential T/S wave-driven mixing (=T) or not (=F) REAL(wp):: r1_6 = 1._wp / 6._wp REAL(wp):: rnu = 1.4e-6_wp ! molecular kinematic viscosity REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ebot_iwm ! bottom-intensified dissipation above abyssal hills (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ecri_iwm ! bottom-intensified dissipation at topographic slopes (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ensq_iwm ! dissipation scaling with squared buoyancy frequency (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: esho_iwm ! dissipation due to shoaling internal tides (W/m2) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbot_iwm ! decay scale for abyssal hill dissipation (m) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: hcri_iwm ! inverse decay scale for topographic slope dissipation (m-1) !! * Substitutions # include "do_loop_substitute.h90" # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: zdfiwm.F90 15533 2021-11-24 12:07:20Z cdllod $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION zdf_iwm_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION zdf_iwm_alloc *** !!---------------------------------------------------------------------- ALLOCATE( ebot_iwm(jpi,jpj), ecri_iwm(jpi,jpj), ensq_iwm(jpi,jpj) , & & esho_iwm(jpi,jpj), hbot_iwm(jpi,jpj), hcri_iwm(jpi,jpj) , STAT=zdf_iwm_alloc ) ! CALL mpp_sum ( 'zdfiwm', zdf_iwm_alloc ) IF( zdf_iwm_alloc /= 0 ) CALL ctl_stop( 'STOP', 'zdf_iwm_alloc: failed to allocate arrays' ) END FUNCTION zdf_iwm_alloc SUBROUTINE zdf_iwm( kt, Kmm, p_avm, p_avt, p_avs ) !!---------------------------------------------------------------------- !! *** ROUTINE zdf_iwm *** !! !! ** Purpose : add to the vertical mixing coefficients the effect of !! breaking internal waves. !! !! ** Method : - internal wave-driven vertical mixing is given by: !! Kz_wave = min( f( Reb = zemx_iwm / (Nu * N^2) ), 100 cm2/s ) !! where zemx_iwm is the 3D space distribution of the wave-breaking !! energy and Nu the molecular kinematic viscosity. !! The function f(Reb) is linear (constant mixing efficiency) !! if the namelist parameter ln_mevar = F and nonlinear if ln_mevar = T. !! !! - Compute zemx_iwm, the 3D power density that allows to compute !! Reb and therefrom the wave-induced vertical diffusivity. !! This is divided into four components: !! 1. Bottom-intensified dissipation at topographic slopes, expressed !! as an exponential decay above the bottom. !! zemx_iwm(z) = ( ecri_iwm / rho0 ) * EXP( -(H-z)/hcri_iwm ) !! / ( 1. - EXP( - H/hcri_iwm ) ) * hcri_iwm !! where hcri_iwm is the characteristic length scale of the bottom !! intensification, ecri_iwm a static 2D map of available power, and !! H the ocean depth. !! 2. Bottom-intensified dissipation above abyssal hills, expressed !! as an algebraic decay above bottom. !! zemx_iwm(z) = ( ebot_iwm / rho0 ) * ( 1 + hbot_iwm/H ) !! / ( 1 + (H-z)/hbot_iwm )^2 !! where hbot_iwm is the characteristic length scale of the bottom !! intensification and ebot_iwm is a static 2D map of available power. !! 3. Dissipation scaling in the vertical with the squared buoyancy !! frequency (N^2). !! zemx_iwm(z) = ( ensq_iwm / rho0 ) * rn2(z) !! / ZSUM( rn2 * e3w ) !! where ensq_iwm is a static 2D map of available power. !! 