source: codes/icosagcm/trunk/src/advect_tracer.f90 @ 327

Last change on this file since 327 was 327, checked in by ymipsl, 9 years ago

Merge recent developments from saturn branch onto trunk.

  • lmdz generic physics interface
  • performance improvment on mix mpi/openmp
  • asynchrone and overlaping communication
  • best domain distribution between process and threads
  • ....

This version is compatible with the actual saturn version and the both branches are considered merged on dynamico component.

YM

File size: 9.7 KB
RevLine 
[17]1MODULE advect_tracer_mod
[19]2  USE icosa
[138]3  IMPLICIT NONE
[17]4  PRIVATE
[22]5
[186]6  TYPE(t_field),SAVE,POINTER :: f_normal(:)
7  TYPE(t_field),SAVE,POINTER :: f_tangent(:)
8  TYPE(t_field),SAVE,POINTER :: f_gradq3d(:)
9  TYPE(t_field),SAVE,POINTER :: f_cc(:)  ! starting point of backward-trajectory (Miura approach)
[252]10  TYPE(t_field),SAVE,POINTER :: f_sqrt_leng(:)
[151]11
[186]12  TYPE(t_message),SAVE :: req_u, req_cc, req_wfluxt, req_q, req_rhodz, req_gradq3d
[151]13
[136]14  REAL(rstd), PARAMETER :: pente_max=2.0 ! for vlz
15
[151]16! temporary shared variable for vlz
[186]17  TYPE(t_field),SAVE,POINTER :: f_dzqw(:)   ! vertical finite difference of q
18  TYPE(t_field),SAVE,POINTER :: f_adzqw(:)  ! abs(dzqw)
19  TYPE(t_field),SAVE,POINTER :: f_dzq(:)    ! limited slope of q
20  TYPE(t_field),SAVE,POINTER :: f_wq(:)     ! time-integrated flux of q
[151]21
[136]22  PUBLIC init_advect_tracer, advect_tracer
23
[17]24CONTAINS
[22]25
[98]26  SUBROUTINE init_advect_tracer
[22]27    USE advect_mod
[295]28    USE omp_para
[22]29    REAL(rstd),POINTER :: tangent(:,:)
30    REAL(rstd),POINTER :: normal(:,:)
[252]31    REAL(rstd),POINTER :: sqrt_leng(:)
[23]32    INTEGER :: ind
[22]33
[138]34    CALL allocate_field(f_normal,field_u,type_real,3, name='normal')
35    CALL allocate_field(f_tangent,field_u,type_real,3, name='tangent')
36    CALL allocate_field(f_gradq3d,field_t,type_real,llm,3, name='gradq3d')
37    CALL allocate_field(f_cc,field_u,type_real,llm,3, name='cc')
[252]38    CALL allocate_field(f_sqrt_leng,field_t,type_real, name='sqrt_leng')
[151]39    CALL allocate_field(f_dzqw, field_t, type_real, llm, name='dzqw')
40    CALL allocate_field(f_adzqw, field_t, type_real, llm, name='adzqw')
41    CALL allocate_field(f_dzq, field_t, type_real, llm, name='dzq')
42    CALL allocate_field(f_wq, field_t, type_real, llm+1, name='wq')
43   
[22]44    DO ind=1,ndomain
[186]45       IF (.NOT. assigned_domain(ind)) CYCLE
[22]46       CALL swap_dimensions(ind)
47       CALL swap_geometry(ind)
48       normal=f_normal(ind)
49       tangent=f_tangent(ind)
[252]50       sqrt_leng=f_sqrt_leng(ind)
[295]51       IF (is_omp_level_master) CALL init_advect(normal,tangent,sqrt_leng)
[22]52    END DO
53
[17]54  END SUBROUTINE init_advect_tracer
[22]55
[136]56  SUBROUTINE advect_tracer(f_hfluxt, f_wfluxt,f_u, f_q,f_rhodz)
[22]57    USE advect_mod
[136]58    USE mpipara
[145]59    USE trace
[146]60    USE write_field
[22]61    IMPLICIT NONE
[145]62   
[136]63    TYPE(t_field),POINTER :: f_hfluxt(:)   ! time-integrated horizontal mass flux
64    TYPE(t_field),POINTER :: f_wfluxt(:)   ! time-integrated vertical mass flux
65    TYPE(t_field),POINTER :: f_u(:)        ! velocity (for back-trajectories)
66    TYPE(t_field),POINTER :: f_q(:)        ! tracer
