

Shear-driven instabilities and shocks in the atmospheres of hot Jupiters

S. Fromang (CEA Saclay, France)

with

J. Leconte (Obs. Bordeaux, France) & K.Heng (Bern Univ., Switzerland)

Hot Jupiters: a class of exoplanets

Hot Jupiters: Jupiter-mass planets orbiting very close to their star

- ~10% of known exoplanets
- Short orbital periods

 $T_{orb} \sim a$ few days

Strongly irradiated

Temperature up to 2000 K

Tidally locked

Constant day/night sides

Some observational constraints

(Knutson et al. 2007)

Temperature maps

Hot spot shifted eastward compared to the substellar point!

Inflated radii

Hot Jupiter are larger than expected from standard internal structure models!

See talk by Pascal Tremblin...

⁺ tentative wind detection, temperature-pressure profiles, composition, clouds...

Global circulation models (GCM) results

Standard GCM robustly predict a fast eastward equatorial jet of a few km/s (Mach number ~2-3)

Excitation of a standing wave around the equator

Showman et al. (2009), Rauscher & Menou (2012), Heng et al. (2011)

Matsuno (1966), Gill (1980), Showman & Polvani (2010, 2011)

=> Interpreted as the origin of the hot spot eastward displacement

Caveat: rather limited resolution (typically one degree) and ad-hoc dissipation coefficients w/o much physical justification => uncertainties in jet velocity and drag origin

Motivations

Open questions:

- Supersonic flow
 - => Compressibility effects (shocks)?
- Jet velocity ⇔ Source of drag
 - => *Jet stability? Variability?*
- Heat distribution & transport
 - => origin of the inflated radii?

Numerical approach: an idealized model

Solve **compressible** hydrodynamic equations (code RAMSES)

No explicit dissipation, Total energy is conserved

I. Use cartesian coordinates and the equatorial β-plane model

x=longitudes, y=latitudes, neglect curvature terms

II. Use simple cooling/heating function

(Newtonian cooling – No radiative transfer)

Low resolution model: $(N_x, N_y, N_z) = (64,33,48)$

Time variability of the jet velocity

High resolution

Spacetime diagram of the zonal wind at the equator

Phase II: regular oscillations

- Variations of the mean zonal wind of the jet: ~1 km/s
- days

=> Further analysis suggest the flow is unstable to a horizontal Kelvin-Helmholtz instability!

Phase III: A vertical shear instability

Typical scale of perturbations consistent with linear stability analysis Li & Goodman (2010) $k_x H \sim 0.5 \implies \sim 11\ 000\ km$

Consequences

Hot Jupiters with DYNAMICO: first attempt

Motivation

Can these results (supersonic equatorial jet, horizonal KH instability) be reproduced with dynamico?

Setup: modification of the Held-Suarez configuration: Newtonian cooling - no additional physics, bottom layer at 220 bar, coarse resolution (nbp=20) – 33 levels with constant spacing in log(pressure) – dt=120 sec.

Zonally and time averaged (over 500 days) zonal wind in latitude-pressure coordinates

Good agreement with Liu & Showman (2010)!

Hot Jupiters with DYNAMICO: first attempt

Motivation

Can these results (supersonic equatorial jet, horizonal KH instability) be reproduced with dynamico?

Setup: modification of the Held-Suarez configuration: Newtonian cooling - no additional physics, bottom layer at 220 bar, coarse resolution (nbp=20) – 33 levels with constant spacing in log(pressure) – dt=120 sec.

But: large dissipation needed to filter out small scale oscillations and reach steady state

Tdissip=100 sec.

More work needed...

Conclusions

- « Simple » cartesien, compressible model in agreement with standard GCM
- Jet unstable to KH instabilities
 - => Variability and shocks in atmosphere upper layers
 - => Heating of deep atmospheric layers (~10 bars)
- First results with dynamico are encouraging but sensitivity to dissipation...
 - => drag & KH instability in the upper atmosphere
 - => Vertical shear instability: non hydrostatic configuration