4. Dissipation due to shoaling internal tides, scaling in the !! vertical with the buoyancy frequency (N). !! zemx_iwm(z) = ( esho_iwm / rho0 ) * sqrt(rn2(z)) !! / ZSUM( sqrt(rn2) * e3w ) !! where esho_iwm is a static 2D map of available power. !! !! - update the model vertical eddy viscosity and diffusivity: !! avt = avt + av_wave !! avs = avs + av_wave !! avm = avm + av_wave !! !! - if namelist parameter ln_tsdiff = T, account for differential mixing: !! avs = avs + av_wave * diffusivity_ratio(Reb) !! !! ** Action : - avt, avs, avm, increased by internal wave-driven mixing !! !! References : de Lavergne et al. JAMES 2020, https://doi.org/10.1029/2020MS002065 !! de Lavergne et al. JPO 2016, https://doi.org/10.1175/JPO-D-14-0259.1 !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! ocean time step INTEGER , INTENT(in ) :: Kmm ! time level index REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: p_avm ! momentum Kz (w-points) REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: p_avt, p_avs ! tracer Kz (w-points) ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp), SAVE :: zztmp ! REAL(wp), DIMENSION(A2D(nn_hls)) :: zfact ! Used for vertical structure REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zReb ! Turbulence intensity parameter REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zemx_iwm ! local energy density available for mixing (W/kg) REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zav_ratio ! S/T diffusivity ratio (only for ln_tsdiff=T) REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zav_wave ! Internal wave-induced diffusivity REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: z3d ! 3D workspace used for iom_put REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z2d ! 2D - - - - !!---------------------------------------------------------------------- ! ! !* Initialize appropriately certain variables DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk ) zav_ratio(ji,jj,jk) = 1._wp * wmask(ji,jj,jk) ! important to set it to 1 here END_3D IF( iom_use("emix_iwm") ) zemx_iwm (:,:,:) = 0._wp IF( iom_use("av_wave") .OR. sn_cfctl%l_prtctl ) zav_wave (:,:,:) = 0._wp ! ! ! ----------------------------- ! ! ! Internal wave-driven mixing ! (compute zav_wave) ! ! ----------------------------- ! ! ! !* 'cri' component: distribute energy over the time-varying ! !* ocean depth using an exponential decay from the seafloor. DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! part independent of the level IF( ht(ji,jj) /= 0._wp ) THEN ; zfact(ji,jj) = ecri_iwm(ji,jj) * r1_rho0 / ( 1._wp - EXP( -ht(ji,jj) * hcri_iwm(ji,jj) ) ) ELSE ; zfact(ji,jj) = 0._wp ENDIF END_2D DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! complete with the level-dependent part zemx_iwm(ji,jj,jk) = zfact(ji,jj) * ( EXP( ( gdept(ji,jj,jk ,Kmm) - ht(ji,jj) ) * hcri_iwm(ji,jj) ) & & - EXP( ( gdept(ji,jj,jk-1,Kmm) - ht(ji,jj) ) * hcri_iwm(ji,jj) ) & & ) * wmask(ji,jj,jk) / e3w(ji,jj,jk,Kmm) END_3D !* 'bot' component: distribute energy over the time-varying !* ocean depth using an algebraic decay above the seafloor. DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! part independent of the level IF( ht(ji,jj) /= 0._wp ) THEN ; zfact(ji,jj) = ebot_iwm(ji,jj) * ( 1._wp + hbot_iwm(ji,jj) / ht(ji,jj) ) * r1_rho0 ELSE ; zfact(ji,jj) = 0._wp ENDIF END_2D DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! complete with the level-dependent part zemx_iwm(ji,jj,jk) = zemx_iwm(ji,jj,jk) + & & zfact(ji,jj) * ( 1._wp / ( 1._wp + ( ht(ji,jj) - gdept(ji,jj,jk ,Kmm) ) / hbot_iwm(ji,jj) ) & & - 1._wp / ( 1._wp + ( ht(ji,jj) - gdept(ji,jj,jk-1,Kmm) ) / hbot_iwm(ji,jj) ) & & ) * wmask(ji,jj,jk) / e3w(ji,jj,jk,Kmm) END_3D !* 'nsq' component: distribute energy over the time-varying !