67    TYPE(t_field),POINTER :: f_rhodz(:)    ! mass field at beginning of macro time step
[17]68
[252]69    REAL(rstd),POINTER :: q(:,:,:), normal(:,:), tangent(:,:), sqrt_leng(:), gradq3d(:,:,:), cc(:,:,:)
[136]70    REAL(rstd),POINTER :: hfluxt(:,:), wfluxt(:,:)
71    REAL(rstd),POINTER :: rhodz(:,:), u(:,:) 
[151]72! temporary shared variable for vlz
73    REAL(rstd),POINTER ::  dzqw(:,:)         ! vertical finite difference of q
74    REAL(rstd),POINTER ::  adzqw(:,:)        ! abs(dzqw)
75    REAL(rstd),POINTER ::  dzq(:,:)          ! limited slope of q
76    REAL(rstd),POINTER ::  wq(:,:)           ! time-integrated flux of q
77   
78     INTEGER :: ind,k
79    LOGICAL,SAVE :: first=.TRUE.
80!$OMP THREADPRIVATE(first)
[17]81
[151]82    IF (first) THEN
83      first=.FALSE.
84      CALL init_message(f_u,req_e1_vect,req_u)
[174]85      CALL init_message(f_cc,req_e1_scal,req_cc)
[151]86      CALL init_message(f_wfluxt,req_i1,req_wfluxt)
87      CALL init_message(f_q,req_i1,req_q)
88      CALL init_message(f_rhodz,req_i1,req_rhodz)
89      CALL init_message(f_gradq3d,req_i1,req_gradq3d)
90    ENDIF
91   
[186]92!!$OMP BARRIER
[151]93
[145]94    CALL trace_start("advect_tracer") 
95
[151]96    CALL send_message(f_u,req_u)
[327]97    CALL send_message(f_wfluxt,req_wfluxt)
98    CALL send_message(f_q,req_q)
99    CALL send_message(f_rhodz,req_rhodz)
100
[186]101    CALL wait_message(req_u)
102    CALL wait_message(req_wfluxt)
103    CALL wait_message(req_q)
[151]104    CALL wait_message(req_rhodz)
105   
[138]106    ! 1/2 vertical transport + back-trajectories
[22]107    DO ind=1,ndomain
[186]108       IF (.NOT. assigned_domain(ind)) CYCLE
[17]109       CALL swap_dimensions(ind)
110       CALL swap_geometry(ind)
[138]111       normal  = f_normal(ind)
112       tangent = f_tangent(ind)
113       cc      = f_cc(ind)
114       u       = f_u(ind)
[136]115       q       = f_q(ind)
116       rhodz   = f_rhodz(ind)
117       wfluxt  = f_wfluxt(ind) 
[151]118       dzqw    = f_dzqw(ind)
119       adzqw   = f_adzqw(ind)
120       dzq     = f_dzq(ind)
121       wq      = f_wq(ind) 
[148]122
[138]123       DO k = 1, nqtot
[151]124          CALL vlz(k==nqtot,0.5, wfluxt,rhodz,q(:,:,k),1,dzqw, adzqw, dzq, wq)
[138]125       END DO
[148]126
[138]127       CALL compute_backward_traj(tangent,normal,u,0.5*dt*itau_adv, cc) 
[151]128
[22]129    END DO
[17]130
[174]131    CALL send_message(f_cc,req_cc)
[17]132
[174]133
[138]134    ! horizontal transport - split in two to place transfer of gradq3d
[136]135    DO k = 1, nqtot
[138]136       DO ind=1,ndomain
[186]137          IF (.NOT. assigned_domain(ind)) CYCLE
[138]138          CALL swap_dimensions(ind)
139          CALL swap_geometry(ind)
140          q       = f_q(ind)
141          gradq3d = f_gradq3d(ind)
[252]142          sqrt_leng=f_sqrt_leng(ind)
143          CALL compute_gradq3d(q(:,:,k),sqrt_leng,gradq3d,xyz_i,xyz_v)
[327]144
[138]145       END DO
[17]146
[151]147       CALL send_message(f_gradq3d,req_gradq3d)
[327]148       CALL wait_message(req_cc)
[151]149       CALL wait_message(req_gradq3d)
[17]150
[148]151
[138]152       DO ind=1,ndomain
[186]153          IF (.NOT. assigned_domain(ind)) CYCLE
[138]154          CALL swap_dimensions(ind)
155          CALL swap_geometry(ind)
156          cc      = f_cc(ind)
157          q       = f_q(ind)
