source: codes/icosagcm/devel/src/time/timeloop_gcm.f90 @ 732

Last change on this file since 732 was 732, checked in by dubos, 6 years ago

devel : more cleanup and reorganization in dynamics/

File size: 15.7 KB
Line 
1MODULE timeloop_gcm_mod
2  USE profiling_mod
3  USE icosa
4  USE disvert_mod
5  USE trace
6  USE omp_para
7  USE euler_scheme_mod
8  USE explicit_scheme_mod
9  USE hevi_scheme_mod
10  USE caldyn_vars_mod
11  IMPLICIT NONE
12  PRIVATE
13 
14  INTEGER, PARAMETER :: itau_sync=10
15  TYPE(t_message),SAVE :: req_ps0, req_mass0, req_theta_rhodz0, req_u0, req_q0, req_W0, req_geopot0
16  LOGICAL, SAVE :: positive_theta
17  INTEGER :: itau_prof, id_timeloop, id_dyn, id_phys, id_dissip, id_adv, id_diags
18  PUBLIC :: init_timeloop, timeloop
19
20CONTAINS
21 
22  SUBROUTINE init_timeloop
23    USE dissip_gcm_mod
24    USE observable_mod
25    USE caldyn_mod
26    USE etat0_mod
27    USE guided_mod
28    USE advect_tracer_mod
29    USE check_conserve_mod
30    USE output_field_mod
31    USE theta2theta_rhodz_mod
32    USE sponge_mod
33
34    CHARACTER(len=255) :: def
35
36    CALL register_id('timeloop',id_timeloop)
37    CALL register_id('dyn',id_dyn)
38    CALL register_id('dissip',id_dissip)
39    CALL register_id('phys',id_phys)
40    CALL register_id('adv',id_adv)
41    CALL register_id('diags',id_diags)
42
43    CALL init_caldyn
44   
45!    IF (xios_output) itau_out=1
46    IF (.NOT. enable_io) itau_out=HUGE(itau_out)
47
48    itau_prof=100
49    CALL getin('itau_profiling',itau_prof)
50
51    positive_theta=.FALSE.
52    CALL getin('positive_theta',positive_theta)
53    IF(positive_theta .AND. nqtot<1) THEN
54       PRINT *, 'nqtot must be >0 if positive_theta is .TRUE.'
55       STOP
56    END IF
57
58    def='ARK2.3'
59    CALL getin('time_scheme',def)
60    SELECT CASE (TRIM(def))
61    CASE('euler')
62       scheme_family=explicit
63       scheme=euler
64       nb_stage=1
65    CASE ('runge_kutta')
66       scheme_family=explicit
67       scheme=rk4
68       nb_stage=4
69    CASE ('RK2.5')
70       scheme_family=explicit
71       scheme=rk25
72       nb_stage=5
73    CASE ('leapfrog_matsuno')
74       scheme_family=explicit
75       scheme=mlf
76       matsuno_period=5
77       CALL getin('matsuno_period',matsuno_period)
78       nb_stage=matsuno_period+1
79    CASE('ARK2.3')
80       scheme_family=hevi
81       scheme=ark23
82       nb_stage=3
83       CALL set_coefs_ark23(dt)
84    CASE('ARK3.3')
85       scheme_family=hevi
86       scheme=ark33
87       nb_stage=3
88       CALL set_coefs_ark33(dt)
89    CASE ('none')
90       nb_stage=0
91    CASE default
92       PRINT*,'Bad selector for variable scheme : <', TRIM(def),             &
93            ' > options are <euler>, <runge_kutta>, <leapfrog_matsuno>,<RK2.5>,<ARK2.3>'
94       STOP
95    END SELECT
96   
97    ! Time-independant orography