* ocean depth as proportional to rn2 DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) zfact(ji,jj) = 0._wp END_2D DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! part independent of the level zfact(ji,jj) = zfact(ji,jj) + e3w(ji,jj,jk,Kmm) * MAX( 0._wp, rn2(ji,jj,jk) ) END_3D ! DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) IF( zfact(ji,jj) /= 0._wp ) zfact(ji,jj) = ensq_iwm(ji,jj) * r1_rho0 / zfact(ji,jj) END_2D ! DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! complete with the level-dependent part zemx_iwm(ji,jj,jk) = zemx_iwm(ji,jj,jk) + zfact(ji,jj) * MAX( 0._wp, rn2(ji,jj,jk) ) END_3D !* 'sho' component: distribute energy over the time-varying !* ocean depth as proportional to sqrt(rn2) DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) zfact(ji,jj) = 0._wp END_2D DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! part independent of the level zfact(ji,jj) = zfact(ji,jj) + e3w(ji,jj,jk,Kmm) * SQRT( MAX( 0._wp, rn2(ji,jj,jk) ) ) END_3D ! DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) IF( zfact(ji,jj) /= 0._wp ) zfact(ji,jj) = esho_iwm(ji,jj) * r1_rho0 / zfact(ji,jj) END_2D ! DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! complete with the level-dependent part zemx_iwm(ji,jj,jk) = zemx_iwm(ji,jj,jk) + zfact(ji,jj) * SQRT( MAX( 0._wp, rn2(ji,jj,jk) ) ) END_3D ! Calculate turbulence intensity parameter Reb DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) zReb(ji,jj,jk) = zemx_iwm(ji,jj,jk) / MAX( 1.e-20_wp, rnu * rn2(ji,jj,jk) ) END_3D ! ! Define internal wave-induced diffusivity DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) zav_wave(ji,jj,jk) = zReb(ji,jj,jk) * r1_6 * rnu ! This corresponds to a constant mixing efficiency of 1/6 END_3D ! IF( ln_mevar ) THEN ! Variable mixing efficiency case : modify zav_wave in the DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! energetic (Reb > 480) and buoyancy-controlled (Reb <10.224) regimes IF( zReb(ji,jj,jk) > 480.00_wp ) THEN zav_wave(ji,jj,jk) = 3.6515_wp * rnu * SQRT( zReb(ji,jj,jk) ) ELSEIF( zReb(ji,jj,jk) < 10.224_wp ) THEN zav_wave(ji,jj,jk) = 0.052125_wp * rnu * zReb(ji,jj,jk) * SQRT( zReb(ji,jj,jk) ) ENDIF END_3D ENDIF ! DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! Bound diffusivity by molecular value and 100 cm2/s zav_wave(ji,jj,jk) = MIN( MAX( 1.4e-7_wp, zav_wave(ji,jj,jk) ), 1.e-2_wp ) * wmask(ji,jj,jk) END_3D ! ! ! ----------------------- ! ! ! Update mixing coefs ! ! ! ----------------------- ! ! IF( ln_tsdiff ) THEN !* Option for differential mixing of salinity and temperature DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) ! Calculate S/T diffusivity ratio as a function of Reb (else it is set to 1) zav_ratio(ji,jj,jk) = ( 0.505_wp + & & 0.495_wp * TANH( 0.92_wp * ( LOG10( MAX( 1.e-20, zReb(ji,jj,jk) * 5._wp * r1_6 ) ) - 0.60_wp ) ) & & ) * wmask(ji,jj,jk) END_3D ENDIF CALL iom_put( "av_ratio", zav_ratio ) ! DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 ) !* update momentum & tracer diffusivity with wave-driven mixing p_avs(ji,jj,jk) = p_avs(ji,jj,jk) + zav_wave(ji,jj,jk) * zav_ratio(ji,jj,jk) p_avt(ji,jj,jk) = p_avt(ji,jj,jk) + zav_wave(ji,jj,jk) p_avm(ji,jj,jk) = p_avm(ji,jj,jk) + zav_wave(ji,jj,jk) END_3D ! !* output internal wave-driven mixing coefficient CALL iom_put( "av_wave", zav_wave ) !* output useful diagnostics: Kz*N^2 , ! vertical integral of rho0 * Kz * N^2 , energy density (zemx_iwm) IF( iom_use("bflx_iwm") .OR. iom_use("pcmap_iwm") ) THEN ALLOCATE( z2d(A2D(nn_hls)) , z3d(A2D(nn_hls),jpk) ) z2d(:,:) = 0._wp ; z3d(:,:,:) = 0._wp ! Initialisation for iom_put DO_3D( 0, 0, 0, 0, 2, jpkm1 ) z3d(ji,jj,jk) = MAX( 0._wp, rn2(ji,jj,jk) ) * zav_wave(ji,jj,jk) z2d(ji,jj) = z2d(ji,jj) + rho0 * e3w(ji,jj,jk,Kmm) * z3d(ji,jj,jk) * wmask(ji,jj,jk) END_3D CALL iom_put( "bflx_iwm", z3d ) CALL iom_put( "pcmap_iwm", z2d ) DEALLOCATE( z2d , z3d ) ENDIF CALL iom_put( "emix_iwm", zemx_iwm ) ! IF( kt == nit000 ) THEN !