158          rhodz   = f_rhodz(ind)
159          hfluxt  = f_hfluxt(ind) 
160          gradq3d = f_gradq3d(ind)
161          CALL compute_advect_horiz(k==nqtot,hfluxt,cc,gradq3d, rhodz,q(:,:,k))
162       END DO
163    END DO 
[146]164   
[136]165    ! 1/2 vertical transport
[186]166!!$OMP BARRIER
[151]167
[138]168    DO ind=1,ndomain
[186]169       IF (.NOT. assigned_domain(ind)) CYCLE
[138]170       CALL swap_dimensions(ind)
171       CALL swap_geometry(ind)
172       q       = f_q(ind)
173       rhodz   = f_rhodz(ind)
174       wfluxt  = f_wfluxt(ind) 
[151]175       dzqw    = f_dzqw(ind)
176       adzqw   = f_adzqw(ind)
177       dzq     = f_dzq(ind)
178       wq      = f_wq(ind) 
179
[138]180       DO k = 1,nqtot
[151]181          CALL vlz(k==nqtot, 0.5,wfluxt,rhodz, q(:,:,k),0, dzqw, adzqw, dzq, wq)
[138]182       END DO
[151]183
[136]184    END DO
[138]185
[146]186    CALL trace_end("advect_tracer")
187
[186]188!!$OMP BARRIER
[151]189
[138]190  END SUBROUTINE advect_tracer
191
[151]192  SUBROUTINE vlz(update_mass, fac,wfluxt,mass, q, halo, dzqw, adzqw, dzq, wq)
[136]193    !
194    !     Auteurs:   P.Le Van, F.Hourdin, F.Forget, T. Dubos
195    !
196    !    ********************************************************************
197    !     Update tracers using vertical mass flux only
198    !     Van Leer scheme with minmod limiter
199    !     wfluxt >0 for upward transport
200    !    ********************************************************************
[148]201    USE trace
[151]202    USE omp_para
[22]203    IMPLICIT NONE
[136]204    LOGICAL, INTENT(IN)       :: update_mass
205    REAL(rstd), INTENT(IN)    :: fac, wfluxt(iim*jjm,llm+1) ! vertical mass flux
206    REAL(rstd), INTENT(INOUT) :: mass(iim*jjm,llm)
207    REAL(rstd), INTENT(INOUT) :: q(iim*jjm,llm)
[148]208    INTEGER, INTENT(IN) :: halo
[22]209
[151]210! temporary shared variable
211    REAL(rstd),INTENT(INOUT) :: dzqw(iim*jjm,llm),        & ! vertical finite difference of q
212                                adzqw(iim*jjm,llm),       & ! abs(dzqw)
213                                dzq(iim*jjm,llm),         & ! limited slope of q
214                                wq(iim*jjm,llm+1)           ! time-integrated flux of q
215
216
[136]217    REAL(rstd) :: dzqmax, newmass, sigw, qq, w
[174]218    INTEGER :: i,ij,l,j,ijb,ije
[22]219
[148]220    CALL trace_start("vlz")
[174]221     
222     ijb=((jj_begin-halo)-1)*iim+ii_begin-halo
223     ije = ((jj_end+halo)-1)*iim+ii_end+halo
[148]224
[136]225    ! finite difference of q
[151]226
227     DO l=ll_beginp1,ll_end
[174]228!$SIMD
229       DO ij=ijb,ije
230         dzqw(ij,l)=q(ij,l)-q(ij,l-1)
231         adzqw(ij,l)=abs(dzqw(ij,l))
[22]232       ENDDO
233    ENDDO
234
[151]235!--> flush dzqw, adzqw
[295]236!$OMP BARRIER
[151]237
[136]238    ! minmod-limited slope of q
239    ! dzq = slope*dz, i.e. the reconstructed q varies by dzq inside level l
[151]240
241     DO l=ll_beginp1,ll_endm1
[174]242!$SIMD
243       DO ij=ijb,ije 
244         IF(dzqw(ij,l)*dzqw(ij,l+1).gt.0.) THEN
245             dzq(ij,l) = 0.5*( dzqw(ij,l)+dzqw(ij,l+1) )
246             dzqmax    = pente_max * min( adzqw(ij,l),adzqw(ij,l+1) )
247             dzq(ij,l) = sign( min(abs(dzq(ij,l)),dzqmax) , dzq(ij,l) )  ! NB : sign(a,b)=a*sign(b)
248          ELSE
249             dzq(ij,l)=0.