98    CALL allocate_field(f_phis,field_t,type_real,name='phis')
99    ! Model state at current time step
100    CALL allocate_field(f_ps,field_t,type_real, name='ps')
101    CALL allocate_field(f_mass,field_t,type_real,llm,name='mass')
102    CALL allocate_field(f_rhodz,field_t,type_real,llm,name='rhodz')
103    CALL allocate_field(f_theta_rhodz,field_t,type_real,llm,nqdyn,name='theta_rhodz')
104    CALL allocate_field(f_u,field_u,type_real,llm,name='u')
105    CALL allocate_field(f_geopot,field_t,type_real,llm+1,name='geopot')
106    CALL allocate_field(f_W,field_t,type_real,llm+1,name='W')
107    CALL allocate_field(f_q,field_t,type_real,llm,nqtot,'q')
108    ! Mass fluxes
109    CALL allocate_field(f_hflux,field_u,type_real,llm)    ! instantaneous mass fluxes
110    CALL allocate_field(f_hfluxt,field_u,type_real,llm)   ! mass "fluxes" accumulated in time
111    CALL allocate_field(f_wflux,field_t,type_real,llm+1)  ! vertical mass fluxes
112    CALL allocate_field(f_wfluxt,field_t,type_real,llm+1,name='wfluxt')
113   
114    SELECT CASE(scheme_family)
115    CASE(explicit)
116       ! Trends
117       CALL allocate_field(f_dps,field_t,type_real,name='dps')
118       CALL allocate_field(f_dmass,field_t,type_real,llm, name='dmass')
119       CALL allocate_field(f_dtheta_rhodz,field_t,type_real,llm,nqdyn,name='dtheta_rhodz')
120       CALL allocate_field(f_du,field_u,type_real,llm,name='du')
121       ! Model state at previous time step (RK/MLF)
122       CALL allocate_field(f_psm1,field_t,type_real,name='psm1')
123       CALL allocate_field(f_massm1,field_t,type_real,llm, name='massm1')
124       CALL allocate_field(f_theta_rhodzm1,field_t,type_real,llm,nqdyn,name='theta_rhodzm1')
125       CALL allocate_field(f_um1,field_u,type_real,llm,name='um1')
126    CASE(hevi)
127       ! Trends
128       CALL allocate_fields(nb_stage,f_dps_slow, field_t,type_real,name='dps_slow')
129       CALL allocate_fields(nb_stage,f_dmass_slow, field_t,type_real,llm, name='dmass_slow')
130       CALL allocate_fields(nb_stage,f_dtheta_rhodz_slow, field_t,type_real,llm,nqdyn,name='dtheta_rhodz_fast')
131       CALL allocate_fields(nb_stage,f_du_slow, field_u,type_real,llm,name='du_slow')
132       CALL allocate_fields(nb_stage,f_du_fast, field_u,type_real,llm,name='du_fast')
133       CALL allocate_fields(nb_stage,f_dW_slow, field_t,type_real,llm+1,name='dW_slow')
134       CALL allocate_fields(nb_stage,f_dW_fast, field_t,type_real,llm+1,name='dW_fast')
135       CALL allocate_fields(nb_stage,f_dPhi_slow, field_t,type_real,llm+1,name='dPhi_slow')
136       CALL allocate_fields(nb_stage,f_dPhi_fast, field_t,type_real,llm+1,name='dPhi_fast')
137       f_dps => f_dps_slow(:,1)
138       f_du => f_du_slow(:,1)
139       f_dtheta_rhodz => f_dtheta_rhodz_slow(:,1)
140    END SELECT
141
142    SELECT CASE(scheme)
143    CASE(mlf)
144       ! Model state 2 time steps ago (MLF)