* Control print at first time-step: diagnose the energy consumed by zav_wave IF( .NOT. l_istiled .OR. ntile == 1 ) zztmp = 0._wp ! Do only on the first tile DO_3D( 0, 0, 0, 0, 2, jpkm1 ) zztmp = zztmp + e3w(ji,jj,jk,Kmm) * e1e2t(ji,jj) & & * MAX( 0._wp, rn2(ji,jj,jk) ) * zav_wave(ji,jj,jk) * wmask(ji,jj,jk) * tmask_i(ji,jj) END_3D IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN ! Do only on the last tile CALL mpp_sum( 'zdfiwm', zztmp ) zztmp = rho0 * zztmp ! Global integral of rho0 * Kz * N^2 = power contributing to mixing ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'zdf_iwm : Internal wave-driven mixing (iwm)' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) WRITE(numout,*) ' Total power consumption by av_wave = ', zztmp * 1.e-12_wp, 'TW' ENDIF ENDIF ENDIF IF(sn_cfctl%l_prtctl) CALL prt_ctl(tab3d_1=zav_wave , clinfo1=' iwm - av_wave: ', tab3d_2=avt, clinfo2=' avt: ') ! END SUBROUTINE zdf_iwm SUBROUTINE zdf_iwm_init !!---------------------------------------------------------------------- !! *** ROUTINE zdf_iwm_init *** !! !! ** Purpose : Initialization of the internal wave-driven vertical mixing, reading !! of input power maps and decay length scales in a netcdf file. !! !! ** Method : - Read the namzdf_iwm namelist and check the parameters !! !! - Read the input data in a NetCDF file (zdfiwm_forcing.nc) with variables: !! 'power_bot' bottom-intensified dissipation above abyssal hills !! 'power_cri' bottom-intensified dissipation at topographic slopes !! 'power_nsq' dissipation scaling with squared buoyancy frequency !! 'power_sho' dissipation due to shoaling internal tides !! 'scale_bot' decay scale for abyssal hill dissipation !! 'scale_cri' decay scale for topographic-slope dissipation !! !! ** input : - Namlist namzdf_iwm !! - NetCDF file : zdfiwm_forcing.nc !! !! ** Action : - Increase by 1 the nstop flag is setting problem encounter !! - Define ebot_iwm, ecri_iwm, ensq_iwm, esho_iwm, hbot_iwm, hcri_iwm !! !! References : de Lavergne et al. JAMES 2020, https://doi.org/10.1029/2020MS002065 !!---------------------------------------------------------------------- INTEGER :: ifpr ! dummy loop indices INTEGER :: inum ! local integer INTEGER :: ios ! CHARACTER(len=256) :: cn_dir ! Root directory for location of ssr files INTEGER, PARAMETER :: jpiwm = 6 ! maximum number of variables to read INTEGER, PARAMETER :: jp_mpb = 1 INTEGER, PARAMETER :: jp_mpc = 2 INTEGER, PARAMETER :: jp_mpn = 3 INTEGER, PARAMETER :: jp_mps = 4 INTEGER, PARAMETER :: jp_dsb = 5 INTEGER, PARAMETER :: jp_dsc = 6 ! TYPE(FLD_N), DIMENSION(jpiwm) :: slf_iwm ! array of namelist informations TYPE(FLD_N) :: sn_mpb, sn_mpc, sn_mpn, sn_mps ! information about Mixing Power field to be read TYPE(FLD_N) :: sn_dsb, sn_dsc ! information about Decay Scale field to be read TYPE(FLD ), DIMENSION(jpiwm) :: sf_iwm ! structure of input fields (file informations, fields read) ! REAL(wp), DIMENSION(jpi,jpj,4) :: ztmp REAL(wp), DIMENSION(4) :: zdia ! NAMELIST/namzdf_iwm/ ln_mevar, ln_tsdiff, & & cn_dir, sn_mpb, sn_mpc, sn_mpn, sn_mps, sn_dsb, sn_dsc !!