250          ENDIF
[22]251       ENDDO
252    ENDDO
[17]253
[151]254
[136]255    ! 0 slope in top and bottom layers
[295]256    IF (is_omp_first_level) THEN
[174]257      DO ij=ijb,ije
[151]258           dzq(ij,1)=0.
259      ENDDO
260    ENDIF
261     
[295]262    IF (is_omp_last_level) THEN
[174]263      DO ij=ijb,ije
[136]264          dzq(ij,llm)=0.
[151]265      ENDDO
266    ENDIF
[17]267
[151]268!---> flush dzq
[295]269!$OMP BARRIER 
[151]270
[136]271    ! sigw = fraction of mass that leaves level l/l+1
272    ! then amount of q leaving level l/l+1 = wq = w * qq
[151]273     DO l=ll_beginp1,ll_end
[174]274!$SIMD
275       DO ij=ijb,ije
[151]276             w = fac*wfluxt(ij,l)
[138]277             IF(w>0.) THEN  ! upward transport, upwind side is at level l
[151]278                sigw       = w/mass(ij,l-1)
279                qq         = q(ij,l-1)+0.5*(1.-sigw)*dzq(ij,l-1) ! qq = q if sigw=1 , qq = q+dzq/2 if sigw=0
280             ELSE           ! downward transport, upwind side is at level l+1
[138]281                sigw       = w/mass(ij,l)
[151]282                qq         = q(ij,l)-0.5*(1.+sigw)*dzq(ij,l) ! qq = q if sigw=-1 , qq = q-dzq/2 if sigw=0               
[22]283             ENDIF
[151]284             wq(ij,l) = w*qq
[22]285       ENDDO
286    END DO
[136]287    ! wq = 0 at top and bottom
[295]288    IF (is_omp_first_level) THEN
[174]289       DO ij=ijb,ije
[151]290            wq(ij,1)=0.
291      END DO
292    ENDIF
293   
[295]294    IF (is_omp_last_level) THEN
[174]295      DO ij=ijb,ije
[151]296            wq(ij,llm+1)=0.
297      END DO
298    ENDIF
[17]299
[151]300! --> flush wq
[295]301!$OMP BARRIER
[151]302
303
[136]304    ! update q, mass is updated only after all q's have been updated
[151]305    DO l=ll_begin,ll_end
[174]306!$SIMD
307       DO ij=ijb,ije
[136]308             newmass = mass(ij,l) + fac*(wfluxt(ij,l)-wfluxt(ij,l+1))
309             q(ij,l) = ( q(ij,l)*mass(ij,l) + wq(ij,l)-wq(ij,l+1) ) / newmass
310             IF(update_mass) mass(ij,l)=newmass
[22]311       ENDDO
312    END DO
[136]313
[148]314    CALL trace_end("vlz")
315
[22]316  END SUBROUTINE vlz
[17]317
318END MODULE advect_tracer_mod
Note: See TracBrowser for help on using the repository browser.