145       CALL allocate_field(f_psm2,field_t,type_real)
146       CALL allocate_field(f_massm2,field_t,type_real,llm)
147       CALL allocate_field(f_theta_rhodzm2,field_t,type_real,llm,nqdyn)
148       CALL allocate_field(f_um2,field_u,type_real,llm)
149    END SELECT
150
151    CALL init_theta2theta_rhodz
152    CALL init_dissip
153    CALL init_sponge
154    CALL init_observable
155    CALL init_guided
156    CALL init_advect_tracer
157    CALL init_check_conserve
158
159    CALL etat0(f_ps,f_mass,f_phis,f_theta_rhodz,f_u, f_geopot,f_W, f_q)
160
161    CALL transfert_request(f_phis,req_i0) 
162    CALL transfert_request(f_phis,req_i1) 
163
164    CALL init_message(f_ps,req_i0,req_ps0)
165    CALL init_message(f_mass,req_i0,req_mass0)
166    CALL init_message(f_theta_rhodz,req_i0,req_theta_rhodz0)
167    CALL init_message(f_u,req_e0_vect,req_u0)
168    CALL init_message(f_q,req_i0,req_q0)
169    CALL init_message(f_geopot,req_i0,req_geopot0)
170    CALL init_message(f_W,req_i0,req_W0)
171
172  END SUBROUTINE init_timeloop
173 
174  SUBROUTINE timeloop
175    USE dissip_gcm_mod
176    USE sponge_mod
177    USE observable_mod
178    USE etat0_mod
179    USE guided_mod
180    USE caldyn_mod
181    USE advect_tracer_mod
182    USE diagflux_mod
183    USE physics_mod
184    USE mpipara
185    USE transfert_mod
186    USE check_conserve_mod
187    USE xios_mod
188    USE output_field_mod
189    USE write_etat0_mod
190    USE restart_mod
191    USE checksum_mod
192    USE explicit_scheme_mod
193    USE hevi_scheme_mod
194    REAL(rstd),POINTER :: rhodz(:,:), mass(:,:), ps(:)
195
196    REAL(rstd) :: adv_over_out ! ratio itau_adv/itau_out
197    INTEGER :: ind, it,i,j,l,n,  stage
198    LOGICAL :: fluxt_zero(ndomain) ! set to .TRUE. to start accumulating mass fluxes in time
199    LOGICAL, PARAMETER :: check_rhodz=.FALSE.
200    INTEGER :: start_clock, stop_clock, rate_clock
201    LOGICAL,SAVE :: first_physic=.TRUE.
202    !$OMP THREADPRIVATE(first_physic)   
203
204    CALL switch_omp_distrib_level
205    CALL caldyn_BC(f_phis, f_geopot, f_wflux) ! set constant values in first/last interfaces
206
207    !$OMP BARRIER
208    DO ind=1,ndomain
209       IF (.NOT. assigned_domain(ind)) CYCLE
210       CALL swap_dimensions(ind)
211       CALL swap_geometry(ind)
212       rhodz=f_rhodz(ind); mass=f_mass(ind); ps=f_ps(ind)
213       IF(caldyn_eta==eta_mass) THEN
214          CALL compute_rhodz(.TRUE., ps, rhodz) ! save rhodz for transport scheme before dynamics update ps
215       ELSE
216          DO l=ll_begin,ll_end
217             rhodz(:,l)=mass(:,l)
218          ENDDO
219       END IF
220    END DO
221    !$OMP BARRIER
222    fluxt_zero=.TRUE.
223
224    IF(positive_theta) CALL copy_theta_to_q(f_theta_rhodz,f_rhodz,f_q)
225    IF(diagflux_on) THEN
226       adv_over_out = itau_adv*(1./itau_out)
227    ELSE
228       adv_over_out = 0.
229    END IF
230
231    CALL check_conserve(f_ps,f_dps,f_u,f_theta_rhodz,f_phis,itau0) 
232
233    Call trace_on
234
235    IF (xios_output) THEN ! we must call update_calendar before any XIOS output
236      IF (is_omp_master) CALL xios_update_calendar(1)
237    END IF
238   
239!    IF (write_start) CALL write_etat0(itau0,f_ps, f_phis,f_theta_rhodz,f_u,f_q)
240    IF (write_start) CALL write_etat0(itau0,f_ps, f_phis,f_theta_rhodz,f_u,f_q, f_geopot, f_W)
241   
242    CALL write_output_fields_basic(.TRUE., f_phis, f_ps, f_mass, f_geopot, f_theta_rhodz, f_u, f_W, f_q)
243
244    !$OMP MASTER
245    CALL SYSTEM_CLOCK(start_clock, rate_clock)
246    !$OMP END MASTER   
247
248    DO it=itau0+1,itau0+itaumax
249       IF (is_master) CALL print_iteration(it, itau0, itaumax, start_clock, rate_clock)
250
251       CALL enter_profile(id_timeloop)
252
253       IF (xios_output) THEN
254
255          IF(it>itau0+1 .AND. is_omp_master) CALL xios_update_calendar(it-itau0)
256       ELSE
257          CALL update_time_counter(dt*it)
258       END IF
259
260       IF (it==itau0+1 .OR. MOD(it,itau_sync)==0) THEN
261          CALL send_message(f_ps,req_ps0)
262          CALL wait_message(req_ps0)
263          CALL send_message(f_mass,req_mass0)
264          CALL wait_message(req_mass0)