---------------------------------------------------------------------- ! READ ( numnam_ref, namzdf_iwm, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_iwm in reference namelist' ) ! READ ( numnam_cfg, namzdf_iwm, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namzdf_iwm in configuration namelist' ) IF(lwm) WRITE ( numond, namzdf_iwm ) ! IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'zdf_iwm_init : internal wave-driven mixing' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namzdf_iwm : set wave-driven mixing parameters' WRITE(numout,*) ' Variable (T) or constant (F) mixing efficiency = ', ln_mevar WRITE(numout,*) ' Differential internal wave-driven mixing (T) or not (F) = ', ln_tsdiff ENDIF ! This internal-wave-driven mixing parameterization elevates avt and avm in the interior, and ! ensures that avt remains larger than its molecular value (=1.4e-7). Therefore, avtb should ! be set here to a very small value, and avmb to its (uniform) molecular value (=1.4e-6). avmb(:) = 1.2e-4_wp ! molecular value : /!\ Increased from rnu to 1.2e-4 by CdL avtb(:) = 1.e-10_wp ! very small diffusive minimum (background avt is specified in zdf_iwm) avtb_2d(:,:) = 1._wp ! uniform IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) ' Force the background value applied to avm & avt in TKE to be everywhere ', & & 'the viscous molecular value & a very small diffusive value, resp.' ENDIF ! ! allocate iwm arrays IF( zdf_iwm_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_iwm_init : unable to allocate iwm arrays' ) ! ! store namelist information in an array slf_iwm(jp_mpb) = sn_mpb ; slf_iwm(jp_mpc) = sn_mpc ; slf_iwm(jp_mpn) = sn_mpn ; slf_iwm(jp_mps) = sn_mps slf_iwm(jp_dsb) = sn_dsb ; slf_iwm(jp_dsc) = sn_dsc ! DO ifpr= 1, jpiwm ALLOCATE( sf_iwm(ifpr)%fnow(jpi,jpj,1) ) IF( slf_iwm(ifpr)%ln_tint ) ALLOCATE( sf_iwm(ifpr)%fdta(jpi,jpj,1,2) ) END DO ! fill sf_iwm with sf_iwm and control print CALL fld_fill( sf_iwm, slf_iwm , cn_dir, 'zdfiwm_init', 'iwm input file', 'namiwm' ) ! ! hard-coded default values sf_iwm(jp_mpb)%fnow(:,:,1) = 1.e-10_wp sf_iwm(jp_mpc)%fnow(:,:,1) = 1.e-10_wp sf_iwm(jp_mpn)%fnow(:,:,1) = 1.e-5_wp sf_iwm(jp_mps)%fnow(:,:,1) = 1.e-10_wp sf_iwm(jp_dsb)%fnow(:,:,1) = 100._wp sf_iwm(jp_dsc)%fnow(:,:,1) = 100._wp ! ! read necessary fields CALL fld_read( nit000, 1, sf_iwm ) ebot_iwm(:,:) = sf_iwm(1)%fnow(:,:,1) * ssmask(:,:) ! energy flux for dissipation above abyssal hills [W/m2] ecri_iwm(:,:) = sf_iwm(2)%fnow(:,:,1) * ssmask(:,:) ! energy flux for dissipation at topographic slopes [W/m2] ensq_iwm(:,:) = sf_iwm(3)%fnow(:,:,1) * ssmask(:,:) ! energy flux for dissipation scaling with N^2 [W/m2] esho_iwm(:,:) = sf_iwm(4)%fnow(:,:,1) * ssmask(:,:) ! energy flux for dissipation due to shoaling [W/m2] hbot_iwm(:,:) = sf_iwm(5)%fnow(:,:,1) ! spatially variable decay scale for abyssal hill dissipation [m] hcri_iwm(:,:) = sf_iwm(6)%fnow(:,:,1) ! spatially variable decay scale for topographic-slope [m] hcri_iwm(:,:) = 1._wp / hcri_iwm(:,:) ! only the inverse height is used, hence calculated here once for all ! diags ztmp(:,:,1) = e1e2t(:,:) * ebot_iwm(:,:) ztmp(:,:,2) = e1e2t(:,:) * ecri_iwm(:,:) ztmp(:,:,3) = e1e2t(:,:) * ensq_iwm(:,:) ztmp(:,:,4) = e1e2t(:,:) * esho_iwm(:,:) zdia(1:4) = glob_sum_vec( 'zdfiwm', ztmp(:,:,1:4) ) IF(lwp) THEN WRITE(numout,*) ' Dissipation above abyssal hills: ', zdia(1) * 1.e-12_wp, 'TW' WRITE(numout,*) ' Dissipation along topographic slopes: ', zdia(2) * 1.e-12_wp, 'TW' WRITE(numout,*) ' Dissipation scaling with N^2: ', zdia(3) * 1.e-12_wp, 'TW' WRITE(numout,*) ' Dissipation due to shoaling: ', zdia(4) * 1.e-12_wp, 'TW' ENDIF ! END SUBROUTINE zdf_iwm_init !!====================================================================== END MODULE zdfiwm