265          CALL send_message(f_theta_rhodz,req_theta_rhodz0) 
266          CALL wait_message(req_theta_rhodz0) 
267          CALL send_message(f_u,req_u0)
268          CALL wait_message(req_u0)
269          CALL send_message(f_q,req_q0) 
270          CALL wait_message(req_q0)
271          IF(.NOT. hydrostatic) THEN
272             CALL send_message(f_geopot,req_geopot0)
273             CALL wait_message(req_geopot0)
274             CALL send_message(f_W,req_W0)
275             CALL wait_message(req_W0)
276          END IF
277       ENDIF
278
279       CALL guided(it*dt,f_ps,f_theta_rhodz,f_u,f_q)
280
281       CALL enter_profile(id_dyn)
282       SELECT CASE(scheme_family)
283       CASE(explicit)
284          CALL explicit_scheme(it, fluxt_zero)
285       CASE(hevi)
286          CALL HEVI_scheme(it, fluxt_zero)
287       END SELECT
288       CALL exit_profile(id_dyn)
289
290       CALL enter_profile(id_dissip)
291       IF (MOD(it,itau_dissip)==0) THEN
292         
293          IF(caldyn_eta==eta_mass) THEN
294             !ym flush ps
295             !$OMP BARRIER
296             DO ind=1,ndomain
297                IF (.NOT. assigned_domain(ind)) CYCLE
298                CALL swap_dimensions(ind)
299                CALL swap_geometry(ind)
300                mass=f_mass(ind); ps=f_ps(ind);
301                CALL compute_rhodz(.TRUE., ps, mass)
302             END DO
303          ENDIF
304         
305          CALL enter_profile(id_diags)
306          CALL check_conserve_detailed(it, AAM_dyn, &
307               f_ps,f_dps,f_u,f_theta_rhodz,f_phis)
308          CALL exit_profile(id_diags)
309       
310          CALL dissip(f_ps,f_mass,f_phis,f_geopot,f_theta_rhodz,f_u, f_dtheta_rhodz,f_du)
311         
312          CALL euler_scheme(.FALSE.)  ! update only u, theta
313          IF (iflag_sponge > 0) THEN
314             CALL sponge(f_u,f_du,f_theta_rhodz,f_dtheta_rhodz)
315             CALL euler_scheme(.FALSE.)  ! update only u, theta
316          END IF
317
318          CALL enter_profile(id_diags)
319          CALL check_conserve_detailed(it, AAM_dissip, &
320               f_ps,f_dps,f_u,f_theta_rhodz,f_phis)
321          CALL exit_profile(id_diags)
322       END IF
323       CALL exit_profile(id_dissip)
324       
325       CALL enter_profile(id_adv)
326       IF(MOD(it,itau_adv)==0) THEN
327          CALL advect_tracer(f_hfluxt,f_wfluxt,f_u, f_q,f_rhodz, & ! update q and rhodz after RK step
328               adv_over_out, f_masst,f_qmasst,f_massfluxt, f_qfluxt)  ! accumulate mass and fluxes if diagflux_on
329          fluxt_zero=.TRUE. ! restart accumulation of hfluxt and qfluxt at next call to explicit_scheme / HEVI_scheme
330          ! At this point advect_tracer has obtained the halos of u and rhodz,
331          ! needed for correct computation of kinetic energy
332          IF(diagflux_on) CALL diagflux_energy(adv_over_out, f_phis,f_rhodz,f_theta_rhodz,f_u, f_geopot,f_theta,f_buf_i, f_hfluxt)
333
334          IF (check_rhodz) THEN ! check that rhodz is consistent with ps
335             DO ind=1,ndomain
336                IF (.NOT. assigned_domain(ind)) CYCLE
337                CALL swap_dimensions(ind)
338                CALL swap_geometry(ind)
339                rhodz=f_rhodz(ind); ps=f_ps(ind);
340                CALL compute_rhodz(.FALSE., ps, rhodz)   
341             END DO
342          ENDIF
343          IF(positive_theta) CALL copy_q_to_theta(f_theta_rhodz,f_rhodz,f_q)
344       END IF
345       CALL exit_profile(id_adv)
346       
347       CALL enter_profile(id_diags)
348       IF (MOD(it,itau_physics)==0) THEN
349          CALL check_conserve_detailed(it, AAM_dyn, &
350            f_ps,f_dps,f_u,f_theta_rhodz,f_phis)
351          CALL enter_profile(id_phys)
352          CALL physics(it,f_phis, f_ps, f_theta_rhodz, f_u, f_wflux, f_q)       
353          CALL exit_profile(id_phys)
354          CALL check_conserve_detailed(it, AAM_phys, &
355               f_ps,f_dps,f_u,f_theta_rhodz,f_phis)
356          !$OMP MASTER
357          IF (first_physic) CALL SYSTEM_CLOCK(start_clock)
358          !$OMP END MASTER   
359          first_physic=.FALSE.
360       END IF
361
362       IF (MOD(it,itau_check_conserv)==0) THEN
363          CALL check_conserve_detailed(it, AAM_dyn, &
364               f_ps,f_dps,f_u,f_theta_rhodz,f_phis)
365          CALL check_conserve(f_ps,f_dps,f_u,f_theta_rhodz,f_phis,it) 
366       ENDIF
367
368       IF (mod(it,itau_out)==0 ) THEN
369          CALL transfert_request(f_u,req_e1_vect)
370          CALL write_output_fields_basic(.FALSE.,f_phis, f_ps, f_mass, f_geopot, f_theta_rhodz, f_u, f_W, f_q)
371       ENDIF
372       CALL exit_profile(id_diags)
373
374       CALL exit_profile(id_timeloop)
375    END DO
376   
377!    CALL write_etat0(itau0+itaumax,f_ps, f_phis,f_theta_rhodz,f_u,f_q)
378    CALL write_etat0(itau0+itaumax,f_ps, f_phis,f_theta_rhodz,f_u,f_q, f_geopot, f_W) 
379   
380    CALL check_conserve_detailed(it, AAM_dyn, &
381         f_ps,f_dps,f_u,f_theta_rhodz,f_phis)
382    CALL check_conserve(f_ps,f_dps,f_u,f_theta_rhodz,f_phis,it) 
383   
384    !$OMP MASTER
385    CALL SYSTEM_CLOCK(stop_clock)
386   
387    IF (mpi_rank==0) THEN
388       PRINT *,"Time elapsed : ",(stop_clock-start_clock)*1./rate_clock 
389    ENDIF
390    !$OMP END MASTER
391   
392    ! CONTAINS
393  END SUBROUTINE timeloop
394
395  SUBROUTINE print_iteration(it,itau0,itaumax,start_clock,rate_clock)
396    INTEGER :: it, itau0, itaumax, start_clock, stop_clock, rate_clock, throughput
397    REAL :: per_step,total, elapsed
398    WRITE(*,'(A,I7,A,F14.1)') "It No :",it,"   t :",dt*it
399    IF(MOD(it,10)==0) THEN
400       CALL SYSTEM_CLOCK(stop_clock)
401       elapsed = (stop_clock-start_clock)*1./rate_clock
402       per_step = elapsed/(it-itau0)
403       throughput = dt/per_step
404       total = per_step*itaumax
405       WRITE(*,'(A,I5,A,F6.2,A,I6)') 'Time spent (s):',INT(elapsed), &
406            '  -- ms/step : ', 1000*per_step, &
407            '  -- Throughput :', throughput
408       WRITE(*,'(A,I5,A,I5)') 'Whole job (min) :', INT(total/60.), &
409            '  -- Completion in (min) : ', INT((total-elapsed)/60.)
410    END IF
411    IF(MOD(it,itau_prof)==0) CALL print_profile
412
413  END SUBROUTINE print_iteration
414
415  SUBROUTINE copy_theta_to_q(f_theta_rhodz,f_rhodz,f_q)
416    TYPE(t_field),POINTER :: f_theta_rhodz(:),f_rhodz(:), f_q(:)
417    REAL(rstd), POINTER :: theta_rhodz(:,:,:), rhodz(:,:), q(:,:,:)
418    INTEGER :: ind, iq
419    DO ind=1, ndomain
420       IF (.NOT. assigned_domain(ind)) CYCLE
421       CALL swap_dimensions(ind)
422       CALL swap_geometry(ind)
423       theta_rhodz=f_theta_rhodz(ind)
424       rhodz=f_rhodz(ind)
425       q=f_q(ind)
426       DO iq=1, nqdyn
427          q(:,:,iq)  = theta_rhodz(:,:,iq)/rhodz(:,:)
428       END DO
429    END DO
430  END SUBROUTINE copy_theta_to_q
431
432  SUBROUTINE copy_q_to_theta(f_theta_rhodz,f_rhodz,f_q)
433    TYPE(t_field),POINTER :: f_theta_rhodz(:),f_rhodz(:), f_q(:)
434    REAL(rstd), POINTER :: theta_rhodz(:,:,:), rhodz(:,:), q(:,:,:)
435    INTEGER :: ind, iq
436    DO ind=1, ndomain
437       IF (.NOT. assigned_domain(ind)) CYCLE
438       CALL swap_dimensions(ind)
439       CALL swap_geometry(ind)
440       theta_rhodz=f_theta_rhodz(ind)
441       rhodz=f_rhodz(ind)
442       q=f_q(ind)
443       DO iq=1,nqdyn
444          theta_rhodz(:,:,iq) = rhodz(:,:)*q(:,:,iq)
445       END DO
446    END DO
447  END SUBROUTINE copy_q_to_theta
448
449END MODULE timeloop_gcm_mod
Note: See TracBrowser for help on using the repository browser.